Language Reference

sSMmMirazQ

V1.0

Language Reference

Arduino programs can be divided in three main
parts: structure, values (variables and constants), and functions.

Structure
setup()
loop()
setup()

The setup() function is called when a sketch starts. Use it to initialize variables,
pin modes, start using libraries, etc. The setup function will only run once,
after each powerup or reset of the Arduino board.

Example

int buttonPin =/3;

void setup()
{
Serial. begin (9600) ;
pinMode (buttonPin, INPUT);
}

void loop()

{
7N
}

loop()

After creating a setup() function, which initializes and sets the initial values,
the loop() function does precisely what its name suggests, and loops
consecutively, allowing your program to change and respond. Use it to actively
control the Arduino board.

Example

int buttonPin = 3;

http://127.0.0.1:800/Default/arduino.cc/en/Reference/Setup
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Loop

Language Reference

sSMmMirazQ

V1.0

// setup initializes serial and the button pin
void setup()
{
beginSerial (9600) ;
pinMode (buttonPin, INPUT) ;
}

// loop checks the button pin each time,
// and will send serial if it is pressed
void loop()
{
if (digitalRead (buttonPin) == HIGH)
serialWriteCH) ;
else
serialWrite(CL’);

delay (1000) ;
}

Control Structures

if

if...else
for

switch case
while
do... while
break
continue
return

goto

http://127.0.0.1:800/Default/arduino.cc/en/Reference/If
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Else
http://127.0.0.1:800/Default/arduino.cc/en/Reference/For
http://127.0.0.1:800/Default/arduino.cc/en/Reference/SwitchCase
http://127.0.0.1:800/Default/arduino.cc/en/Reference/While
http://127.0.0.1:800/Default/arduino.cc/en/Reference/DoWhile
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Break
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Continue
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Return
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Goto

Language Reference

sSMmMirazQ

V1.0

if (conditional) and ==, !=, <, > (comparison operators)

if, which is used in conjunction with a comparison operator, tests whether a certain
condition has been reached, such as an input being above a certain number. The
format for an if test is:
if (someVariable > 50)
{

// do something here
}
The program tests to see if someVariable is greater than 50. If it is, the program takes
a particular action. Put another way, if the statement in parentheses is true, the
statements inside the brackets are run. If not, the program skips over the code.
The brackets may be omitted after an if statement. If this is done, the next line
(defined by the semicolon) becomes the only conditional statement.

if (x > 120) digitalWrite (LEDpin, HIGH) ;

if (x > 120)
digitalWrite (LEDpin, HIGH) ;

if (x > 120){ digitalWrite(LEDpin, HIGH); }

if (x > 120) {
digitalWrite (LEDpinl, HIGH);
digitalWrite (LEDpin2; HIGH);
} // all are correct

The statements being evaluated inside the parentheses require the use of one or more
operators:
Comparison Operators:

x ==y (x is equal toy)

x !=y (x isenot equal to y)

x < y (x is less than y)

x > y (x is greater than y)

x <=y (x is less than or equal to y)

x >=y (x is greater than or equal to y)
Warning:

Beware of accidentally using the single equal sign (e.g. if (x = 10)). The single
equal sign is the assignment operator, and sets x to 10 (puts the value 10 into the
variable x). Instead use the double equal sign (e.g. if (x == 10)), which is the
comparison operator, and tests whether x is equal to 10 or not. The latter statement
is only true if x equals 10, but the former statement will always be true.

This is because C evaluates the statement if (x=10) as follows: 10 is assigned to x
(remember that the single equal sign is the assignment operator), so x now contains

http://127.0.0.1:800/Default/arduino.cc/en/Reference/Assignment

Language Reference

smraza

10. Then the 'if' conditional evaluates 10, which always evaluates to TRUE, since any

non-zero number evaluates to TRUE. Consequently, if (x = 10) will always
evaluate to TRUE, which is not the desired result when using an 'if' statement.
Additionally, the variable x will be set to 10, which is also not a desired action.
if can also be part of a branching control structure using the if...else] construction.

Reference Home

if / else

if/else allows greater control over the flow of code than the basic if statement, by
allowing multiple tests to be grouped together. For example, an analog input could be
tested and one action taken if the input was less than 500, and another action taken if
the input was 500 or greater. The code would look like this:
if (pinFivelnput < 500)
{
// action A
}
else
{
// action B
}
else can proceed another if test, so that multiple, mutually exclusive tests can be run
at the same time.
Each test will proceed to the next one until a true test is encountered. When a true
test is found, its associated block of code is run, and the program then skips to the
line following the entire if/else construction. If no test proves to be true, the default
else block is executed, if one is present, and sets the default behavior.
Note that an else if block may be used with or without a terminating else block and
vice versa. An unlimited number of such else if branches is allowed.
if (pinFivelnput <:.500)
{
// do Thing A
}
else if (pinFivelnput >= 1000)
{
// do Thing B
}
else
{
// do Thing C
}

Another way to express branching, mutually exclusive tests, is with the switch case
statement.

http://127.0.0.1:800/Default/arduino.cc/en/Reference/Else
http://127.0.0.1:800/Default/arduino.cc/en/Reference/HomePage
http://127.0.0.1:800/Default/arduino.cc/en/Reference/SwitchCase

Language Reference

sSMmMirazQ

for statements

V1.0

Desciption

The for statement is used to repeat a block of statements enclosed in curly braces. An
increment counter is usually used to increment and terminate the loop. The for
statement is useful for any repetitive operation, and is often used in combination with
arrays to operate on collections of data/pins.

There are three parts to the for loop header:

for (initialization; condition; increment) {

//statement (s) ;

}

parenthesis

declare variable (optional)

initialize test increment or
decrement

for(int x = 0; x < 100; x++){

println(x); // prints 0 to 99
}

The initialization happens first and exactly once. Each time through the loop, the
condition is tested; if it's true, the statement block, and the increment is executed,
then the condition is tested again. When the eondition becomes false, the loop
ends.

Example

// Dim an LED using a PWM pin

int PWMpin = 10; // LED in series with 470 ohm resistor on pin 10

void setup()

{
// no setup needed

}

void loop ()
{
for (int i=0; i <= 255; i++) {
analogWrite (PWMpin, 1i);
delay (10) ;

Language Reference

sSMmMirazQ

V1.0

Coding Tips
The C for loop is much more flexible than for loops found in some other computer
languages, including BASIC. Any or all of the three header elements may be omitted,
although the semicolons are required. Also the statements for initialization,
condition, and increment can be any valid C statements with unrelated variables, and
use any C datatypes including floats. These types of unusual for statements may
provide solutions to some rare programming problems.
For example, using a multiplication in the increment line will generate a logarithmic
progression:
for(int x = 2; x < 100; x = x * 1.5) {
println(x) ;
}
Generates: 2,3,4,6,9,13,19,28,42,63,94
Another example, fade an LED up and down with one for loop:
void loop()
{
int x = 1;
for (int i =0; i > -1; i =i+ x){

analogWrite (PWMpin, 1i);

if (i == 255) x = -1; // switch/direction at peak

delay (10) ;

switch / case statements

Like if statements, switch...case controls the flow of programs by allowing
programmers to specify different ecode that should be executed in various conditions.
In particular, a switeh statement compares the value of a variable to the values
specified in case statements. When a case statement is found whose value matches
that of the variable, the code in that case statement is run.
The break keyword exits the switch statement, and is typically used at the end of
each case. Without a break statement, the switch statement will continue executing
the following expressions ("falling-through") until a break, or the end of the switch
statement is reached.
Example
switch (var) {
case 1:
//do something when var equals 1
break;
case 2:
//do something when var equals 2
break;
default:
// if nothing else matches, do the default

Language Reference

sSMmMirazQ

V1.0

// default is optional

Syntax
switch (var) f{
case label:
// statements
break;
case label:
// statements
break;
default:
// statements

Parameters
var: the variable whose value to compare to the various cases
label: a value to compare the variable to

while loops

Description
while loops will loop continuously, and infinitely, until the expression inside the
parenthesis, () becomes false. Something must change the tested variable, or the
while loop will never exit. This could be in your code, such as an incremented
variable, or an external condition, such as testing a sensor.
Syntax
while (expression) {
// statement (s)
}
Parameters
expression - a (boolean) C statement that evaluates to true or false
Example
var = 0;
while (var < 200) {
// do something repetitive 200 times
vart+;

}

do - while

The do loop works in the same manner as the while loop, with the exception that the
condition is tested at the end of the loop, so the do loop will always run at least once.
do

{

Language Reference

sSMmMirazQ

V1.0

// statement block
} while (test condition);

Example

do

{
delay (50) ; // wait for sensors to stabilize
x = readSensors(); // check the sensors

} while (x < 100);

break

break is used to exit from a do, for, or while loop, bypassing the normal loop
condition. It is also used to exit from a switch statement.
Example
for (x = 0; x < 255; x ++)
{
digitalWrite (PWMpin, x);
sens = analogRead (sensorPin) :

if (sens > threshold) { // bail out on. sensor detect
x = 0;
break;
}
delay (50) ;
}
continue

The continue statement skips the rest of the current iteration of a loop (do, for, or
while). It continues by checking the conditional expression of the loop, and
proceeding with.any subsequent iterations.

Example

for (x = 0: x < 255; x ++)

{
if (x > 40 && x < 120) { // create jump in values

continue;

digitalWrite (PWpin, x);
delay (50) ;

Language Reference

sSMmMirazQ

V1.0

return

Terminate a function and return a value from a function to the calling function, if
desired.
Syntax:
return;
return value; // both forms are valid
Parameters
value: any variable or constant type
Examples:
A function to compare a sensor input to a threshold
int checkSensor () {
if (analogRead(0) > 400) {
return 1;
else{
return 0;

}

The return keyword is handy to test a section of code without having to "comment
out" large sections of possibly buggy code.

void loop() {

// brilliant code~idea to test here
return;

// the-rest of a dysfunctional sketch here
// this code will never be executed

}
goto

Transfers program flow to a labeled point in the program

Syntax

label:

goto label; // sends program flow to the label

Tip

The use of goto is discouraged in C programming, and some authors of C
programming books claim that the goto statement is never necessary, but used
judiciously, it can simplify certain programs. The reason that many programmers
frown upon the use of goto is that with the unrestrained use of goto statements, it is
easy to create a program with undefined program flow, which can never be debugged.
With that said, there are instances where a goto statement can come in handy, and
simplify coding. One of these situations is to break out of deeply nested for loops, or
if logic blocks, on a certain condition.

Language Reference

o sSMMIrQazQa

Example

for(byte r = 0; r < 255; r++) {

for(byte g = 255; g > -1; g—){
for (byte b = 0; b < 255; b++) {

if (analogRead(0) > 250){ goto bailout;}
// more statements ...

}

bailout:

Further Syntax

: (semicolon)

{} (curly braces)

// (single line comment)
/* */ (multi-line comment)
#define

#include

: semicolon

Used to end a statement.
Example
int a = 13;

Tip
Forgetting to end a line in a semicolon will result in a compiler error. The error text

may be obvious, and refer to a missing semicolon, or it may not. If an impenetrable or
seemingly illogical compiler error comes up, one of the first things to check is a

10

http://127.0.0.1:800/Default/arduino.cc/en/Reference/SemiColon
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Braces
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Comments
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Comments
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Define
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Include

Language Reference

smraza

missing semicolon, in the immediate vicinity, preceding the line at which the
compiler complained

{} Curly Braces

Curly braces (also referred to as just "braces" or as "curly brackets") are a major part
of the C programming language. They are used in several different constructs,
outlined below, and this can sometimes be confusing for beginners.

An opening curly brace "{" must always be followed by a closing curly brace "}". This
is a condition that is often referred to as the braces being balanced. The Arduino IDE
(integrated development environment) includes a convenient feature to check the
balance of curly braces. Just select a brace, or even click the insertion point
immediately following a brace, and its logical companion will be highlighted.

At present this feature is slightly buggy as the IDE will often find (incorrectly) a brace
in text that has been "commented out."

Beginning programmers, and programmers coming to C from the BASIC language
often find using braces confusing or daunting. After all, the same curly braces replace
the RETURN statement in a subroutine (function), the ENDIF statement in a
conditional and the NEXT statement in.a FOR loop.

Because the use of the curly brace is so varied, it is good programming practice to
type the closing brace immediately after typing the opening brace when inserting a
construct which requires curly braces. Then insert some carriage returns between
your braces and begin inserting statements. Your braces, and your attitude, will never
become unbalanced.

Unbalanced braces can often lead to eryptic, impenetrable compiler errors that can
sometimes be hard to track down in a large program. Because of their varied usages,
braces are also incredibly important to the syntax of a program and moving a brace
one or two lines will often dramatically affect the meaning of a program.

The main uses of curly braces

Functions

void myfunction(datatype argument) {
statements (s)

Loops

while (boolean expression)

{

statement (s)

11

Language Reference

sSMmMirazQ

V1.0

do
{

statement (s)
} while (boolean expression);

for (initialisation; termination condition; incrementing expr)

{

statement (s)

Conditional statements

if (boolean expression)

{

statement (s)

else if (boolean expression)

{

statement (s)

}

else

{

statement (s)

Comments

Comments are lines in the program that are used to inform yourself or others about
the way the program works. They are ignored by the compiler, and not exported to
the processor, so they don't take up any space on the Atmega chip.

Comments only purpose are to help you understand (or remember) how your
program works or.to inform others how your program works. There are two different
ways of marking a line as a comment:

Example

x = 5; // This is a single line comment. Anything after the slashes
is a comment
// to the end of the line

/% this is multiline comment — use it to comment out whole blocks of
code

12

Language Reference

sSMmMirazQ

V1.0

if (gwb == 0){ // single line comment is OK inside a multiline
comment

x = 3; /* but not another multiline comment — this is
invalid */

}

// don’ t forget the “closing” comment — they have to be balanced!
*/

Tip

When experimenting with code, "commenting out" parts of your program is a
convenient way to remove lines that may be buggy. This leaves the lines in the code,
but turns them into comments, so the compiler just ignores them. This can be
especially useful when trying to locate a problem, or when a program refuses to
compile and the compiler error is cryptic or unhelpful.

Comments

Comments are lines in the program that are used to inform yourself or others about
the way the program works. They are ignored by the compiler, and not exported to
the processor, so they don't take up any space on the Atmega chip.

Comments only purpose are to help you understand (or remember) how your
program works or to inform others how your program works. There are two different
ways of marking a line as‘a comment:

Example

x = 5; // This is a single line comment. Anything after the slashes

is a comment
// to the end of the line

/% this 1s multiline comment — use it to comment out whole blocks of

code

if (gwb == 0){ // single line comment is OK inside a multiline
comment

X = 3; /* but not another multiline comment — this is
invalid */

}

// don’ t forget the “closing” comment — they have to be balanced!
*/

Tip

When experimenting with code, "commenting out" parts of your program is a
convenient way to remove lines that may be buggy. This leaves the lines in the code,
but turns them into comments, so the compiler just ignores them. This can be

13

Language Reference

smraza

especially useful when trying to locate a problem, or when a program refuses to
compile and the compiler error is cryptic or unhelpful.

#Define

#def'ine is a useful C component that allows the programmer to give a name to a
constant value before the program is compiled. Defined constants in arduino don't
take up any program memory space on the chip. The compiler will replace references
to these constants with the defined value at compile time.

This can have some unwanted side effects though, if for example, a constant name
that had been #defined is included in some other constant or variable name. In that
case the text would be replaced by the #defined number (or text).

In general, the const keyword is preferred for defining constants and should be used
instead of #define.

Arduino defines have the same syntax as C defines:

Syntax

#define constantName value
Note that the # is necessary.

Example

ttdefine ledPin 3
// The compiler will replace any mention of ledPin with the value 3
at compilestime.

Tip

There is no semicolon after the #define statement. If you include one, the compiler
will throw cryptic errors further down the page.
#idefine ledPin, 3; // this is an error

Similarly, including an equal sign after the #define statement will also generate a
cryptic compiler error further down the page.
#define ledPin =3 // this is also an error

#include

#include is used to include outside libraries in your sketch. This gives the
programmer access to a large group of standard C libraries (groups of pre-made
functions), and also libraries written especially for Arduino.

The main reference page for AVR C libraries (AVR is a reference to the Atmel chips
on which the Arduino is based) is here.

14

http://127.0.0.1:800/Default/arduino.cc/en/Reference/Const
http://127.0.0.1:800/Default/www.nongnu.org/avr-libc/user-manual/modules.html

Language Reference

smraza

Note that #include, similar to #define, has no semicolon terminator, and the
compiler will yield cryptic error messages if you add one.

Example

This example includes a library that is used to put data into the program space flash
instead of ram. This saves the ram space for dynamic memory needs and makes large
lookup tables more practical.

#include <avr/pgmspace.h>

prog uintl6 t myConstants[] PROGMEM = {0, 21140, 702 , 9128, 0,
25764, 8456,
0,0,0,0,0,0,0,0, 29810, 8968, 29762, 29762, 4500} :

Arithmetic Operators

= (assignment operator)
+ (addition)

- (subtraction)

* (multiplication)

/ (division)

% (modulo)

= assignment operator (single equal sign)

Stores the value to the right of the equal sign in the variable to the left of the equal
sign.

The single equal sign in the C programming language is called the assignment
operator. It has a different meaning than in algebra class where it indicated an
equation or equality. The assignment operator tells the microcontroller to evaluate
whatever value or expression is on the right side of the equal sign, and store it in the
variable to the left of the equal sign.

15

http://127.0.0.1:800/Default/arduino.cc/en/Reference/Assignment
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Arithmetic
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Arithmetic
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Arithmetic
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Arithmetic
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Modulo

Language Reference

sSMmMirazQ

V1.0
Example

int sensVal; // declare an integer variable named
sensVal

senVal = analogRead(0) ; // store the (digitized) input voltage

at analog pin 0 in SensVal
Programming Tips

The variable on the left side of the assignment operator (= sign) needs to be able to
hold the value stored in it. If it is not large enough to hold a value, the value stored in
the variable will be incorrect.

Don't confuse the assignment operator [=] (single equal sign) with the comparison
operator [==] (double equal signs), which evaluates whether two expressions are
equal

Addition, Subtraction, Multiplication, & Division

Description

These operators return the sum, difference, product, or quotient (respectively) of the
two operands. The operation is conducted using the data type of the operands, so, for
example, 9 / 4 gives 2 since 9 and 4 are ints. This also means that the operation can
overflow if the result is larger than that which can be stored in the data type (e.g.
adding 1 to an int with the value 32,767 gives -32,768). If the operands are of
different types, the "larger" type is used for the calculation.

If one of the numbers (operands) are of the type float or of type double, floating
point math will be used for the calculation.

Examples
y =y +3
X =x - 17;
i=7]%6;
r=r/ b;
Syntax

result = valuel + valueZ2;
result = valuel - valueZ2;
result valuel * value2;

16

http://127.0.0.1:800/Default/arduino.cc/en/Reference/Int

Language Reference
smraza
result = valuel / value?2;

Parameters:

value1: any variable or constant
value2: any variable or constant

Programming Tips:

Know that integer constants default to int, so some constant calculations may overflow
(e.g. 60 * 1000 will yield a negative result).
Choose variable sizes that are large enough to hold the largest results from your

calculations

Know at what point your variable will "roll over"-and also what happens in the other
direction e.g. (0 - 1) OR (0 - - 32768)

For math that requires fractions, use float variables, but be aware of their drawbacks:
large size, slow computation speeds

Use the cast operator e.g. (int)myFloat to convert one variable type to another on the fly.

% (modulo)

Description

Calculates the remainder when one integer is divided by another. It is useful for
keeping a variable within a particular range (e.g. the size of an array).

Syntax
result = dividend % divisor
Parameters

dividend: the number to be divided
divisor: the number to divide by

Returns

the remainder

17

http://127.0.0.1:800/Default/arduino.cc/en/Reference/IntegerConstants
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Int

Language Reference

sSMmMirazQ

V1.0

Examples

x=7%5; // x now contains 2
x=9%5; // x now contains 4
x=5%5; // x now contains 0
x=4%5; // x now contains 4
Example Code

/* update one value in an array each time through a loop */

int values[10];
int i = 0;

void setup() {}
void loop()

{
values[i] = analogRead(0);

i={+1) %10; 4 // modulo operator rolls over variable

}

Tip

The modulo operator . does not work on floats.

Comparison Operators

== (equal to)

18

http://127.0.0.1:800/Default/arduino.cc/en/Reference/If

Language Reference
o sSMMrQazQ
1= (not equal to)
< (less than)
> (greater than)
<= (less than or equal to)
>= (greater than or equal to)

if (conditional) and ==, |=, <, > (comparison operators)

if, which is used in conjunction with a comparison operator, tests whether a certain
condition has been reached, such as an input being above a certain number. The
format for an if test is:
if (someVariable > 50)
{

// do something here
}
The program tests to see if someVariable is greater than 50. If it is, the program takes
a particular action. Put another way, if the statement in parentheses is true, the
statements inside the brackets are run. If not, the program skips over the code.
The brackets may be omitted after an if statement. If this is done, the next line
(defined by the semicolon) becomes the only conditional statement.

if (x > 120) digitalWrite(LEDpin, HIGH) ;

if (x > 120)
digitalWrite (LEDpin, HIGH);

if (x > 120) { digitalWrite (LEDpin, HIGH); }
if (x> 120) {
digitalWrite (LEDpinl, HIGH) ;
digitalWrite(LEDpin2, HIGH);

} // all are correct

The statements being evaluated inside the parentheses require the use of one or more
operators:

Comparison Operators:

x ==y (x is equal to y)

x !=y (x is not equal to y)

x < y (x is less than y)

x > y (x is greater than y)

x <=y (x is less than or equal to y)

x >=y (x is greater than or equal to y)

19

http://127.0.0.1:800/Default/arduino.cc/en/Reference/If
http://127.0.0.1:800/Default/arduino.cc/en/Reference/If
http://127.0.0.1:800/Default/arduino.cc/en/Reference/If
http://127.0.0.1:800/Default/arduino.cc/en/Reference/If
http://127.0.0.1:800/Default/arduino.cc/en/Reference/If

Language Reference

sSMmMirazQ

V1.0

Warning:

Beware of accidentally using the single equal sign (e.g. if (x = 10)). The single
equal sign is the assignment operator, and sets x to 10 (puts the value 10 into the
variable x). Instead use the double equal sign (e.g. if (x == 10)), which is the
comparison operator, and tests whether x is equal to 10 or not. The latter statement
is only true if x equals 10, but the former statement will always be true.

This is because C evaluates the statement if (x=10) as follows: 10 is assigned to x
(remember that the single equal sign is the assignment operator), so x now contains
10. Then the 'if' conditional evaluates 10, which always evaluates to TRUE, since any
non-zero number evaluates to TRUE. Consequently, if (x = 10) will always
evaluate to TRUE, which is not the desired result when using an 'if statement.
Additionally, the variable x will be set to 10, which is also not a desired action.

if can also be part of a branching control structure using the if...else] construction.
Reference Home

Boolean. Operators

These can be used inside the condition of an if statement.

&& (logical and)

True only if both operands are true, e.g.
if (digitalRead(2) == HIGH && digitalRead(3) == HIGH) { // read two
switches

/] ...

}
is true only if both inputs are high.

|| (logical or)

True if either operand is true, e.g.
if x>0 1] y>0) {
/...
}
is true if either x or y is greater than o.
! (not)
True if the operand is false, e.g.
if (Ix) {

20

http://127.0.0.1:800/Default/arduino.cc/en/Reference/Assignment
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Else
http://127.0.0.1:800/Default/arduino.cc/en/Reference/HomePage
http://127.0.0.1:800/Default/arduino.cc/en/Reference/If

Language Reference

sSMmMirazQ

V1.0

/...
}
is true if x is false (i.e. if x equals 0).
Warning
Make sure you don't mistake the boolean AND operator, && (double ampersand) for
the bitwise AND operator & (single ampersand). They are entirely different beasts.
Similarly, do not confuse the boolean || (double pipe) operator with the bitwise OR
operator | (single pipe).
The bitwise not ~ (tilde) looks much different than the boolean not ! (exclamation
point or "bang" as the programmers say) but you still have to be sure which one you

want where.
Examples
if (a >= 10 & a <= 20){} // true if a is between 10 and 20

See also
& (bitwise AND)
| (bitwise OR)
~ (bitwise NOT

The pointer operators

& (reference) and * (dereference)

Pointers are one of the more complicated subjects for beginners in learning C, and it
is possible to write the vast majority of Arduino sketches without ever encountering
pointers. However for manipulating certain data structures, the use of pointers can
simplify the code, and and knowledge of manipulating pointers is handy to have in
one's toolkit.

21

http://127.0.0.1:800/Default/arduino.cc/en/Reference/BitwiseAnd
http://127.0.0.1:800/Default/arduino.cc/en/Reference/BitwiseAnd
http://127.0.0.1:800/Default/arduino.cc/en/Reference/BitwiseXorNot

Language Reference

sSMmMirazQ

V1.0

Bitwise Operators

& (bitwise and)

| (bitwise or)

~ (bitwise xor)

~ (bitwise not)
<< (bitshift left)
>> (bitshift right)

Bitwise AND (&), Bitwise OR (|), Bitwise XOR (*)

Bitwise AND (&)

The bitwise operators perform their calculations at the bit level of variables. They
help solve a wide range of common programming problems. Much of the material
below is from an excellent tutorial on bitwise math wihch may be found here.

Description/and Syntax

Below are descriptions and syntax for all of the operators. Further details may be
found in the referenced tutorial.

Bitwise AND (&)

The bitwise AND operator in C++ is a single ampersand, &, used between two other
integer expressions. Bitwise AND operates on each bit position of the surrounding
expressions independently, according to this rule: if both input bits are 1, the
resulting output is 1, otherwise the output is 0. Another way of expressing this is:

0 0 1 1 operandl

0 1 0 1 operand?

0 0 0 1 (operandl & operand2) - returned result
In Arduino, the type int is a 16-bit value, so using & between two int expressions
causes 16 simultaneous AND operations to occur. In a code fragment like:

int a = 92; // in binary: 0000000001011100

22

http://127.0.0.1:800/Default/arduino.cc/en/Reference/BitwiseAnd
http://127.0.0.1:800/Default/arduino.cc/en/Reference/BitwiseAnd
http://127.0.0.1:800/Default/arduino.cc/en/Reference/BitwiseAnd
http://127.0.0.1:800/Default/arduino.cc/en/Reference/BitwiseXorNot
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Bitshift
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Bitshift
http://127.0.0.1:800/Default/www.arduino.cc/playground/Code/BitMath

Language Reference

smraza

int b = 101; // in binary: 0000000001100101

int ¢ =a &b; // result: 0000000001000100, or 68 in decimal.
Each of the 16 bits in a and b are processed by using the bitwise AND, and all 16
resulting bits are stored in ¢, resulting in the value 01000100 in binary, which is 68 in
decimal.
One of the most common uses of bitwise AND is to select a particular bit (or bits)
from an integer value, often called masking. See below for an example

Bitwise OR (])

The bitwise OR operator in C++ is the vertical bar symbol, |. Like the & operator, |
operates independently each bit in its two surrounding integer expressions, but what
it does is different (of course). The bitwise OR of two bits is 1 if either or both of the
input bits is 1, otherwise it is 0. In other words:

0 0 1 1 operandl

0 1 0 1 operand?2

01 1 1 (operandl | operand2) - returned result
Here is an example of the bitwise OR used in a snippet of C++ code:

int a = 92; // in_ binary: 0000000001011100

int b = 101; // in binary: 0000000001100101
a | b; #// xesult: 0000000001111101, or 125 in

int ¢
decimal.

Example Program

A common job for the bitwise AND and OR operators is what programmers call
Read-Modify-Write on a port. On microcontrollers, a port is an 8 bit number that
represents something about the condition of the pins. Writing to a port controls all of
the pins at once.
PORTD is a built-in constant that refers to the output states of digital pins
0,1,2,3,4,5,6,7. If there is 1 in an bit position, then that pin is HIGH. (The pins already
need to be set to outputs with the pinMode() command.) So if we write PORTD =
B00110001; we have made pins 2,3 & 7 HIGH. One slight hitch here is that we may
also have changeed the state of Pins 0 & 1, which are used by the Arduino for serial
communications so we may have interfered with serial communication.

Our algorithm for the program is:

Get PORTD and clear out only the bits corresponding to the pins we wish to control (with

bitwise AND).
Combine the modified PORTD value with the new value for the pins under control (with
biwise OR).

int i; // counter variable

int j;

23

Language Reference

sSMmMirazQ

V1.0

void setup() {

DDRD = DDRD | B11111100; // set direction bits for pins 2 to 7, leave
0 and 1 untouched (xx | 00 == xx)

// same as pinMode(pin, OUTPUT) for pins 2 to 7

Serial. begin (9600) ;

}

void loop() {
for (i=0; i<64; i++) {

PORTD = PORTD & B00000011; // clear out bits.2 — 7, leave pins 0 and
1 untouched (xx & 11 == xx)

j= ({1 << 2); // shift variable up to pins 2 - 7 — to
avoid pins 0 and 1
PORTD = PORTD | j; // combine the port information with the

new information for LED pins
Serial. println(PORTD, BIN); //«debug to show masking
delay (100) ;
}
}

Bitwise XOR (%)

There is a somewhat unusual operator.in C++ called bitwise EXCLUSIVE OR, also
known as bitwise XOR. (In English this is usually pronounced "eks-or".) The bitwise
XOR operator is written using the caret symbol *. This operator is very similar to the
bitwise OR operator |, only it evaluates to o for a given bit position when both of the
input bits for that position are 1:

0 0 1 1 operandl

0 1 0 1 operand?2

01 1 0 (operandl =~ operand2) - returned result
Another way to look at bitwise XOR is that each bit in the result is a 1 if the input bits
are different, or o if they are the same.
Here is a simple code example:

int x = 12; // binary: 1100

int vy = 10; // binary: 1010

int z = x ~y; // binary: 0110, or decimal 6
The » operator is often used to toggle (i.e. change from 0 to 1, or 1 to 0) some of the
bits in an integer expression. In a bitwise OR operation if there is a 1 in the mask bit,
that bit is inverted; if there is a 0, the bit is not inverted and stays the same. Below is
a program to blink digital pin 5.

24

Language Reference
o sSMMIrQazQa
// Blink Pin 5
// demo for Exclusive OR
void setup() {
DDRD = DDRD | B00100000; // set digital pin five as OUTPUT
Serial. begin (9600) ;
}

void loop() {
PORTD = PORTD ~ B00100000; // invert bit 5 (digital pin 5), leave
others untouched
delay (100) ;
}
See Also
&&(Boolean AND)
1l(Boolean OR)
Reference Home

bitshift left (<<), bitshift right (>>)

Description

From The Bitmath Tutorial in The Playground

There are two bit shift operators in C++: the left shift operator << and the right shift
operator >>. These operators cause the bits in the left operand to be shifted left or
right by the number of positions specified by the right operand.

More on bitwise math may be found here.
Syntax

variable << number_of bits

variable >>number. of bits

Parameters

variable - (byte, int, long) number_of_bits integer <= 32

Example:
int a = b5; // binary: 0000000000000101
int b = a << 3; // binary: 0000000000101000, or 40 in decimal
int ¢ =b > 3; // binary: 0000000000000101, or back to 5 like

we started with
When you shift a value x by y bits (x << y), the leftmost y bits in x are lost, literally
shifted out of existence:

int a = b; // binary: 0000000000000101

int b = a < 14; // binary: 0100000000000000 — the first 1 in
101 was discarded
If you are certain that none of the ones in a value are being shifted into oblivion, a
simple way to think of the left-shift operator is that it multiplies the left operand by 2

25

http://127.0.0.1:800/Default/arduino.cc/en/Reference/Boolean
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Boolean
http://127.0.0.1:800/Default/arduino.cc/en/Reference/HomePage
http://127.0.0.1:800/Default/www.arduino.cc/playground/Code/BitMath

Language Reference

sSMmMirazQ

raised to the right operand power. For example, to generate powers of 2, the
following expressions can be employed:

V1.0

1 < 0 == 1
1 K 1 == 2
1 K 2 == 1
1 < 3 == 8
1 << 8 = 256
1 <« 9 = 512

1 << 10 == 1024

When you shift x right by y bits (x >> y), and the highest bit in x is a 1, the behavior
depends on the exact data type of x. If x is of type int, the highest bit is the sign bit,
determining whether x is negative or not, as we have discussed above. In that case,
the sign bit is copied into lower bits, for esoteric historical reasons:

int x = -16; // binary: 1111111111110000

int y = x > 3; // binary: 1111111111111110
This behavior, called sign extension, is often not the behavior you want. Instead, you
may wish zeros to be shifted in from the left. It turns out that the right shift rules are
different for unsigned int expressions, so you can use a typecast to suppress ones
being copied from the left:

int x = -16; // binary: 1111111111110000

int y = (unsigned int)x >> 3; // binary: 0001111111111110
If you are careful to avoid sign extension, you can use the right-shift operator >> as a
way to divide by powers of 2. For example:

int x = 1000;

int'y = x> 3; // integer division of 1000 by 8, causing y =
125.

26

Language Reference

sSMmMirazQ

V1.0

Compound Operators

++ (increment)

-- (decrement)

+= (compound addition)

-= (compound subtraction)
*= (compound multiplication)
/= (compound division)

&= (compound bitwise and)
|= (compound bitwise or)

++ (increment) / -- (decrement)

Description

Increment or decrement a variable

Syntax

x++; // increment x by one and returns the old value of x
++x; // increment x by one and returns the new value of x

x— ; // decrement x by one and returns the old value of x
—x ; // decrement x by one and returns the new value of x
Parameters

x: an integer or long (possibly unsigned)

Returns

The original or newly incremented / decremented value of the variable.
Examples

X = 2;

y = ++x: //-x now contains 3, y contains 3

y = x—; // X .contains 2 again, y still contains 3

f— — K — —
+_s'_! _!l_

Description

Perform a mathematical operation on a variable with another constant or variable.
The += (et al) operators are just a convenient shorthand for the expanded syntax,
listed below.

Syntax

x +=y; // equivalent to the expression x = x + y;
x == y; // equivalent to the expression x = x — y;
x %= y; // equivalent to the expression x = x * y;
x /=y; // equivalent to the expression x = x / y;

27

http://127.0.0.1:800/Default/arduino.cc/en/Reference/Increment
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Increment
http://127.0.0.1:800/Default/arduino.cc/en/Reference/IncrementCompound
http://127.0.0.1:800/Default/arduino.cc/en/Reference/IncrementCompound
http://127.0.0.1:800/Default/arduino.cc/en/Reference/IncrementCompound
http://127.0.0.1:800/Default/arduino.cc/en/Reference/IncrementCompound
http://127.0.0.1:800/Default/arduino.cc/en/Reference/BitwiseCompoundAnd
http://127.0.0.1:800/Default/arduino.cc/en/Reference/BitwiseCompoundOr

Language Reference
V1.0 Sl I “ :IZ:l
Parameters
x: any variable type
y: any variable type or constant

Examples
X = 2;
X += 4; // X now contains 6
x —= 3 // x now contains 3
x %= 10; // x now contains 30
x /= 2; // X now contains 15
compound bitwise AND (&=)
Description

The compound bitwise AND operator (&=) is often used with a variable and a
constant to force particular bits in a variable to the LOW state (to 0). This is often
referred to in programming guides as "clearing" or "resetting" bits.
Syntax:
x &= y; // equivalent to x =x & y;
Parameters
x: a char, int or long variable
y: an integer constant or char, int; or long
Example:
First, a review of the Bitwise AND (&) operator
0 0 1 1 operandl
0 1 0 1 operand?

0 000 1 (operandl & operand2) - returned result

Bits that are "bitwise ANDed" with o are cleared to 0 so, if myByte is a byte variable,
myByte & B00000000 = 0;
Bits that are "bitwise ANDed" with 1 are unchanged so,
myByte & B11111111,/= myByte;
Note: because we are dealing with bits in a bitwise operator - it is convenient to use
the binary formatter with constants. The numbers are still the same value in other
representations, they are just not as easy to understand. Also, BO0000000 is shown
for clarity, but zero in any number format is zero (hmmm something philosophical
there?)
Consequently - to clear (set to zero) bits 0 & 1 of a variable, while leaving the rest of
the variable unchanged, use the compound bitwise AND operator (&=) with the
constant B11111100
1 01 0 1 0
1 11 1 1 1

variable
mask

28

http://127.0.0.1:800/Default/arduino.cc/en/Reference/IntegerConstants

Language Reference

sSMmMirazQ

V1.0

variable unchanged
bits cleared

Here is the same representation with the variable's bits replaced with the symbol x

X X X X X X X X variable
1 1 1 1 1 1 0 O mask

variable unchanged
bits cleared

So if:
myByte = 10101010;

myByte &= B1111100 == B10101000;
See Also

|= (compound bitwise or)

& (bitwise AND)

| (bitwise OR)

compound bitwise OR (|=)

Description
The compound bitwise OR operator (| =) is often used with a variable and a constant
to "set" (set to 1) particular bits in a variable.
Syntax:
x |=y; // equivalent to x = x | y;
Parameters
x: a char, int or long variable
y: an integer constant or char, int, or long
Example:
First, a review of the Bitwise OR (|) operator
0 0 1 1 operandl
0 1 0 1 operand?2

0 1 1 1 (operandl | operand2) — returned result

Bits that are "bitwise ORed" with 0 are unchanged, so if myByte is a byte variable,
myByte | BOOO0O0000 = myByte;

Bits that are "bitwise ORed" with 1 are set to 1 so:

myByte | B11111111 = B11111111;

29

http://127.0.0.1:800/Default/arduino.cc/en/Reference/BitwiseCompoundOr
http://127.0.0.1:800/Default/arduino.cc/en/Reference/BitwiseAnd
http://127.0.0.1:800/Default/arduino.cc/en/Reference/BitwiseAnd

Language Reference

smraza

Consequently - to set bits 0 & 1 of a variable, while leaving the rest of the variable
unchanged, use the compound bitwise OR operator (|=) with the constant
Boooooo11
1 0 1 0
0 0 0 O

1 0 variable
1

1 0
0 0 1 mask

variable unchanged
bits set

Here is the same representation with the variables bits replaced with the symbol x
X X X X X X X X variable

0 000 0 O0 11 mask

variable unchanged
bits set

So if:
myByte = B10101010;

myByte [= B00000011" == B10101011;

Variables

30

Language Reference

sSMmMirazQ

Constants

V1.0

HIGH | LOW

INPUT | OUTPUT| INPUT PULLUP

true | false

integer constants

floating point constants
Constants are predefined variables in the Arduino language. They are used to make
the programs easier to read. We classify constants in groups.

Defining Logical Levels, true and false (Boolean Constants)

There are two constants used to represent truth and falsity in the Arduino language:
true, and false.

false
false is the easier of the two to define. false is defined as o (zero).

true

true is often said to be defined as 1, which is¢orrect, but true has a wider definition.
Any integer which is non-zero is true, in a Boolean sense. So -1, 2 and -200 are all
defined as true, too, in a Boolean sense.
Note that the true and false constants are typed in lowercase unlike HIGH, LOW,
INPUT, & OUTPUT.
Defining Pin Levels, HIGH and LOW
When reading or writing to a digital pin there are only two possible values a pin can
take/be-set-to: HIGH and LOW.

HIGH
The meaning of HIGH (in reference to a pin) is somewhat different depending on
whether a pin is set to an INPUT or OUTPUT. When a pin is configured as an INPUT
with pinMode, and read with digitalRead, the microcontroller will report HIGH if a
voltage of 3 volts orimore is present at the pin.
A pin may also be configured as an INPUT with pinMode, and subsequently made
HIGH with digitalWrite, this will set the internal 20K pullup resistors, which will
steer the input pin to a HIGH reading unless it is pulled LOW by external circuitry.
This is how INPUT PULLUP works as well
When a pin is configured to OUTPUT with pinMode, and set to HIGH with
digitalWrite, the pin is at 5 volts. In this state it can source current, e.g. light an LED
that is connected through a series resistor to ground, or to another pin configured as
an output, and set to LOW.

LOW
The meaning of LOW also has a different meaning depending on whether a pin is set
to INPUT or OUTPUT. When a pin is configured as an INPUT with pinMode, and
read with digitalRead, the microcontroller will report LOW if a voltage of 2 volts or
less is present at the pin.
When a pin is configured to OUTPUT with pinMode, and set to LOW with
digitalWrite, the pin is at 0 volts. In this state it can sink current, e.g. light an LED

31

http://127.0.0.1:800/Default/arduino.cc/en/Reference/Constants
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Constants
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Constants
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Constants
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Constants
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Constants
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Constants
http://127.0.0.1:800/Default/arduino.cc/en/Reference/IntegerConstants
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Fpconstants

Language Reference

smraza

that is connected through a series resistor to, +5 volts, or to another pin configured as
an output, and set to HIGH.
Defining Digital Pins, INPUT, INPUT_PULLUP, and OUTPUT
Digital pins can be used as INPUT, INPUT_PULLUP, or OUTPUT. Changing a
pin with pinMode() changes the electrical behavior of the pin.
Pins Configured as INPUT
Arduino (Atmega) pins configured as INPUT with pinMode() are said to be in a
high-impedance state. Pins configured as INPUT make extremely small demands on
the circuit that they are sampling, equivalent to a series resistor of 100 Megohms in
front of the pin. This makes them useful for reading a sensor, but not powering an
LED.
If you have your pin configured as an INPUT, you will want the pin to have a
reference to ground, often accomplished with a pull-down resistor (a resistor going to
ground) as described in the Digital Read Serial tutorial.
Pins Configured as INPUT_PULLUP
The Atmega chip on the Arduino has internal pull-up resistors (resistors that connect
to power internally) that you can access. If you prefer to use these instead of external
pull-down resistors, you can use the INPUT_PULLUP argument in pinMode().
This effectively inverts the behavior, where HIGH means the sensor is off, and LOW
means the sensor is on. See the Input Pullup Serial tutorial for an example of this in
use.

Pins Configured as Outputs
Pins configured as OUTPUT with pinMode() are said to be in a low-impedance state.
This means that they can provide a substantial amount of current to other circuits.
Atmega pins can source (provide positive current) or sink (provide negative current)
up to 40 mA (milliamps) of current to other devices/circuits. This makes them useful
for powering LED's but useless for reading sensors. Pins configured as outputs can
also be damaged or destroyed if short circuited to either ground or 5 volt power rails.
The amount of current provided by an Atmega pin is also not enough to power most
relays or motors, and some interface circuitry will be required

Data Types

32

http://127.0.0.1:800/Default/arduino.cc/en/Tutorial/DigitalReadSerial
http://127.0.0.1:800/Default/arduino.cc/en/Tutorial/InputPullupSerial

Language Reference
sMmMraza
void
boolean
char

unsigned char
byte

int
unsigned int
word

long

unsigned long
float

double

string - char array
String - object
array

void
The void keyword is used only in function declarations. It indicates that the function
is expected to return no information to the function from which it was called.
Example:
// actions are performed in. the functions “setup” and “loop”
// but no information is reported to the larger program

void setup()

{
/]
}

void loop ()

{
/]
}

boolean

A boolean holds one of two values, true or false. (Each boolean variable occupies
one byte of memory.)

Example

int LEDpin = 5; // LED on pin 5

int switchPin = 13; // momentary switch on 13, other side connected
to ground

boolean running = false;
void setup()

33

http://127.0.0.1:800/Default/arduino.cc/en/Reference/Void
http://127.0.0.1:800/Default/arduino.cc/en/Reference/BooleanVariables
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Char
http://127.0.0.1:800/Default/arduino.cc/en/Reference/UnsignedChar
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Byte
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Int
http://127.0.0.1:800/Default/arduino.cc/en/Reference/UnsignedInt
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Word
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Long
http://127.0.0.1:800/Default/arduino.cc/en/Reference/UnsignedLong
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Float
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Double
http://127.0.0.1:800/Default/arduino.cc/en/Reference/String
http://127.0.0.1:800/Default/arduino.cc/en/Reference/StringObject
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Array
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Constants
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Constants

Language Reference

sSMmMirazQ

V1.0

{
pinMode (LEDpin, OUTPUT) ;
pinMode (switchPin, INPUT) ;
digitalWrite (switchPin, HIGH) ; // turn on pullup resistor

}

void loop()

{
if (digitalRead(switchPin) == LOW)
{ // switch is pressed — pullup keeps pin high normally

delay (100) ; // delay to debounce switch
running = !running; // toggle running variable
digitalWrite (LEDpin, running) // indicate via LED
}
}
char
Description

A data type that takes up 1 byte of memory that stores a character value. Character
literals are written in single quotes, like this: "A"' (for multiple characters - strings -
use double quotes: "ABC").

Characters are stored as numbers however. You can see the specific encoding in the
ASCII chart. This means that it is possible to do arithmetic on characters, in which
the ASCII value of the characteris used (e.g. 'A' + 1 has the value 66, since the ASCII
value of the capital letter A is 65). See Serial.println reference for more on how
characters are translated to numbers.

The char datatype is a signed type; meaning that it encodes numbers from -128 to
127. For an unsigned, one-byte (8 bit) data type, use the byte data type.

Example
char myChar = A’ ;
char myChar = 65; // both are equivalent
unsigned char
Description

An unsigned data type that occupies 1 byte of memory. Same as the byte datatype.
The unsigned char datatype encodes numbers from o to 255.
For consistency of Arduino programming style, the byte data type is to be preferred.
Example

unsigned char myChar = 240;

byte

Description
A byte stores an 8-bit unsigned number, from o0 to 255.

34

http://127.0.0.1:800/Default/arduino.cc/en/Reference/ASCIIchart
http://127.0.0.1:800/Default/arduino.cc/en/Serial/Println
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Byte

Language Reference

sSMmMirazQ

V1.0
Example
byte b = B10010; // "B” is the binary formatter (B10010 = 18
decimal)
int
Description

Integers are your primary datatype for number storage, and store a 2 byte value. This
yields a range of -32,768 to 32,767 (minimum value of -2”15 and a maximum value of
(2"15) - 1).
Int's store negative numbers with a technique called 2's complement math. The
highest bit, sometimes refered to as the "sign" bit, flags the number as a negative
number. The rest of the bits are inverted and 1 is added.
The Arduino takes care of dealing with negative numbers for you, so that arithmetic
operations work transparently in the expected manner. There can be an unexpected
complication in dealing with the bitshift right operator (>>) however.
Example

int ledPin = 13;
Syntax

int var = val;

var - your int variable name

val - the value you assign to that variable
Coding Tip
When variables are made to exceed their maximum capacity they "roll over" back to
their minimum capacitiy, note that this happens in both directions.

int x

x = =32, 768;

X =x— 1; //"x now contains 32,767 — rolls over in neg
direction

x = 32,767;

=x + 1; //°x now contains —32, 768 — rolls over
unsigned int

Description

Unsigned ints (unsigned integers) are the same as ints in that they store a 2 byte
value. Instead of storing negative numbers however they only store positive values,
yielding a useful range of 0 to 65,535 (2"16) - 1).
The difference between unsigned ints and (signed) ints, lies in the way the highest bit,
sometimes refered to as the "sign" bit, is interpreted. In the Arduino int type (which
is signed), if the high bit is a "1", the number is interpreted as a negative number, and
the other 15 bits are interpreted with 2's complement math.
Example

unsigned int ledPin = 13;

35

http://127.0.0.1:800/Default/en.wikipedia.org/wiki/2_2527s_complement
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Bitshift
http://127.0.0.1:800/Default/en.wikipedia.org/wiki/2_2527s_complement

Language Reference
o sSmMirQazQ
Syntax
unsigned int var = val;
var - your unsigned int variable name
val - the value you assign to that variable
Coding Tip
When variables are made to exceed their maximum capacity they "roll over" back to
their minimum capacitiy, note that this happens in both directions
unsigned int x

x = 0;
x = x — 1; // x now contains 65535 — rolls over in neg
direction
X = x + 1; // x now contains 0 - rolls over
word
Description
A word stores a 16-bit unsigned number, from.0 to 65535. Same as an unsigned int.
Example
word w = 10000;
long

Description
Long variables are extended size variables for number storage, and store 32 bits (4
bytes), from -2,147,483,648 to 2,147,483,647.
Example

long speedOfLight = 186000L; // see Integer Constants for
explanation of the 'L’

Syntax
long var = val;
var - the long variable name
val - the value assigned to the variable

unsigned long

Description

Unsigned long variables are extended size variables for number storage, and store 32
bits (4 bytes). Unlike standard longs unsigned longs won't store negative numbers,
making their range from o to 4,294,967,295 (2°32 - 1).

Example

unsigned long time;

void setup()
{
Serial. begin(9600) ;

36

Language Reference

sSMmMirazQ

V1.0

}

void loop()
{
Serial.print ("Time: ”);
time = millis();
//prints time since program started
Serial.println(time);
// wait a second so as not to send massive amounts of data
delay (1000) ;

Syntax
unsigned long var = val;
var - your long variable name
val - the value you assign to that variable

float

Description
Datatype for floating-point numbers, a number that has a decimal point. Floating-
point numbers are often used to approximate analog and continuous values because
they have greater resolution than integers. Floating-point numbers can be as large as
3.4028235E+38 and as low as -3.4028235E+38. They are stored as 32 bits (4 bytes)
of information.
Floats have only 6-7 decimal digits of precision. That means the total number of
digits, not the number to the right of the decimal point. Unlike other platforms,
where you can get more precision by using a double (e.g. up to 15 digits), on the
Arduino, double is the same size as float.
Floating point numbers are not exact, and may yield strange results when compared.
For example 6. 0 / 3. 0 may not equal 2. 0. You should instead check that the
absolute value of the difference between the numbers is less than some small
number.
Floating point math is also much slower than integer math in performing
calculations, so should be avoided if, for example, a loop has to run at top speed for a
critical timing function. Programmers often go to some lengths to convert floating
point calculations to integer math to increase speed.
Examples

float myfloat;

float sensorCalbrate = 1.117;
Syntax

float var = val;

var - your float variable name
val - the value you assign to that variable

37

Language Reference

sSMmMirazQ

V1.0

Example Code
int x;
int vy;
float z;

x = 1;

y =x/ 2; // v now contains 0, ints can’ t hold
fractions

7z = (float)x / 2.0; // z now contains .5 (you have to use 2.0,
not 2)

double

Desciption

Double precision floating point number. Occupies 4 bytes.

The double implementation on the Arduino is currently exactly the same as the float,
with no gain in precision.

Tip

Users who borrow code from other sources that includes double variables may wish
to examine the code to see if the implied precision is different from that actually
achieved on the Arduino

string

Description
Text strings can be represented in two ways. you can use the String data type, which
is part of the core as of version 0019, or you can make a string out of an array of type
char and null-terminate it. This page described the latter method. For more details on
the String object; which gives you more functionality at the cost of more memory, see
the String object page.
Examples
All of the following are valid declarations for strings.
char Strl1[15];
char Str2[8]
char Str3(8] = {a, v, ’d, 'u, i, 'n’, ‘o, '\0};
char Str4[] = "arduino”;
char Str5[8] = “arduino”;
char Str6[15] = “arduino”;

1l
—
-
Q
-
=
-
-
-
(@R
-
-
-
[em
-
-
-
=
-
-
-
=
-
-
- -
]
- -
—

Possibilities for declaring strings

Declare an array of chars without initializing it as in Str1

Declare an array of chars (with one extra char) and the compiler will add the required
null character, as in Str2

Explicitly add the null character, Str3

Initialize with a string constant in quotation marks; the compiler will size the array to fit
the string constant and a terminating null character, Str4

38

http://127.0.0.1:800/Default/arduino.cc/en/Reference/StringObject

Language Reference

smraza

Initialize the array with an explicit size and string constant, Strs

Initialize the array, leaving extra space for a larger string, Str6
Null termination
Generally, strings are terminated with a null character (ASCII code 0). This allows
functions (like Serial.print()) to tell where the end of a string is. Otherwise, they
would continue reading subsequent bytes of memory that aren't actually part of the
string.
This means that your string needs to have space for one more character than the text
you want it to contain. That is why Str2 and Str5 need to be eight characters, even
though "arduino" is only seven - the last position is automatically filled with a null
character. Str4 will be automatically sized to eight characters, one for the extra null.
In Str3, we've explicitly included the null character (written '\0') ourselves.
Note that it's possible to have a string without a final null character (e.g. if you had
specified the length of Str2 as seven instead of eight). This will break most functions
that use strings, so you shouldn't do it intentionally. If you notice something
behaving strangely (operating on charactersnot in the string), however, this could be
the problem.
Single quotes or double quotes?
Strings are always defined inside double quotes ("Abc") and characters are always
defined inside single quotes('A").
Wrapping long strings
You can wrap long strings like this:
char myString[] =-"This is the first line”
" this is the second line”

" etcetera”;

Arrays of strings
It is often convenient, when working with large amounts of text, such as a project
with an LCD display, to setup an array of strings. Because strings themselves are
arrays, this is in actually an example of a two-dimensional array.
In the code below, the asterisk after the datatype char "char*" indicates that this is an
array of "pointers". All array names are actually pointers, so this is required to make
an array of arrays. Pointers are one of the more esoteric parts of C for beginners to
understand, but it isn't necessary to understand pointers in detail to use them
effectively here.
Example

char* myStrings[]={"This is string 17, “This is string 27, “This is
string 37,
"This is string 4”7, ”“This is string 57, “This is string 6”};

void setup() {
Serial. begin (9600) ;
}

39

Language Reference

sSMmMirazQ

V1.0

void loop() {

for (int i = 0; i < 6; i++){
Serial.println(myStrings[i]);
delay (500) ;
}

Arrays

An array is a collection of variables that are accessed with an index number. Arrays in
the C programming language, on which Arduino is based, can be complicated, but
using simple arrays is relatively straightforward.
Creating (Declaring) an Array
All of the methods below are valid ways to create (declare) an array.

int myInts[6];

int myPins[] = {2, 4, 8, 3, 6};

int mySensVals[6] = {2, 4, -8, 3, 2};

char message[6] = "hello”;

You can declare an array without initializing it as in myInts.

In myPins we declare an array without explicitly choosing a size. The compiler counts
the elements and creates an array of the appropriate size.

Finally you can both initialize and size your array, as in mySensVals. Note that when
declaring an array of type char, one more element than your initialization is required,
to hold the required null character.

Accessing an Array

Arrays are zero indexed, that is, referring to the array initialization above, the first
element of the array is at index 0, hence

mySensVals[0] == 2, mySensVals[1] == 4, and so forth.
It also means that in an array with ten elements, index nine is the last element.
Hence:
int myArray[10]=19,3,2,4,3,2,7,8,9, 11};

// myArray[9] contains 11

// myArray[10] is invalid and contains random information
(other memory address)

For this reason you should be careful in accessing arrays. Accessing past the end of an
array (using an index number greater than your declared array size - 1) is reading
from memory that is in use for other purposes. Reading from these locations is
probably not going to do much except yield invalid data. Writing to random memory
locations is definitely a bad idea and can often lead to unhappy results such as
crashes or program malfunction. This can also be a difficult bug to track down.

40

Language Reference

smraza

Unlike BASIC or JAVA, the C compiler does no checking to see if array access is
within legal bounds of the array size that you have declared.

To assign a value to an array:

mySensVals[0] = 10;

To retrieve a value from an array:

x = mySensVals[4];

Arrays and FOR Loops

Arrays are often manipulated inside for loops, where the loop counter is used as the
index for each array element. For example, to print the elements of an array over the
serial port, you could do something like this:

int 1;
for 1 =0; 1 <5;1i=1+1 {
Serial.println(myPins[i]);
}
Example
For a complete program that demonstrates the use of arrays, see the Knight Rider
example from the Tutorials.

Conversion

char()

Description

Converts a value to the char data type.
Syntax

char(x)

Parameters

x: a value of any type

41

http://127.0.0.1:800/Default/www.arduino.cc/en/Tutorial/KnightRider
http://127.0.0.1:800/Default/www.arduino.cc/en/Tutorial/KnightRider
http://127.0.0.1:800/Default/www.arduino.cc/en/Main/LearnArduino
http://127.0.0.1:800/Default/arduino.cc/en/Reference/CharCast
http://127.0.0.1:800/Default/arduino.cc/en/Reference/ByteCast
http://127.0.0.1:800/Default/arduino.cc/en/Reference/IntCast
http://127.0.0.1:800/Default/arduino.cc/en/Reference/WordCast
http://127.0.0.1:800/Default/arduino.cc/en/Reference/LongCast
http://127.0.0.1:800/Default/arduino.cc/en/Reference/FloatCast
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Char

Language Reference

sSMmMirazQ

V1.0

Returns
char

byte()

Description

Converts a value to the byte data type.
Syntax

byte(x)

Parameters

x: a value of any type

Returns

byte
int()

Description

Converts a value to the int data type.
Syntax

int(x)

Parameters

x: a value of any type

Returns

int

word()

Description

Convert a value to the word data type or create a word from two bytes.
Syntax

word(x)

word(h, 1)

Parameters

x: a value of any type

h: the high-order (leftmost) byte of the word
I: the low-order (rightmost) byte of the word
Returns

word

long()

Description

Converts a value to the long data type.
Syntax

long(x)

Parameters

x: a value of any type

0

http://127.0.0.1:800/Default/arduino.cc/en/Reference/Byte
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Int
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Word
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Long

Language Reference

o sSmMrazQ
Returns
long

float()

Description

Converts a value to the float data type.
Syntax

float(x)

Parameters

x: a value of any type

Returns

float

Notes

See the reference for float for details about the precision and limitations of floating
point numbers on Arduino.

Variable Scope & Qualifiers

variable scope
static

volatile
const

Variable Scope

Variables in the C programming language, which Arduino uses, have a property
called scope. This is in contrast to languages such as BASIC where every variable is a
global variable.

A global variable is one that can be seen by every function in a program. Local
variables are only visible to the function in which they are declared. In the Arduino
environment, any variable declared outside of a function (e.g. setup(), loop(), etc.), is
a global variable.

When programs start to get larger and more complex, local variables are a useful way
to insure that only one function has access to its own variables. This prevents
programming errors when one function inadvertently modifies variables used by
another function.

43

http://127.0.0.1:800/Default/arduino.cc/en/Reference/Float
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Float
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Scope
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Static
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Volatile
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Const

Language Reference

smraza

It is also sometimes handy to declare and initialize a variable inside a for loop. This
creates a variable that can only be accessed from inside the for-loop brackets.
Example:

int gPWMval; // any function will see this variable

void setup()

{
/]

void loop()

{
int 1i; // 71”7 is only “visible” inside of “loop”
float £; // 7f” is only ”“visible” inside of “loop”
/...

for (int j = 0; j <100; j++) {
// variable j can only be accessed inside the for-—loop brackets

}

Static

The static keyword is used to create variables that are visible to only one function.
However unlike local variables that get created and destroyed every time a function is
called, static variables persist beyond the function call, preserving their data between
function calls.

Variables declared as static will only be created and initialized the first time a
function is called.

Example

/* RandomWalk

Paul Badger 2007

RandomWalk wanders up and down randomly between two

endpoints. The maximum move in one loop is governed by

the parameter “stepsize”.

A static variable is moved up and down a random amount.

This technique is also known as “pink noise” and “drunken walk”.

K K K X X

*/

tdefine randomWalkLowRange —20
tdefine randomWalkHighRange 20
int stepsize;

44

Language Reference

sSMmMirazQ

V1.0

int thisTime;
int total;

void setup()
{

Serial. begin (9600) ;
}

void loop()
{ // tetst randomWalk function
stepsize = b;
thisTime = randomWalk (stepsize) ;
Serial.println(thisTime) ;
delay (10) ;

int randomWalk (int moveSize) {
static int place; // variable to store value . in random walk -
declared static so that it stores
// values in between function calls, but no
other functions can change its value

place = place + (random(-moveSize, moveSize + 1));

if (place < randomWalkLowRange) { // check lower
and upper. limits
place = place + (randomWalkLowRange — place); // reflect

number back in positive direction

}
else if(place > randomWalkHighRange) {
place = place = (place — randomWalkHighRange) ; // reflect
number back in negative direction

}

return place;

}

volatile keyword

volatile is a keyword known as a variable qualifier, it is usually used before the
datatype of a variable, to modify the way in which the compiler and subsequent
program treats the variable.

45

Language Reference

smraza

Declaring a variable volatile is a directive to the compiler. The compiler is software
which translates your C/C++ code into the machine code, which are the real
instructions for the Atmega chip in the Arduino.

Specifically, it directs the compiler to load the variable from RAM and not from a
storage register, which is a temporary memory location where program variables are
stored and manipulated. Under certain conditions, the value for a variable stored in
registers can be inaccurate.

A variable should be declared volatile whenever its value can be changed by
something beyond the control of the code section in which it appears, such as a
concurrently executing thread. In the Arduino, the only place that this is likely to
occur is in sections of code associated with interrupts, called an interrupt service
routine.

Example

// toggles LED when interrupt pin changes state

int pin = 13;
volatile int state = LOW;

void setup()
{
pinMode (pin, OUTPUT);
attachInterrupt (0, /blink, CHANGE)
}

void loop()
{

digitalWrite(pin, state);
}

void blink()
{

state = !state;

}

const keyword

The const keyword stands for constant. It is a variable qualifier that modifies the
behavior of the variable, making a variable "read-only". This means that the variable
can be used just as any other variable of its type, but its value cannot be changed. You
will get a compiler error if you try to assign a value to a const variable.

Constants defined with the const keyword obey the rules of variable scoping that
govern other variables. This, and the pitfalls of using#define, makes the const
keyword a superior method for defining constants and is preferred over using

#define.

46

http://127.0.0.1:800/Default/arduino.cc/en/Reference/Scope
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Define

Language Reference
o sSMIrQazQa
Example
const float pi = 3.14;
float x;

/]
X = pi * 2; // it’s fine to use const’s in math

pi = 7; // illegal — you can’t write to (modify) a constant

#define or const

You can use either const or #define for creating numeric or string constants. For
arrays, you will need to use const. In general const is preferred over #define for
defining constants.

Utilities
sizeof()

sizeof

Description

The sizeof operator returns the number of bytes in a variable type, or the number of
bytes occupied by an array.

Syntax

sizeof(variable)

Parameters

variable: any variable type or array (e.g. int, float, byte)

Example code

The sizeof operator is useful for dealing with arrays (such as strings) where it is
convenient to be able to change the size of the array without breaking other parts of
the program.

This program prints out a text string one character at a time. Try changing the text
phrase.

char myStr[] = “this is a test”;

int 1i;

47

http://127.0.0.1:800/Default/arduino.cc/en/Reference/Array
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Sizeof

Language Reference

sSMmMirazQ

V1.0

void setup() {
Serial. begin (9600) ;
}

void loop() {
for (i = 0; i < sizeof(myStr) — 1; i++){
Serial.print (i, DEC);
Serial.print(” = 7);
Serial.write(myStrl[il);
Serial.println();
}
delay (5000) ; // slow down the program
}

Note that sizeof returns the total number of bytes. So for larger variable types such as
ints, the for loop would look something like this. Note also that a properly formatted
string ends with the NULL symbol, which has ASCII value o.
for (i = 0; i < (sizeof(myInts)/sizeof(int)) — 1; it++) {

// do something with myInts[i]
}

PROGMEM

Store data in flash (program) memory instead of SRAM. There’s a
description of the various types of memory available on an Arduino
board.

The PROGMEM keyword is a variable modifier, it should be used only
with the datatypes defined in pgmspace.h. It tells the compiler “put
this information into flash memory”, instead of into SRAM, where it
would normally go.

48

http://www.arduino.cc/playground/Learning/Memory

Language Reference

smraza

PROGMEM is part of the pgmspace.h library that is available in the
AVR architecture only. So you first need to include the library at
the top your sketch, like this:

#include <avr/pgmspace.h>

Get Code]
Syntax

const dataType variableName[] PROGMEM = {data0, datal, data3...};
Get Code]

e dataType - any variable type
e variableName - the name for your array of data

Note that because PROGMEM is a variable modifier, there is no hard
and fast rule about where it should go, so the Arduino compiler
accepts all of the definitions below, which are also synonymous.
However experiments have indicated that, in various versions of
Arduino (having to do with GCC version), PROGMEM may work in one
location and not in another. The “string table” example below has
been tested to work<with Arduino 13." Earlier versions of the IDE may
work better if PROGMEM is included after the variable name.

const dataType variableName[] PROGMEM = {}; // use this form
const PROGMEM dataType ' variableName([] = {}; // or this form
const dataType PROGMEM variableName[] = {}; // not this one

Get Code]

While PROGMEM could be used on a single variable, it is really only
worth the fuss if you have a larger block of data that needs to be
stored, which“is usually easiest in an array, (or another C data
structure beyond our present discussion).

Using PROGMEM is also a two—step procedure. After getting the data
into Flash memory, it requires special methods (functions), also
defined in the pgmspace.h library, to read the data from program
memory back into SRAM, so we can do something useful with it.

Example

The following code fragments illustrate how to read and write chars
(bytes) and ints (2 bytes) to PROGMEM.

49

http://www.nongnu.org/avr-libc/user-manual/group__avr__pgmspace.html
https://www.arduino.cc/en/Reference/PROGMEM?action=sourceblock&num=1
https://www.arduino.cc/en/Reference/PROGMEM?action=sourceblock&num=2
https://www.arduino.cc/en/Reference/PROGMEM?action=sourceblock&num=3
http://www.nongnu.org/avr-libc/user-manual/group__avr__pgmspace.html

Language Reference

sSMmMirazQ

V1.0

#include <avr/pgmspace.h>

// save some unsigned ints
const PROGMEM uintl6_t charSet[] = { 65000, 32796, 16843, 10, 11234};

// save some chars
const char signMessage[] PROGMEM = {"I AM PREDATOR, UNSEEN COMBATANT.
CREATED BY THE UNITED STATES DEPART"};

unsigned int displaylnt;
intk; // counter variable
char myChar;

void setup() {
Serial.begin(9600);
while (!Serial);

// put your setup code here, to run once:

// read back a 2-byte int

for (k=0; k <5; k++)

{
displayInt = pgm_read word near(charSet + k);
Serial.println(displayInt);

}

Serial.println();

// read back a char
int len = strlen_P(signMessage);
for (k = 0; k <len; k++)

{
myChar = pgm _read byte near(signMessage + k);
Serial.print(myChar);

}

Serial.println();
}

void loop() {
// put your main code here, to run repeatedly:

}
Get Code]

50

https://www.arduino.cc/en/Reference/PROGMEM?action=sourceblock&num=4

Language Reference

sSMmMirazQ

V1.0
Arrays of strings

It is often convenient when working with large amounts of text, such
as a project with an LCD display, to setup an array of strings.
Because strings themselves are arrays, this is in actually an example
of a two—dimensional array.

These tend to be large structures so putting them into program memory
is often desirable. The code below illustrates the idea.

/*
PROGMEM string demo
How to store a table of strings in program memory (flash),

and retrieve them.

Information summarized from:

http://www.nongnu.org/avr-libc/user-manual/pgmspace.html

Setting up a table (array) of strings in program memory is slightly complicated, but

here is a good template to follow.

Setting up the strings is a two-step process. First define the strings.
*/

#include <avr/pgmspace.h>
const char string. 0[] PROGMEM = "String 0"; // "String 0" etc are strings to store - change to

suit.

const char string_1[]PROGMEM = "String 1";
const char string 2[] PROGMEM = "String 2";
const char string 3[]PROGMEM = "String 3";
const char string_4[] PROGMEM = "String 4";
const char string_5[] PROGMEM = "String 5";

// Then set up a table to refer to your strings.

const char* const string table[] PROGMEM = {string 0, string 1, string 2, string 3, string 4,
string 5};

char buffer[30]; // make sure this is large enough for the largest string it must hold
void setup()

{
Serial.begin(9600);

51

Language Reference

sSMmMirazQ

V1.0

while(!Serial);
Serial.println("OK");
H

void loop()
{

/* Using the string table in program memory requires the use of special functions to retrieve the
data.
The strcpy_P function copies a string from program space to a string in RAM ("buffer").
Make sure your receiving string in RAM is large enough to hold whatever

you are retrieving from program space. */

for (inti=0; 1< 6; i++)
{
strepy_P(buffer, (char*)pgm read word(&(string_table[i]))); // Necessary casts and

dereferencing, just copy.
Serial.println(buffer);
delay(500);

}
}
Get Code]

Note

Please note that wvariables must be either globally defined, OR
defined with the static keyword, in order to work with PROGMEM.

The following code will NOT work when inside a function:

const char long_str[] PROGMEM = "Hi, I would like to tell you a bit about myself.\n";
Get Code]

The following code WILL work, even if locally defined within a
function:

const static char long_str[] PROGMEM = "Hi, I would like to tell you a bit about myself.\n"
Get Code]

The F() macro

When an instruction like :

52

https://www.arduino.cc/en/Reference/PROGMEM?action=sourceblock&num=5
https://www.arduino.cc/en/Reference/PROGMEM?action=sourceblock&num=6
https://www.arduino.cc/en/Reference/PROGMEM?action=sourceblock&num=7

Language Reference

sSMmMirazQ

V1.0

Serial.print("Write something on the Serial Monitor");

Get Code]

is used, the string to be printed is normally saved in RAM. If your
sketch prints a lot of stuff on the Serial Monitor, you can easily
fill the RAM. If you have free FLASH memory space, you can easily
indicate that the string must be saved in FLASH using the syntax:

Serial.print(F("Write something on the Serial Monitor that is stored in FLASH"));

Functions

Digital I/O
pinMode()
digitalWrite()
digitalRead()

pinMode()

Description

Configures the specified pin to behave either as an input or an output. See the
description of digital pins for details on the functionality of the pins.

As of Arduino 1.0.1, it is possible to enable the internal pullup resistors with the mode
INPUT_PULLUP. Additionally, the INPUT mode explicitly disables the internal
pullups.

Syntax

pinMode(pin, mode)

Parameters

pin: the number of the pin whose mode you wish to set

mode: INPUT, OUTPUT, or INPUT PULLUP. (see the digital pins page for a more
complete description of the functionality.)

Returns

None

Example

int ledPin = 13; // LED connected to digital pin 13
void setup ()

{
pinMode (1ledPin, OUTPUT) ; // sets the digital pin as output

53

https://www.arduino.cc/en/Reference/PROGMEM?action=sourceblock&num=8
http://127.0.0.1:800/Default/arduino.cc/en/Reference/PinMode
http://127.0.0.1:800/Default/arduino.cc/en/Reference/DigitalWrite
http://127.0.0.1:800/Default/arduino.cc/en/Reference/DigitalRead
http://127.0.0.1:800/Default/arduino.cc/en/Tutorial/DigitalPins
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Constants
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Constants
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Constants
http://127.0.0.1:800/Default/arduino.cc/en/Tutorial/DigitalPins

Language Reference

sSMmMirazQ

V1.0

void loop ()
{

digitalWrite (ledPin, HIGH); // sets the LED on
delay(1000); // waits for a second
digitalWrite (ledPin, LOW) ; // sets the LED off
delay (1000); // waits for a second
}
Get Code
Note

The analog input pins can be used as digital pins, referred to as Ao, A1, etc.

digitalWrite()

Description

Write a HIGH or a LOW value to a digital pin.

If the pin has been configured as an OUTPUT with pinMode(),.its voltage will be set
to the corresponding value: 5V (or 3.3V on 3.3V boards) for HIGH, oV (ground) for
LOW.

If the pin is configured as an INPUT, writing a HIGH value with digitalWrite() will
enable an internal 20K pullup resistor (see the tutorial on digital pins). Writing LOW
will disable the pullup. The pullup resistor is enough to light an LED dimly, so if
LEDs appear to work, but very dimly; this is a likely cause. The remedy is to set the
pin to an output with the pinMode() function.

NOTE: Digital pin 13 is harder to use as a digital input than the other digital pins
because it has an LED and resistor attached to it that's soldered to the board on most
boards. If you enable its internal 20k pull-up resistor, it will hang at around 1.7V
instead of the expected 5V because the onboard LED and series resistor pull the
voltage level down; meaning it always returns LOW. If you must use pin 13 as a
digital input, use an external pull down resistor.

Syntax

digitalWrite(pin, value)

Parameters

pin: the pin number

value: HIGH or LOW

Returns

none

Example

int ledPin = 13; // LED connected to digital pin 13

void setup()

{

54

http://127.0.0.1:800/Default/arduino.cc/en/Reference/PinMode@action=sourceblock&num=1
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Constants
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Constants
http://127.0.0.1:800/Default/arduino.cc/en/Reference/PinMode
http://127.0.0.1:800/Default/arduino.cc/en/Tutorial/DigitalPins
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Constants
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Constants

Language Reference

smraza

pinMode (1edPin, OUTPUT) ; // sets the digital pin as output
}

void loop()

{
digitalWrite(ledPin, HIGH); // sets the LED on

delay (1000) ; // waits for a second
digitalWrite(ledPin, LOW); // sets the LED off
delay (1000) ; // waits for a second

}

Sets pin 13 to HIGH, makes a one-second-long delay, and sets the pin back to LOW.
Note
The analog input pins can be used as digital pins, referred to as Ao, A1, etc.

digitalRead()

Description

Reads the value from a specified digital pin, either HIGH or LOW.
Syntax

digitalRead(pin)

Parameters

pin: the number of the digital pin you want to read (int)

Returns

HIGH or LOW

Example

int ledPin = 13; // LED connected to digital pin 13
int inPin=-7; // pushbutton connected to digital pin 7
int val = 0; // variable to store the read value

void setup()

{
pinMode (1edPin, OUTPUT) ; // sets the digital pin 13 as output
pinMode (inPin, INPUT) ; // sets the digital pin 7 as input

}

void loop()
{

val = digitalRead(inPin); // read the input pin
digitalWrite(ledPin, val); // sets the LED to the button’s value
}

55

http://127.0.0.1:800/Default/arduino.cc/en/Reference/Constants
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Constants
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Constants
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Constants

Language Reference

smraza

Sets pin 13 to the same value as the pin 77, which is an input.

Note

If the pin isn't connected to anything, digitalRead() can return either HIGH or LOW
(and this can change randomly).
The analog input pins can be used as digital pins, referred to as Ao, A1, etc.

Analog1/0
analogReference()

analogRead()
analogWrite() - PWM

analogReference(type)

Description
Configures the reference voltage used for analog input (i.e. the value used as the top
of the input range). The options are:
DEFAULT: the default analog reference of 5 volts (on 5V Arduino boards) or 3.3 volts (on
3.3V Arduino boards)
INTERNAL: an built-in reference, equal to 1.1 volts on the ATmega168 or ATmega328
and 2.56 volts on the ATmega8 (not available on the Arduino Mega)
INTERNAL1V1: a built-in 1.1V reference (Arduino Mega only)
INTERNAL2V56: a built-in 2.56V reference (Arduino Mega only)
EXTERNAL: the voltage applied to the AREF pin (0 to 5V only) is used as the
reference.
Parameters
type: which type of reference to use (DEFAULT, INTERNAL, INTERNAL1V1,
INTERNAL2V56, or EXTERNAL).
Returns
None.
Note
After changing the analog reference, the first few readings from analogRead() may
not be accurate.

56

http://127.0.0.1:800/Default/arduino.cc/en/Reference/AnalogReference
http://127.0.0.1:800/Default/arduino.cc/en/Reference/AnalogRead
http://127.0.0.1:800/Default/arduino.cc/en/Reference/AnalogWrite

Language Reference
o sSmMirQazQ
Warning
Don't use anything less than oV or more than 5V for external reference
voltage on the AREF pin! If you're using an external reference on the
AREF pin, you must set the analog reference to EXTERNAL before calling
analogRead(). Otherwise, you will short together the active reference voltage
(internally generated) and the AREF pin, possibly damaging the microcontroller on
your Arduino board.
Alternatively, you can connect the external reference voltage to the AREF pin through
a 5K resistor, allowing you to switch between external and internal reference
voltages. Note that the resistor will alter the voltage that gets used as the reference
because there is an internal 32K resistor on the AREF pin. The two act as a voltage
divider, so, for example, 2.5V applied through the resistor will yield 2.5 * 32 / (32 +
5) = ~2.2V at the AREF pin

analogRead()

Description

Reads the value from the specified analog pin. The Arduino board contains a 6
channel (8 channels on the Mini and Nano, 16 on the Mega), 10-bit analog to digital
converter. This means that it will map input voltages between o0 and 5 volts into
integer values between 0 and 1023. This yields a resolution between readings of: 5
volts / 1024 units or, .0049 volts (4.9 mV) per unit. The input range and resolution
can be changed using analogReference().

It takes about 100 microseconds (0.0001 s) to read an analog input, so the maximum
reading rate is.about 10,000 times a second.

Syntax

analogRead(pin)

Parameters

pin: the number of the analog input pin to read from (0 to 5 on most boards, 0 to 7 on
the Mini and Nano, 0 to 15 on the Mega)

Returns

int (0 to 1023)

Note

If the analog input pin is not connected to anything, the value returned by
analogRead() will fluctuate based on a number of factors (e.g. the values of the other
analog inputs, how close your hand is to the board, etc.).

Example

int analogPin = 3; // potentiometer wiper (middle terminal)
connected to analog pin 3

// outside leads to ground and +5V
int val = 0; // variable to store the value read

57

http://127.0.0.1:800/Default/arduino.cc/en/Reference/AnalogReference

Language Reference

sSMmMirazQ

V1.0

void setup()

{
Serial. begin(9600) ; // setup serial
}

void loop()
{

val = analogRead(analogPin) ; // read the input pin
Serial. println(val); // debug value

}

analogWrite()

Description

Writes an analog value (PWM wave) to a pin. Can be used to light a LED at varying
brightnesses or drive a motor at various speeds. After a call to analogWrite(), the
pin will generate a steady square wave of the specified duty cycle until the next call to
analogWrite() (or a call to digitalRead() or digitalWrite() on the same pin).
The frequency of the PWM signal is approximately 490 Hz.

On most Arduino boards (those with the ATmega168 or ATmega328), this function
works on pins 3, 5, 6, 9,10, and 11. On the Arduino Mega, it works on pins 2 through
13. Older Arduino boards with an ATmega8 only support analogWrite() on pins 9, 10,
and 11. You do not need to call pinMode() to set the pin as an output before calling
analogWrite().

The analogWrite function has nothing whatsoever to do with the analog pins or the
analogRead function.

Syntax

analogWrite(pin, value)

Parameters

pin: the pin to write to.

value: the duty cyele: between o (always off) and 255 (always on).

Returns

nothing

Notes and Known Issues

The PWM outputs generated on pins 5 and 6 will have higher-than-expected duty
cycles. This is because of interactions with the millis() and delay() functions, which
share the same internal timer used to generate those PWM outputs. This will be
noticed mostly on low duty-cycle settings (e.g 0 - 10) and may result in a value of 0
not fully turning off the output on pins 5 and 6.

Example

Sets the output to the LED proportional to the value read from the potentiometer.

58

http://127.0.0.1:800/Default/arduino.cc/en/Tutorial/PWM

Language Reference

sSMmMirazQ

V1.0

int ledPin = 9; // LED connected to digital pin 9

int analogPin = 3;: // potentiometer connected to analog pin 3
int val = 0; // variable to store the read value

void setup()

{
pinMode (1edPin, OUTPUT); // sets the pin as output

}

void loop()
{
val = analogRead(analogPin); // read the input pin
analogWrite(ledPin, val / 4); // analogRead values go from 0 to
1023, analogWrite values from 0 to 255
}

Advanced I/0O

tone()
noTone()
shiftOut()
shiftIn()

pulseln()
tone()

Description

Generates a square wave of the specified frequency (and 50% duty cycle) on a pin. A
duration can be specified, otherwise the wave continues until a call to noTone(). The
pin can be connected to a piezo buzzer or other speaker to play tones.

59

http://127.0.0.1:800/Default/arduino.cc/en/Reference/Tone
http://127.0.0.1:800/Default/arduino.cc/en/Reference/NoTone
http://127.0.0.1:800/Default/arduino.cc/en/Reference/ShiftOut
http://127.0.0.1:800/Default/arduino.cc/en/Reference/ShiftIn
http://127.0.0.1:800/Default/arduino.cc/en/Reference/PulseIn
http://127.0.0.1:800/Default/arduino.cc/en/Reference/NoTone

Language Reference

smraza

Only one tone can be generated at a time. If a tone is already playing on a different
pin, the call to tone() will have no effect. If the tone is playing on the same pin, the
call will set its frequency.

Use of the tone() function will interfere with PWM output on pins 3 and 11 (on boards
other than the Mega).

NOTE: if you want to play different pitches on multiple pins, you need to call
noTone() on one pin before calling tone() on the next pin.

Syntax

tone(pin, frequency)

tone(pin, frequency, duration)

Parameters

pin: the pin on which to generate the tone

frequency: the frequency of the tone in hertz - unsigned int

duration: the duration of the tone in milliseconds (optional) - unsigned long
Returns

nothing

noTone()

Description

Stops the generation of a square wave triggered by tone(). Has no effect if no tone is
being generated.

NOTE: if you want to play different pitches on multiple pins, you need to call
noTone() on one pin before calling tone() on the next pin.

Syntax

noTone(pin)

Parameters

pin: the pin on which to stop generating the tone

Returns

nothing

shiftOut()

Description

Shifts out a byte of data one bit at a time. Starts from either the most (i.e. the
leftmost) or least (rightmost) significant bit. Each bit is written in turn to a data pin,
after which a clock pin is pulsed (taken high, then low) to indicate that the bit is
available.

Note: if you're interfacing with a device that's clocked by rising edges, you'll need to
make sure that the clock pin is low before the call to shiftOut(), e.g. with a call to
digitalWrite(clockPin, LOW).

This is a software implementation; see also the SPI library, which provides a
hardware implementation that is faster but works only on specific pins.

Syntax

shiftOut(dataPin, clockPin, bitOrder, value)

60

http://127.0.0.1:800/Default/arduino.cc/en/Reference/Tone
http://127.0.0.1:800/Default/arduino.cc/en/Reference/SPI

Language Reference
o sSmMirQazQ
Parameters
dataPin: the pin on which to output each bit (int)
clockPin: the pin to toggle once the dataPin has been set to the correct value (int)
bitOrder: which order to shift out the bits; either MSBFIRST or LSBFIRST.
(Most Significant Bit First, or, Least Significant Bit First)
value: the data to shift out. (byte)
Returns
None
Note
The dataPin and clockPin must already be configured as outputs by a call to
pinMode().
shiftOut is currently written to output 1 byte (8 bits) so.it requires a two step
operation to output values larger than 255.

// Do this for MSBFIRST serial

int data = 500;

// shift out highbyte

shiftOut (dataPin, clock, MSBEIRST, (data >> 8));
// shift out lowbyte

shiftOut (data, clock, MSBFIRST, data);

// Or do this for LSBFIRST serial

data = 500;

// shift out lowbyte

shiftOut (dataPin, clock, LSBEIRST, data);

// shift out-highbyte

shiftOut(dataPin, clock, LSBFIRST, (data >> 8));

Get Code
Example

For accompanying cireuit, see the tutorial on controlling a 74HC595 shift register.
//**/

/

// Name : shiftOutCode, Hello World //
// Author : Carlyn Maw,Tom Igoe //
// Date : 25 Oct, 2006 //
// Version : 1.0 /7
// Notes : Code for using a 74HC595 Shift Register //
// : to count from 0 to 255 //

//***

*

//Pin connected to ST CP of 74HC595
int latchPin = 8;

61

http://127.0.0.1:800/Default/arduino.cc/en/Reference/PinMode
http://127.0.0.1:800/Default/arduino.cc/en/Reference/ShiftOut@action=sourceblock&num=1
http://127.0.0.1:800/Default/arduino.cc/en/Tutorial/ShiftOut

Language Reference

i sSmMirQazQ
//Pin connected to SH CP of 74HC595

int clockPin = 12;

////Pin connected to DS of 74HC595

int dataPin = 11;

void setup () {
//set pins to output because they are addressed in the main loop
pinMode (latchPin, OUTPUT) ;
pinMode (clockPin, OUTPUT) ;
pinMode (dataPin, OUTPUT) ;

void loop () {
//count up routine
for (int j = 0; 3 < 256; j++) {
//ground latchPin and hold< low for as. long as you are
transmitting
digitalWrite (latchPin, LOW).;
shiftOut (dataPin, clockPin, LSBFIRST, 7J);
//return the latch pin high to signal chip that it
//no longer needs to listen for information
digitalWrite (latchPin, HIGH) ;
delay (1000) ;

shiftin()

Description

Shifts in a byte of data one bit at a time. Starts from either the most (i.e. the leftmost)
or least (rightmest) significant bit. For each bit, the clock pin is pulled high, the next
bit is read from the data line, and then the clock pin is taken low.

Note: this is a software implementation; Arduino also provides an SPI library that
uses the hardware implementation, which is faster but only works on specific pins.
Syntax

byte incoming = shiftIn(dataPin, clockPin, bitOrder)

Parameters

dataPin: the pin on which to input each bit (int)

clockPin: the pin to toggle to signal a read from dataPin

bitOrder: which order to shift in the bits; either MSBFIRST or LSBFIRST.
(Most Significant Bit First, or, Least Significant Bit First)

62

http://127.0.0.1:800/Default/arduino.cc/en/Reference/SPI

Language Reference
o sSMMIrQazaQa
Returns
the value read (byte)

pulsein()

Description

Reads a pulse (either HIGH or LOW) on a pin. For example, if value is HIGH,
pulselIn() waits for the pin to go HIGH, starts timing, then waits for the pin to go
LOW and stops timing. Returns the length of the pulse in microseconds. Gives up
and returns o if no pulse starts within a specified time out.

The timing of this function has been determined empirically and will probably show
errors in longer pulses. Works on pulses from 10 microseconds to 3 minutes in
length.

Syntax

pulseln(pin, value)

pulseln(pin, value, timeout)

Parameters

pin: the number of the pin on which you want to read the pulse. (int)

value: type of pulse to read: either HIGH or LOW. (int)

timeout (optional): the number of microseconds to wait for the pulse to start; default
is one second (unsigned long)

Returns

the length of the pulse (in microseconds) or 0 if no pulse started before the timeout
(unsigned long)

Example

int pin=7;
unsigned long duration;

void setup()

{
pinMode (pin;. INPUT) ;

}

void loop()
{

duration = pulseln(pin, HIGH);

}

63

http://127.0.0.1:800/Default/arduino.cc/en/Reference/Constants
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Constants

Language Reference

sSMmMirazQ

V1.0

Time

millis()

Description

Returns the number of milliseconds since the Arduino board began running the
current program. This number will overflow (go back to zero), after approximately 50
days.

Parameters

None

Returns

Number of milliseconds since the program started (unsigned long)

Example

unsigned long time;

void setup () {
Serial. begin (9600) ;
}
void loop(O){
Serial.print ("Time: %) ;
time = millis();
//prints timevsince program started
Serial.println(time) ;
// wait a second so as not to send massive amounts of data

delay (1000) ;

Tip:
Note that the parameter for millis is an unsigned long, errors may be generated if a
programmer tries to do math with other datatypes such as ints.

64

Language Reference

sSMmMirazQ

micros()

V1.0

Description

Returns the number of microseconds since the Arduino board began running the
current program. This number will overflow (go back to zero), after approximately 70
minutes. On 16 MHz Arduino boards (e.g. Duemilanove and Nano), this function has
a resolution of four microseconds (i.e. the value returned is always a multiple of four).
On 8 MHz Arduino boards (e.g. the LilyPad), this function has a resolution of eight
microseconds.

Note: there are 1,000 microseconds in a millisecond and 1,000,000 microseconds in
a second.

Parameters

None

Returns

Number of microseconds since the program started (unsigned long)

Example

unsigned long time;

void setup() {
Serial. begin (9600) ;
}
void loop() {
Serial.print ("Time: “);
time = micros() ;
//prints time since program started
Serial. println(time) ;
// wait a second so as not to send massive amounts of data
delay (1000) ;

delay()

Description

Pauses the program for the amount of time (in miliseconds) specified as parameter.
(There are 1000 milliseconds in a second.)

Syntax

delay(ms)

Parameters

ms: the number of milliseconds to pause (unsigned long)

Returns

nothing

Example

int ledPin = 13; // LED connected to digital pin 13

65

Language Reference

sSMmMirazQ

V1.0

void setup()

{
pinMode (1edPin, OUTPUT) ; // sets the digital pin as output

}

void loop()

{
digitalWrite(ledPin, HIGH); // sets the LED on

delay (1000) ; // waits for a second
digitalWrite(ledPin, LOW); // sets the LED off
delay (1000) ; // waits for a second
}
Caveat

While it is easy to create a blinking LED with the delay() funetion, and many sketches
use short delays for such tasks as switch debouncing, the use of delay() in a sketch
has significant drawbacks. No other reading of sensors, mathematical calculations, or
pin manipulation can go on during the delay function, so in effect, it brings most
other activity to a halt. For alternative approaches to controlling timing see the
millis() function and the sketch sited below. More knowledgeable programmers
usually avoid the use of delay() for timing of events longer than 10's of milliseconds
unless the Arduino sketch is very simple.

Certain things do go on while the delay() function is controlling the Atmega chip
however, because the delay function does not disable interrupts. Serial
communication that appears at the RX pin is recorded, PWM (analogWrite) values
and pin states are maintained, and interrupts will work as they should.

delayMicroseconds()

Description

Pauses the program for the amount of time (in microseconds) specified as parameter.
There are a thousand microseconds in a millisecond, and a million microseconds in a
second.

Currently, the largest value that will produce an accurate delay is 16383. This could
change in future Arduino releases. For delays longer than a few thousand
microseconds, you should use delay() instead.

Syntax

delayMicroseconds(us)

Parameters

us: the number of microseconds to pause (unsigned int)

Returns

None

Example

int outPin = 8; // digital pin 8

66

http://127.0.0.1:800/Default/arduino.cc/en/Reference/Millis
http://127.0.0.1:800/Default/arduino.cc/en/Reference/AnalogWrite
http://127.0.0.1:800/Default/arduino.cc/en/Reference/AttachInterrupt

Language Reference

sSMmMirazQ

V1.0

void setup()

{
pinMode (outPin, OUTPUT) ; // sets the digital pin as output

}

void loop()

{
digitalWrite (outPin, HIGH); // sets the pin on

delayMicroseconds (50) ; // pauses for 50 microseconds
digitalWrite (outPin, LOW); // sets the pin off
delayMicroseconds (50) ; // pauses for .50 microseconds

configures pin number 8 to work as an output pin. It sends a train of pulses with 100
microseconds period.

Caveats and Known Issues

This function works very accurately in'the range 3 microseconds and up. We cannot
assure that delayMicroseconds will perform precisely for smaller delay-times.

As of Arduino 0018, delayMicroseconds() no longer disables interrupts.

Math

min()
max()
abs()
constrain()
map()
pow()
sqrt()

67

http://127.0.0.1:800/Default/arduino.cc/en/Reference/Min
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Max
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Abs
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Constrain
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Map
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Pow
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Sqrt

Language Reference

sSMmMirazQ

V1.0

min(x, y)
Description
Calculates the minimum of two numbers.
Parameters

x: the first number, any data type
y: the second number, any data type
Returns
The smaller of the two numbers.
Examples
sensVal = min(sensVal, 100); // assigns sensVal to the smaller of
sensVal or 100

// ensuring that it never gets above
100.
Note
Perhaps counter-intuitively, max() is often used to constrain the lower end of a
variable's range, while min() is used to constrain the upper end of the range.
Warning
Because of the way the min() function is implemented, avoid using other functions
inside the brackets, it may lead to incorrect results

min(a++, 100); // aveid this — yields incorrect results
att;
min(a, 100) : // use this instead — keep other math outside the
function
max(x, y)
Description
Calculates the maximum of two numbers.
Parameters

x: the first number, any data type
y: the second number, any data type
Returns
The larger of the two parameter values.
Example
sensVal = max(senVal, 20); // assigns sensVal to the larger of
sensVal or 20
// (effectively ensuring that it is at
least 20)
Note
Perhaps counter-intuitively, max() is often used to constrain the lower end of a
variable's range, while min() is used to constrain the upper end of the range.

68

Language Reference
V1.0 Sl I “ :IZ:l
Warning
Because of the way the max() function is implemented, avoid using other functions
inside the brackets, it may lead to incorrect results

max(a—, 0): // avoid this — yields incorrect results
a—; // use this instead -
max (a, 0); // keep other math outside the function

abs(x)

Description

Computes the absolute value of a number.

Parameters

x: the number

Returns

x: if x is greater than or equal to 0.

-x: if x is less than o.

Warning

Because of the way the abs() function is implemented, avoid using other functions
inside the brackets, it may lead to incorrect results.

abs(a++); // avoid this = yields incorrect results
at+; // use this instead —
abs (a) ; // keep other math outside the function

constrain(x, a, b)

Description

Constrains a number to be within a range.
Parameters

x: the number to constrain, all data types

a: the lower end-of the range, all data types

b: the upper end of the range, all data types
Returns

x: if x is between aand b

a:if xisless than a

b: if x is greater than b

Example

sensVal = constrain(sensVal, 10, 150);
// limits range of sensor values to between 10 and 150

69

Language Reference

sSMmMirazQ

V1.0

map(value, fromLow, fromHigh, toLow, toHigh)

Description

Re-maps a number from one range to another. That is, a value of fromLow would
get mapped to toLow, a value of fromHigh to toHigh, values in-between to values
in-between, etc.

Does not constrain values to within the range, because out-of-range values are
sometimes intended and useful. The constrain() function may be used either before
or after this function, if limits to the ranges are desired.

Note that the "lower bounds" of either range may be larger or smaller than the "upper
bounds" so the map() function may be used to reverse a range of numbers, for
example

y =map(x, 1, 50, 50, 1);

The function also handles negative numbers well, so that this example

y = map(x, 1, 50, 50, -100):

is also valid and works well.

The map() function uses integer math so will not generate fractions, when the math
might indicate that it should do so. Fractional remainders are truncated, and are not
rounded or averaged.

Parameters

value: the number to map

fromLow: the lower bound of the value's current range

fromHigh: the upper bound of the value's current range

toLow: the lower bound of the value's target range

toHigh: the upper bound of the value's target range

Returns

The mapped value.

Example

/% Map an analog value to 8 bits (0 to 255) %/

void setup() {}

void loop()
{
int val = analogRead(0);
val = map(val, 0, 1023, 0, 255);
analogWrite(9, val);
}
Appendix
For the mathematically inclined, here's the whole function
long map(long x, long in min, long in max, long out min, long
out max)
{
return (x — in min) * (out max — out min) / (in max — in min) +
out min;

70

Language Reference

sSMmMirazQ

V1.0

pow(base, exponent)

Description

Calculates the value of a number raised to a power. Pow() can be used to raise a
number to a fractional power. This is useful for generating exponential mapping of
values or curves.

Parameters

base: the number (float)

exponent: the power to which the base is raised (float)

Returns

The result of the exponentiation (double)

Example

See the fscale function in the code library

sqrt(x)

Description

Calculates the square root of a number.
Parameters

x: the number, any data type

Returns

double, the number's square root

71

http://127.0.0.1:800/Default/arduino.cc/playground/Main/Fscale

Language Reference

sSMmMirazQ

Trigonometry

V1.0

sin()
cos()
tan()

sin(rad)

Description

Calculates the sine of an angle (in radians). The result will be between -1 and 1.
Parameters

rad: the angle in radians (float)

Returns

the sine of the angle (double)

cos(rad)

Description

Calculates the cos of an angle (in radians). The result will be between -1 and 1.
Parameters

rad: the angle in radians (float)

Returns

The cos of the angle ("double")

tan(rad)

Description

Calculates the tangent of an angle (in radians). The result will be between negative
infinity and infinity.

Parameters

rad: the angle in radians (float)

Returns

The tangent of the angle (double)

Random Numbers

randomSeed()

72

http://127.0.0.1:800/Default/arduino.cc/en/Reference/Sin
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Cos
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Tan
http://127.0.0.1:800/Default/arduino.cc/en/Reference/RandomSeed

Language Reference
smMraza
random()

randomSeed(seed)

Description

randomSeed() initializes the pseudo-random number generator, causing it to start at
an arbitrary point in its random sequence. This sequence, while very long, and
random, is always the same.

If it is important for a sequence of values generated by random() to differ, on
subsequent executions of a sketch, use randomSeed() to initialize the random
number generator with a fairly random input, such as analogRead() on an
unconnected pin.

Conversely, it can occasionally be useful to use pseudo-random sequences that repeat
exactly. This can be accomplished by calling randomSeed() with a fixed number,
before starting the random sequence.

Parameters

long, int - pass a number to generate the seed.

Returns

no returns

Example

long randNumber;

void setup() {
Serial. begin (9600) ;
randomSeed (analogRead (0))
}

void loop() {
randNumber = random(300) ;
Serial. println(randNumber) ;

delay (50) ;
}

random()

Description

The random function generates pseudo-random numbers.
Syntax

random(max)

random(min, max)

Parameters

min - lower bound of the random value, inclusive (optional)
max - upper bound of the random value, exclusive

73

http://127.0.0.1:800/Default/arduino.cc/en/Reference/Random

Language Reference

sSMmMirazQ

V1.0

Returns

a random number between min and max-1 (long)

Note:

If it is important for a sequence of values generated by random() to differ, on
subsequent executions of a sketch, use randomSeed() to initialize the random
number generator with a fairly random input, such as analogRead() on an
unconnected pin.

Conversely, it can occasionally be useful to use pseudo-random sequences that repeat
exactly. This can be accomplished by calling randomSeed() with a fixed number,
before starting the random sequence.

Example

long randNumber;

void setup() {
Serial. begin (9600) ;

// if analog input pin 0 is unconnected, random analog
// noise will cause the callto randomSeed() to generate
// different seed numbers each time the sketch runs.

// randomSeed () will then shuffle the random function.
randomSeed (analogRead(0))

void loop() {
// print a random number from 0 to 299
randNumber = random(300) ;
Serialuprintln(randNumber) ;

// print a random number from 10 to 19
randNumber = random(10, 20):

Serial. println(randNumber) ;

delay (50) ;

74

Language Reference

sSMmMirazQ

V1.0

Bits and Bytes

lowByte()
highByte()
bitRead()
bitWrite()
bitSet()
bitClear()
bit()

lowByte()

Description

Extracts the low-order (rightmost) byte of a variable (e.g. a word).
Syntax

lowByte(x)

Parameters

x: a value of any type

Returns

byte
highByte()

Description

Extracts the high-order (leftmost) byte of a word (or the second lowest byte of a
larger data type).

Syntax

highByte(x)

Parameters

x: a value of any type

Returns

byte
bitRead()

Description

Reads a bit of a number.

Syntax

bitRead(x, n)

Parameters

x: the number from which to read

n: which bit to read, starting at o for the least-significant (rightmost) bit
Returns

the value of the bit (0 or 1).

75

http://127.0.0.1:800/Default/arduino.cc/en/Reference/LowByte
http://127.0.0.1:800/Default/arduino.cc/en/Reference/HighByte
http://127.0.0.1:800/Default/arduino.cc/en/Reference/BitRead
http://127.0.0.1:800/Default/arduino.cc/en/Reference/BitWrite
http://127.0.0.1:800/Default/arduino.cc/en/Reference/BitSet
http://127.0.0.1:800/Default/arduino.cc/en/Reference/BitClear
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Bit

Language Reference

SMmMrazQa
bitWrite()

V1.0

Description

Writes a bit of a numeric variable.
Syntax

bitWrite(x, n, b)

Parameters

x: the numeric variable to which to write
n: which bit of the number to write, starting at o for the least-significant (rightmost)
bit

b: the value to write to the bit (0 or 1)
Returns

none

bitSet()

Description

Sets (writes a 1 to) a bit of a numeric variable.

Syntax

bitSet(x, n)

Parameters

x: the numeric variable whose bit to set

n: which bit to set, starting at o for the least-significant (rightmost) bit
Returns

none

bitClear()

Description

Clears (writes a 0 to) a bit of a numeric variable.

Syntax

bitClear(x, n)

Parameters

x: the numeric variable whose bit to clear

n: which bit to clear, starting at o for the least-significant (rightmost) bit
Returns

none

bit()

Description

Computes the value of the specified bit (bit 0 is 1, bit 1 is 2, bit 2 is 4, etc.).
Syntax

bit(n)

Parameters

n: the bit whose value to compute

76

Language Reference
o sSmMirQazQ
Returns
the value of the bit

External Interrupts

attachInterrupt()
detachInterrupt()

attachinterrupt()

Description
Specifies a function to call when an external interrupt oceurs. Replaces any previous
function that was attached to the interrupt. Most Arduino boards have two external
interrupts: numbers 0 (on digital pin-2) and 1 (on digital pin 3). The Arduino Mega
has an additional four: numbers 2 (pin 21), 3 (pin 20), 4 (pin 19), and 5 (pin 18).
Syntax
attachInterrupt(interrupt, function, mode)
Parameters
interrupt: the number of the interrupt (int)
function: the function to call when the interrupt occurs; this function must take no
parameters and return nothing. This function is sometimes referred to as an
interrupt service routine.
mode defines when the interrupt should be triggered. Four contstants are
predefined as valid values:

LOW to trigger the interrupt whenever the pin is low,

CHANGE to trigger the interrupt whenever the pin changes value

RISING to trigger when the pin goes from low to high,

FALLING for when the pin goes from high to low.
Returns
none
Note
Inside the attached function, delay() won't work and the value returned by millis()
will not increment. Serial data received while in the function may be lost. You

71

http://127.0.0.1:800/Default/arduino.cc/en/Reference/AttachInterrupt
http://127.0.0.1:800/Default/arduino.cc/en/Reference/DetachInterrupt

Language Reference

smraza

should declare as volatile any variables that you modify within the attached
Jfunction.

Using Interrupts

Interrupts are useful for making things happen automatically in microcontroller
programs, and can help solve timing problems. A good task for using an interrupt
might be reading a rotary encoder, monitoring user input.

If you wanted to insure that a program always caught the pulses from a rotary
encoder, never missing a pulse, it would make it very tricky to write a program to do
anything else, because the program would need to constantly poll the sensor lines for
the encoder, in order to catch pulses when they occurred. Other sensors have a
similar interface dynamic too, such as trying to read a sound sensor that is trying to
catch a click, or an infrared slot sensor (photo-interrupter) trying to catch a coin
drop. In all of these situations, using an interrupt can free the microcontroller to get
some other work done while not missing the doorbell.

Example

int pin = 13;

volatile int state = LOW;

void setup()
{
pinMode (pin, OUTPUT);
attachInterrupt (0, /blink, CHANGE)
}

void loop()

{
digitalWrite(pin, state);
}

void blink()
{

state = !state;

}

detachinterrupt()

Description

Turns off the given interrupt.

Syntax

detachInterrupt(interrupt)

Parameters

interrupt: the number of interrupt to disable (0 or 1).
See also

78

Language Reference

sSMmMirazQ

V1.0

Interrupts
interrupts()
nolnterrupts()
interrupts()

Description

Re-enables interrupts (after they've been disabled by nolnterrupts()). Interrupts
allow certain important tasks to-happen in the background and are enabled by
default. Some functions will not work while interrupts are disabled, and incoming
communication may be ignored. Interrupts can slightly disrupt the timing of code,
however, and may be disabled for particularly critical sections of code.
Parameters

None

Returns

None

Example

void setup() {}

void loop()
{
nolnterrupts () ;
// critical, time-sensitive code here
interrupts() ;
// other code here

}

nolnterrupts()

Description
Disables interrupts (you can re-enable them with interrupts()). Interrupts allow
certain important tasks to happen in the background and are enabled by default.

79

http://127.0.0.1:800/Default/arduino.cc/en/Reference/Interrupts
http://127.0.0.1:800/Default/arduino.cc/en/Reference/NoInterrupts
http://127.0.0.1:800/Default/arduino.cc/en/Reference/NoInterrupts

Language Reference

smraza

Some functions will not work while interrupts are disabled, and incoming
communication may be ignored. Interrupts can slightly disrupt the timing of code,
however, and may be disabled for particularly critical sections of code.
Parameters

None.

Returns

None.

Example

void setup() {}

void loop ()
{
nolnterrupts () ;
// critical, time-sensitive code here
interrupts() ;
// other code here

Communication

Serial
Stream

Serial

Used for communication between the Arduino board and a computer or other devices. All
Arduino boards have at least one serial port (also known as a UART or USART): Serial.
It communicates on digital pins 0 (RX) and 1 (TX) as well as with the computer via USB.
Thus, if you use these functions, you cannot also use pins 0 and 1 for digital input or
output.

80

http://127.0.0.1:800/Default/arduino.cc/en/Reference/Serial
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Stream

Language Reference

sSMmMirazQ

You can use the Arduino environment's built-in serial monitor to communicate with an
Arduino board. Click the serial monitor button in the toolbar and select the same baud
rate used in the call to begin().

The Arduino Mega has three additional serial ports: Serial1 on pins 19 (RX) and 18
(TX), Serial2 on pins 17 (RX) and 16 (TX),Serial3 on pins 15 (RX) and 14 (TX). To use
these pins to communicate with your personal computer, you will need an additional
USB-to-serial adaptor, as they are not connected to the Mega's USB-to-serial adaptor. To
use them to communicate with an external TTL serial device, connect the TX pin to your

V1.0

device's RX pin, the RX to your device's TX pin, and the ground of your Mega to your
device's ground. (Don't connect these pins directly to an RS232 serial port; they operate
at +/- 12V and can damage your Arduino board.)

The Arduino Leonardo board uses Serial1 to communicate viaRS232 on pins 0 (RX) and
1 (TX). Serial is reserved for USB CDC communication. For more information, refer to

the Leonardogetting started page and hardware page.
Functions

if (Serial

available()
begin()
end()
find()
findUntil()
flush()

parseFloat()
parselnt()
peek()
print()
println()
read()
readBytes()

readBytesUntil()
setTimeout()

write()

serialEvent()

Examples

ReadASCIIString

ASCII Table
Dimmer
Graph

Physical Pixel
Virtual Color Mixer

Serial Call Response

Serial Call Response ASCII

81

http://arduino.cc/en/Main/ArduinoBoardMega2560
http://arduino.cc/en/Guide/ArduinoLeonardo
http://arduino.cc/en/Main/ArduinoBoardLeonardo
http://arduino.cc/en/Serial/IfSerial
http://arduino.cc/en/Serial/Available
http://arduino.cc/en/Serial/Begin
http://arduino.cc/en/Serial/End
http://arduino.cc/en/Serial/Find
http://arduino.cc/en/Serial/FindUntil
http://arduino.cc/en/Serial/Flush
http://arduino.cc/en/Serial/ParseFloat
http://arduino.cc/en/Serial/ParseInt
http://arduino.cc/en/Serial/Peek
http://arduino.cc/en/Serial/Print
http://arduino.cc/en/Serial/Println
http://arduino.cc/en/Serial/Read
http://arduino.cc/en/Serial/ReadBytes
http://arduino.cc/en/Serial/ReadBytesUntil
http://arduino.cc/en/Serial/SetTimeout
http://arduino.cc/en/Serial/Write
http://arduino.cc/en/Reference/SerialEvent
http://arduino.cc/en/Tutorial/ReadASCIIString
http://arduino.cc/en/Tutorial/ASCIITable
http://arduino.cc/en/Tutorial/Dimmer
http://arduino.cc/en/Tutorial/Graph
http://arduino.cc/en/Tutorial/PhysicalPixel
http://arduino.cc/en/Tutorial/VirtualColorMixer
http://arduino.cc/en/Tutorial/SerialCallResponse
http://arduino.cc/en/Tutorial/SerialCallResponseASCII

Language Reference

sMMraza
1 if (Serial)

V1.0

Description

Indicates if the specified Serial port is ready.

On the Leonardo, if (Serial) indicates wether or not the USB CDC serial connection is
open. For all other instances, including if (Serial1) on the Leonardo, this will always
returns true.

This was introduced in Arduino 1.0.1.

Syntax

All boards:

if (Serial)

Arduino Leonardo specific:

if (Serial1)

Arduino Mega specific:

if (Serial1)

if (Serial2)

if (Serial3)

Parameters

none

Returns

boolean : returns true if the specified serial portis available. This will only return false if
querying the Leonardo's USB CDC serial connection before it is ready.

Example:

void setup () {
//Initialize serial and wait for port to open:
Serial.begin (9600) ;
while (!Serial) {

; // wait for .serial port to connect. Needed for Leonardo only

void loop () {
//proceed normally
}

2 available()

Description

Get the number of bytes (characters) available for reading from the
serial port. This is data that’s already arrived and stored in the

serial receive buffer (which holds 64 bytes). available() inherits

from the Stream wutility class

82

http://arduino.cc/en/Reference/Stream

Language Reference
o sSMMrQazQ
Syntax
Serial. available ()
Arduino Mega only:
Seriall. available ()
Serial2. available ()
Serial3. available ()
Parameters
none
Returns
the number of bytes available to read
Example
int incomingByte = 0; // for incoming serial data

void setup () {

Serial.begin (9600) ; // ©pens serial .port, sets data
rate to 9600 bps
}

void loop () {

// send data only when you receive data:
if (Serial.awvailable() > 0) {
//. read the incoming byte:

incomingByte = Serial.read();

// say what you got:
Serial.print ("I received: ");

Serial.println(incomingByte, DEC) ;

Get Code
Arduino Mega example:
void setup () {
Serial.begin (9600) ;
Seriall.begin(9600);

void loop () {
// read from port 0, send to port 1:
if (Serial.available()) {
int inByte = Serial.read();
Seriall.print (inByte, BYTE);

83

http://arduino.cc/en/Serial/Available?action=sourceblock&num=1

Language Reference

sSMmMirazQ

V1.0

}
// read from port 1, send to port O0:
if (Seriall.available()) {

int inByte = Seriall.read();

Serial.print (inByte, BYTE);

3 begin()

Description
Sets the data rate in bits per second (baud) for serial data transmission. For

communicating with the computer, use one of these rates: 300, 1200, 2400, 4800, 9600,
14400, 19200, 28800, 38400, 57600, or 115200. You can, however, specify other rates -
for example, to communicate over pins 0 and 1 with a component that requires a

particular baud rate.
Syntax
Serial.begin(speed)
Arduino Mega only:
Serial1.begin(speed)
Serial2.begin(speed)
Serial3.begin(speed)
Parameters
speed: in bits per second (baud) - long
Returns
nothing
Example:
void setup () {

Serial.begin (9600); // opens serial port, sets data
9600 bps
}

void loop () {1}

Arduino Mega example:

// Arduino Mega using all four of its Serial ports
// (Serial, Seriall, Serial?2, Serial3),

// with different baud rates:

void setup () {
Serial.begin (9600) ;
Seriall.begin (38400);
Serial2.begin(19200);
Serial3.begin (4800);

84

rate to

Get Code

http://arduino.cc/en/Serial/Begin?action=sourceblock&num=1

Language Reference
smMraza
Serial.println ("Hello Computer");
Seriall.println("Hello Serial 1");
Serial2.println("Hello Serial 2");
Serial3.println("Hello Serial 3");

void loop () {1}

Get Code
Thanks to Jeff Gray for the mega example
See also

4 end()

Description

Disables serial communication, allowing the RX and.TX pins to be used for general input
and output. To re-enable serial communication, call Serial.begin().
Syntax

Serial.end()

Arduino Mega only:

Serial1.end()

Serial2.end()

Serial3.end()

Parameters

none

Returns

nothing

5 Serial.find()

Description

Serial.find() reads data from the serial buffer until the target string of given length is
found. The function returns true if target string is found, false if it times out.
Serial.flush() inherits from the Stream utility class.

Syntax

Serial.find(target)

Parameters

target : the string to search for (char)

Returns

boolean

See als

6 Serial.findUntil()

Description

Serial.findUntil() reads data from the serial buffer until a target string of given length or
terminator string is found.

The function returns true if the target string is found, false if it times out.

85

http://arduino.cc/en/Serial/Begin?action=sourceblock&num=2
http://arduino.cc/en/Serial/Begin
http://arduino.cc/en/Reference/Stream

Language Reference

smraza

Serial.findUntil() inherits from the Stream utility class.
Syntax

Serial.findUntil(target, terminal)

Parameters

target : the string to search for (char)

terminal : the terminal string in the search (char)
Returns

boolean

See als

7 flush()

Description

Waits for the transmission of outgoing serial data to complete. (Prior to Arduino 1.0, this
instead removed any buffered incoming serial data.)
flush() inherits from the Stream utility class.
Syntax

Serial.flush()

Arduino Mega only:

Serial1.flush()

Serial2.flush()

Serial3.flush()

Parameters

none

Returns

nothing

See als

8 Serial.parseFloat()

Description

Serial.parseFloat() returns the first valid floating point number from the Serial buffer.
Characters that are not digits (or the minus sign) are skipped. parseFloat() is terminated
by the first character that is not a floating point number.

Serial.parseFloat() inherits from the Stream utility class.

Syntax

Serial.parseFloat()

Parameters

none

Returns

float

9 parseint()

Description
Looks for the next valid integer in the incoming serial stream. parseInt() inherits from
the Stream utility class.

86

http://arduino.cc/en/Reference/Stream
http://arduino.cc/en/Reference/Stream
http://arduino.cc/en/Reference/Stream
http://arduino.cc/en/Reference/Stream

Language Reference
o sSMMrQazQ
Syntax
Serial.parseInt()
Arduino Mega only:
Serial1.parseInt()
Serial2.parselnt()
Serial3.parselnt()
Parameters
none
Returns
int : the next valid integer
Example

10 peek()

Description

Returns the next byte (character) of incoming serial data without
removing it from the internal serial buffer. That is, successive calls to
peek() will return the same character, as will the next call to read().
peek() inherits from the Streamutility class.

Syntax

Serial.peek()
Arduino Mega only:
Serial1.peek()
Serial2.peek()
Serial3:peek()

Parameters
None

Returns

the first byte of incoming serial data available (or -1 if no data is
available) - int

11 print()

Description
Prints data to the serial port as human-readable ASCII text. This command can take
many forms. Numbers are printed using an ASCII character for each digit. Floats are
similarly printed as ASCII digits, defaulting to two decimal places. Bytes are sent as a
single character. Characters and strings are sent as is. For example:

Serial.print(78) gives "78"

Serial.print(1.23456) gives "1.23"

Serial.print('N") gives "N"

87

http://arduino.cc/en/Reference/Stream

Language Reference
o SMIrazQa
Serial.print("Hello world.") gives "Hello world."
An optional second parameter specifies the base (format) to use; permitted values are
BIN (binary, or base 2), OCT (octal, or base 8), DEC (decimal, or base 10), HEX
(hexadecimal, or base 16). For floating point numbers, this parameter specifies the
number of decimal places to use. For example:
Serial.print(78, BIN) gives "1001110"
Serial.print(78, OCT) gives "116"
Serial.print(78, DEC) gives "78"
Serial.print(78, HEX) gives "4E"
Serial.println(1.23456, 0) gives "1"
Serial.println(1.23456, 2) gives "1.23"
Serial.println(1.23456, 4) gives "1.2346"
You can pass flash-memory based strings to Serial.print() by wrapping them with F(). For
example :
Serial.print(F(“Hello World”))
To send a single byte, use Serial.write().
Syntax
Serial.print(val)
Serial.print(val, format)
Parameters
val: the value to print - any data type
format: specifies the number base (for integral data types) or number of decimal places
(for floating point types)
Returns
size_t (long): print() returns the number of bytes written, though reading that number is
optional
Example:
/*
Uses a FOR loop for data and prints a number in various formats.
*/

int x = 0; // variable

void setup () {
Serial.begin (9600) ; // open the serial port at 9600 bps:

void loop () {
// print labels
Serial.print ("NO FORMAT") ; // prints a label
Serial.print ("\t"); // prints a tab

Serial.print ("DEC") ;
Serial.print ("\t");

88

http://arduino.cc/en/Serial/Write

Language Reference

sSMmMirazQ

V1.0

Serial.print ("HEX") ;
Serial.print ("\t");

Serial.print ("OCT") ;
Serial.print ("\t");

Serial.print ("BIN") ;
Serial.print ("\t");

for (x=0; x< 64; x++){ // only part of the ASCII chart, change

to suit

// print it out in many formats:

Serial.print (x); // print as.an ASCIT-encoded decimal -
same as "DEC"

Serial.print ("\t"); // prints a tab

Serial.print(x, DEC); //fprint as an ASCII-encoded decimal

Serial.print ("\t"); // prints a tab

Serial.print (x, HEX); . // print<as an ASCII-encoded hexadecimal

Serial.print ("\t"); // prints a tab

Serial.print (x, OCT); *// print as an ASCII-encoded octal

Serial.print ("\t"); // prints a tab

Serial .println (x, BIN); [/ print as an ASCII-encoded binary

s then adds the carriage return with
"orintin"
delay (200) ; // delay 200 milliseconds
}
Serial.println(""); // prints another carriage return
}
Get Code

Programming Tips

As of version 1.0, serial transmission is asynchronous; Serial.print() will return before
any characters are transmitted.

See also

12 printin()

Description

Prints data to the serial port as human-readable ASCII text followed by a carriage return
character (ASCII 13, or '\r") and a newline character (ASCII 10, or "\n"). This command
takes the same forms as Serial.print().

&9

http://arduino.cc/en/Serial/Print?action=sourceblock&num=1
http://arduino.cc/en/Serial/Print

Language Reference

sSMmMirazQ

V1.0

Syntax

Serial.println(val)

Serial.println(val, format)

Parameters

val: the value to print - any data type

format: specifies the number base (for integral data types) or number of decimal places
(for floating point types)

Returns

size_t (long): println() returns the number of bytes written, though reading that number
is optional

Example:

/*
Analog input

reads an analog input on analog in 0, prints the value out.
created 24 March 2006

by Tom Igoe

*/

int analogValue = 0; // variable to hold the analog value

void setup () {
// open the serial port at. 9600 bps:
Serial.begin (9600);

void loop () {
// read the analog input on pin 0:
analogValue = analogRead(0) ;

// print it out in many formats:

Serial.println (analogValue) ; // print as an ASCII-encoded
decimal

Serial.println(analogValue, DEC); // print as an ASCII-encoded
decimal

Serial.println(analogValue, HEX); // print as an ASCII-encoded
hexadecimal

Serial.println (analogValue, OCT); // print as an ASCII-encoded
octal

Serial.println (analogValue, BIN); // print as an ASCII-encoded
binary

90

Language Reference

smraza

// delay 10 milliseconds before the next reading:
delay (10);

Get Code

See also

13 read()

Description

Reads incoming serial data. read() inherits from the Stream utility class.
Syntax

Serial.read()

Arduino Mega only:

Serial1.read()

Serial2.read()

Serial3.read()

Parameters

None

Returns

the first byte of incoming serial data available (or -1 if no data is available) - int
Example

int incomingByte = O0; //. for incoming serial data

void setup () {

Serial.begin (9600); // ‘opens serial port, sets data
rate to 9600 bps
}

void loop () {

// send data .only when you receive data:
if (Serial.available() > 0) {
// read the incoming byte:

incomingByte = Serial.read();
// say what you got:

Serial.print ("I received: ");

Serial.println (incomingByte, DEC);

91

http://arduino.cc/en/Serial/Println?action=sourceblock&num=1
http://arduino.cc/en/Reference/Stream
http://arduino.cc/en/Serial/Read?action=sourceblock&num=1

Language Reference

SMmMrazQa
14 Serial.readBytes()

V1.0

Description

Serial.readBytes() reads characters from the serial port into a buffer. The function
terminates if the determined length has been read, or it times out

(see Serial.setTimeout()).

Serial.readBytes() returns the number of characters placed in the buffer. A 0 means no
valid data was found.

Serial.readBytes() inherits from the Stream utility class.

Syntax

Serial.readBytes(buffer, length)

Parameters

buffer: the buffer to store the bytes in (char[] or byte[])

length : the number of bytes to read (int)

Returns

byte

See

15 Serial.readBytesUntil()

Description

Serial.readBytesUntil() readscharacters from the serial buffer into an array. The function
terminates if the terminator character is detected, the determined length has been read,
or it times out (see Serial.setTimeout()).

Serial.readBytesUntil() returns the number of characters read into the buffer. A 0 means
no valid data was found.

Serial.readBytesUntil() inherits from the Stream utility class.

Syntax

Serial.readBytesUntil(character, buffer, length)

Parameters

character : the character to search for (char)

buffer: the buffer to store the bytes in (char[] or byte[]) length : the number of bytes to
read (int)

Returns

byte

See

16 Serial.setTimeout()

Description

Serial.setTimeout() sets the maximum milliseconds to wait for serial data when
using Serial.readBytesUntil() orSerial.read Bytes(). It defaults to 1000 milliseconds.
Serial.setTimeout() inherits from the Stream utility class.

Syntax

Serial.setTimeout(time)

92

http://arduino.cc/en/Serial/SetTimeout
http://arduino.cc/en/Reference/Stream
http://arduino.cc/en/Serial/SetTimeout
http://arduino.cc/en/Reference/Stream
http://arduino.cc/en/Serial/ReadBytesUntil
http://arduino.cc/en/Serial/ReadBytes
http://arduino.cc/en/Reference/Stream

Language Reference

sSMmMirazQ

V1.0

Parameters

time : timeout duration in milliseconds (long).
Parameters

None

See a

17 write()

Description
Writes binary data to the serial port. This data is sent as a byte or
series of bytes; to send the characters representing the digits of a
number use the print() function instead.
Syntax
Serial.write(val)
Serial.write(str)
Serial.write (buf, len)
Arduino Mega also supports: Seriall, Serial2, Serial3 (in place of
Serial)
Parameters
val: a value to send as a single byte
Str: a string to send as a series of bytes
buf: an array to send as a series of .bytes
len: the length of the buffer
Returns
byte
write() will return the number of bytes written, though reading that
number is /optional
Example
void setup () {
Serial.begin (9600) ;

void loop () {
Serial.write(45); // send a byte with the value 45

int bytesSent = Serial.write(“hello”); //send the string “hello”
and return the length of the string.
}

18 serialEvent()

Description
Called when data is available. Use Serial.read() to capture this data.
Syntax

void serialEvent () {

93

http://arduino.cc/en/Serial/Print

Language Reference

V1.0

sSMmMirazQ

//statements

}

Arduino Mega only:

void serialEventl () {
//statements

}

void serialEvent2 () {
//statements

}

void serialEvent3 () {
//statements

}

Parameters
statements: any valid statements

ReadASCIIString

ASCII Table
Dimmer

Graph

Physical Pixel
Virtual Color Mixer

Serial Call Response

Serial Call Response ASCII

Get Code

Get Code

Examples

Read ASCII String
This sketch uses the Serial.parselnt() function to locate values

separated by a non—alphanumeric character. Often people use a comma
to indicate different pieces of information (this format is commonly
referred to as comma-separated—values), but other characters like a
space or a period will work too. The values are parsed into ints and
used to determine the color of a RGB LED. You 11 use the serial
monitor to send strings like 75, 220, 70” to the Arduino to change the

lights.
Hardware Required

Arduino Board
Breadboard

Hookup wire

Common anode RGB LED
Three 220-ohm resistors

94

http://arduino.cc/en/Reference/SerialEvent?action=sourceblock&num=1
http://arduino.cc/en/Reference/SerialEvent?action=sourceblock&num=2
http://arduino.cc/en/Tutorial/ReadASCIIString
http://arduino.cc/en/Tutorial/ASCIITable
http://arduino.cc/en/Tutorial/Dimmer
http://arduino.cc/en/Tutorial/Graph
http://arduino.cc/en/Tutorial/PhysicalPixel
http://arduino.cc/en/Tutorial/VirtualColorMixer
http://arduino.cc/en/Tutorial/SerialCallResponse
http://arduino.cc/en/Tutorial/SerialCallResponseASCII
http://arduino.cc/en/Reference/ParseInt

Language Reference

sSMmMirazQ

V1.0

Circuit

SCL
SDA
AREF
GND

= L

& & & & & & & 8 & & B B
* 8 8 8 88 880 8RS8
& 5 & 8 & B & 8 B & B8 BB
* 8 8 8 &8 888 888

a5 & & 8 5 8 8 88 80

a & & & & & & B & B BB

a8 8 & 8 8 88 880

s & 8 & 5 & & 5 & 8 8 B

a8 8 88 8888800

;

=

¥
KL

- n
PN —
PW= =
PIVM @

o

IOREF

: :l?U‘]

FWM
PWM

PWM

TX
RX =

® noom ONN ouinpuy

® & & & & % & & & B % B B B
LR BN BN NN BN DN BN B O BN DN B BN
& & 5 & 5 & B B BB B 8B
LEE I I B I I O O O B
& 8 5 8 88888 s
& 8 8 8 8 88888888
. & & & 8 % & 5 B 8 % 8 B B
s 8 8 88 8880888880

image developed using JFritzing. For more circuit examples, see the Fritzing project page

You' 11 need five wires to make the cirguit above. Connect a red wire
to one of the long vertical rows on your breadboard. Connect the
other end /to the 5V pin on your Arduino.

Place an RGB LED on your breadboard. Check the datasheet for your
specific LED to werify. the pins. Connect the power rail you just
created to the common anode on the LED.

With your remaining wires, connect your red cathode to pin 3, green
cathode to pin 5, and blue cathode to pin 6 in series with the
resistors.

RGB LEDs with a common anode share a common power pin. Instead of
turning a pin HIGH to illuminate the LED, you need to turn the pin
LOW, to create a voltage difference across the diode. So sending 255
via analogWrite() turns the LED off, while a value of 0 turns it on
at full brightness. In the code below, you 11 use a little bit of
math on the Arduino side, so you can send values which correspond to
the expected brightness. Essentially, instead of using

analogWrite (pin, brightness), you 11 be calling analogWrite (pin, 255-
brightness).

95

http://www.fritzing.org/
http://fritzing.org/projects/
http://arduino.cc/en/uploads/Tutorial/readASCIIString_bb.png

Language Reference

sSMmMirazQ

V1.0

Code
You’ 11 first set up some global variables for the pins your LED

will connect to. This will make it easier to differentiate which one
is red, green, and blue in the main part of your program:

const int redPin = 3;

const int greenPin = b;

const int bluePin = 6;

In your setup(), begin serial communication at 9600 bits of data per
second between Arduino and your computer with the line:
Serial. begin (9600) ;

Also in the setup, you’ 11 want to configure the pins as outputs:
pinMode (redPin, OUTPUT) ;\\ pinMode (greenPin, -OUTPUT) ;

pinMode (bluePin, OUTPUT) ;

In the loop(), check to see if there is.any data in.the serial
buffer. By making this a while() statement, it will run as long as
there is information waiting to be read :

while (Serial.available() > 0) {

Next, declare some local variables for storing the‘serial
information. This will be the brightness of the LEDs.

UsingSerial. parselnt () to separate the.data by commas, read the

information into your wvariables:

int red = Serial.parselnt():\\ int green = Serial.parselnt();

int blue = Serialsparselnt();

Once you’ ve read the data into your variables, check for the newline
character to proceed:

if (Serialiread() ==’\n") {

Using ~constrain(), you can keep the values in an acceptable range
for PWM control.. This way, if the value was outside the range of what
PWM can send, it will be limited to a valid number. By subtracting
this value from 255 you will be formatting the value to use with a
common anode LED. As explained above, these LEDs will illuminate
when there is«a voltage difference between the anode and the pin
connected to the Arduino:

red = 255 — constrain(red, 0, 255);

green = 255 — constrain(green, 0, 255);

blue = 255 — constrain(blue, 0, 255):

Now that you have formatted the values for PWM, use analogWrite() to
change the color of the LED. Because you subtracted your value from
255 in the step above:

analogWrite (redPin, red);

analogWrite (greenPin, green);

analogWrite (bluePin, blue);

Send the value of each LED back to the serial monitor in one string
as HEX values :

96

http://arduino.cc/en/Reference/Scope
http://arduino.cc/en/Reference/Setup
http://arduino.cc/en/Reference/Loop
http://arduino.cc/en/Reference/While
http://arduino.cc/en/Serial/ParseInt
http://arduino.cc/en/Reference/Constrain
http://arduino.cc/en/Reference/AnalogWrite

Language Reference

o sSMMIrQazQa
Serial. print (red, HEX);
Serial. print (green, HEX) :
Serial.println(blue, HEX);
Finally, close up your brackets from the if statement, while
statement, and main loop

}
}
}

Once you have programmed the Arduino, open your Serial minitor. Make
sure you have chosen to send a newline character when sending a
message. Enter values between 0-255 for the lights in the following
format : Red, Green, Blue. Once you have sent the values to the
Arduino, the attached LED will turn the color you specified, and you
will receive the HEX values in the serial. monitor.

/*

Reading a serial ASCII-encoded string.

This sketch demonstrates the Serial parselnt () function.
It looks for an ASCII string of comma-separated wvalues.

It parses them into ints, and uses those to fade an RGB LED.

Circuit: Common-anode RGB LED wired like so:
* Red cathode: digital pin 3

* Green cathode: digital pin 5

* blue cathode: digital pin. 6

* anode:/+5V

created 13 Apr. 2012
by Tom Igoe

This example code 1is in the public domain.

*/

// pins for the LEDs:

const int redPin = 3;
const int greenPin = 5;
const int bluePin = 6;

void setup () {
// initialize serial:
Serial.begin (9600) ;
// make the pins outputs:
pinMode (redPin, OUTPUT) ;
pinMode (greenPin, OUTPUT) ;

97

http://arduino.cc/en/Reference/If

Language Reference
sSmMrazQ

V1.0
pinMode (bluePin, OUTPUT) ;

void loop () {
// 1f there's any serial available, read it:
while (Serial.available() > 0) {

// look for the next valid integer in the incoming serial stream:
int red = Serial.parselnt();

// do it again:

int green = Serial.parselInt();

// do it again:

int blue = Serial.parselInt();

// look for the newline. That's the end of your
// sentence:
if (Serial.read() == '\n') {
// constrain the values to 0. - 255 and invert
// 1f vyou're using ‘a common-cathode LED, just use
"constrain(color, 0, 255) ;"
red = 255 - constrain(red, 0, 255);
green = 255.- constrain(green, 0, 255);
blue = 255 = constrain(blue, 0, 255);

// fade the red, green, and blue legs of the LED:
analogWrite (redPin, xred).;
analogWrite (greenPin, green);

analogWrite(bluePin, blue);

// print the three numbers in one string as hexadecimal:
Serial.print(red, HEX);

Serial.print (green, HEX);

Serial.println (blue, HEX);

ASCII Table
Demonstrates the advanced serial printing functions by generating a table of characters
and their ASCII values in decimal, hexadecimal, octal, and binary. For more on ASCII,
see asciitable.com
Hardware Required
Arduino Board

98

Language Reference

sSMmMirazQ

V1.0
Circuit

Arduino = Furg,

image developed using Fritzing. For more circuit examples, see the Fritzing project page
None, but the Arduino has to be connected to the computer.
Code
/ *
ASCII table

Prints out byte values in all possible formats:
* as raw binary values

* as ASCII-encodedidecimal, hex, octal, and binary values

For more on ASCIT, see ht;p://www.asciitable.com and
http://en.wikipedia.org/wiki/ASCIT

The circuits: No external hardware needed.

created 2006

by Nicholas Zambetti
modified 9 Apr 2012
by Tom Igoe

This example code is in the public domain.
<http://www.zambetti.com>

*/
void setup () {
//Initialize serial and wait for port to open:
Serial.begin (9600) ;
while (!Serial) {

; // wait for serial port to connect. Needed for Leonardo only

99

http://www.fritzing.org/
http://fritzing.org/projects/
http://arduino.cc/en/uploads/Tutorial/Arduino_bb.png

Language Reference

sSMmMirazQ

V1.0

// prints title with ending line break
Serial.println ("ASCII Table ~ Character Map");

// first visible ASCIIcharacter '!' is number 33:

int thisByte = 33;

// you can also write ASCII characters in single quotes.

// for example. '!' is the same as 33, so you could also use this:
//int thisByte = '!';

void loop () {
// prints value unaltered, i.e. the raw binary version of the
// byte. The serial monitor interprets all bytes as
// ASCII, so 33, the first number, < will show up as.'!'
Serial.write (thisByte);

Serial.print (", dec: ");

// prints value as string as an.ASCII-encoded decimal (base 10).

// Decimal 1is the default format for Serial.print() and
Serial.println(),

// so no modifier/is needed:

Serial.print (thisByte);

// But you can declare the modifier for decimal if you want to.

//this also works 1f you uncomment it:

// Serial.print (thisByte, DEC);

Serial.print (", hex: ");
// prints value as string in hexadecimal (base 16):
Serial.print (thisByte, HEX);

Serial.print (", oct: ");
// prints value as string in octal (base 8);
Serial.print (thisByte, OCT);

Serial.print (", bin: ");

// prints value as string in binary (base 2)
// also prints ending line break:
Serial.println (thisByte, BIN);

// 1f printed last visible character '~' or 126, stop:
if (thisByte == 126) { // you could also use if (thisByte ==

100

Language Reference

sSMmMirazQ

V1.0

~r) o
// This loop loops forever and does nothing
while (true) {

continue;

}

// go on to the next character
thisByte++;

Get Code
Output
ASCII Table "~ Character Map
', dec: 33, hex: 21, oct: 41, bin
4, decuASCII Table =~ Character Map
', dec: 33, hex: 21, oct: 41, bin: 100001
7 dec: 34, hex: 22, oct: 42, bin: 100010
#, dec: 35, hex: 23, oct: 43, bin: 100011
$, dec: 36, hex: 24, oct: 44, bin: 100100
%, dec: 37, hex: 25, oct: 45, bin: 100101
&, dec: 38, hex: 26, oct: 46, bin: 100110
* dec: 39, hex: 27, oet: 47, bin: 100111
(, dec: 40, hex: 28, ‘oct: 50, bin: 101000
), dec: 41, hex: 29, oct: 51, bin: 101001
% dec: 42, hex: 27, oct: 52, bin: 101010
+, dec: 43, hex: 2B, oect: 53, ‘bin: 101011
,, dec: 44, hex: 2C, ‘oct: b4, bin: 101100
—, dec: 745, hex: 2D, oct: 55, bin: 101101
., dec: 46, hex: 2E, oct: 56, bin: 101110
dec: 47, hex: 2F, oct: 57, bin: 101111
dec: 48, hex: 30, oct: 60, bin: 110000
dec: 49, hex: 31, oct: 61, bin: 110001
dec: 50, hex: 32, oct: 62, bin: 110010
dec: 51, hex: 33, oct: 63, bin: 110011
dec: 52, hex: 34, oct: 64, bin: 110100
dec: 53, hex: 35, oct: 65, bin: 110101
dec: 54, hex: 36, oct: 66, bin: 110110
dec: 55, hex: 37, oct: 67, bin: 110111
dec: 56, hex: 38, oct: 70, bin: 111000
dec: 57, hex: 39, oct: 71, bin: 111001
dec: 58, hex: 3A, oct: 72, bin: 111010
dec: 59, hex: 3B, oct: 73, bin: 111011
dec: 60, hex: 3C, oct: 74, bin: 111100
dec: 61, hex: 3D, oct: 75, bin: 111101
dec: 62, hex: 3E, oct: 76, bin: 111110

- - - -

-

\/wnw/\:ww@woo“\]g:wmﬁxmeO\

-

101

http://arduino.cc/en/Tutorial/ASCIITable?action=sourceblock&num=1

Language Reference

sSMmMirazQ

V1.0

?, dec: 63, hex: 3F, oct: 77, bin: 111111
@, dec: 64, hex: 40, oct: 100, bin: 1000000
A, dec: 65, hex: 41, oct: 101, bin: 1000001
B, dec: 66, hex: 42, oct: 102, bin: 1000010
C, dec: 67, hex: 43, oct: 103, bin: 1000011
D, dec: 68, hex: 44, oct: 104, bin: 1000100
E, dec: 69, hex: 45, oct: 105, bin: 1000101

-

Dimmer

This example shows how to send data from a personal computer to an Arduino board to
control the brightness of an LED. The data is sent in individual bytes, each of which
ranges in value from 0 to 255. Arduino reads these bytes and uses them to set the
brightness of the LED.
You can send bytes to the Arduino from any software that can access the computer serial
port. Examples for Processingand Max/MSP version 5 are shown below.
Hardware Required

Arduino Board

LED

220 ohm resistor

Software Required
Processing or
Max/MSP version 5
Circuit
An LED connected to pin 9. Use an appropriate re§istor as needed. For most

common LEDs, you can usually do without the resistor, as the current output of the
digital I/0 pins is limited.

click the image to enlarge

www-arduino-cc

-
8o POUER anacos v @
H25vGnd v D12345

image developed using Fritzing. For more circuit examples, see the Fritzing project page

102

http://www.processing.org/
http://www.cycling74.com/products/max5
http://www.processing.org/
http://www.cycling74.com/products/max5
http://www.fritzing.org/
http://fritzing.org/projects/
http://arduino.cc/en/uploads/Tutorial/dimmer-circuit3.png

Language Reference
smMraza
Schematic

click the image to enlarge

3vV3 5V Vin
Power
RAST D13 e

Arduing’l

=i AREF D12 o

Arduino G S

P

P "M

:E:L D8
S b7
=
2
£ Ds
=
— =)
A0 2 os
— A1 D4
z
— A2 D Da
&
s L D2
2
—_— o=
— o R
GND
%
Code
J*
Dimmer

Demonstrates the sending data from_ the computer to the Arduino
board,

in this /case to control the brightness of an LED. The data 1is
sent

in individual bytes, each of which ranges from 0 to 255. Arduino

reads these bytes and uses them to set the brightness of the LED.

The circuit:
LED attached from digital pin 9 to ground.
Serial connection to Processing, Max/MSP, or another serial

application

created 2006

by David A. Mellis

modified 30 Aug 2011

by Tom Igoe and Scott Fitzgerald

This example code is in the public domain.

http://www.arduino.cc/en/Tutorial/Dimmer

103

http://arduino.cc/en/uploads/Tutorial/simplefade_pin9_schem.png

Language Reference

sSMmMirazQ

V1.0

*/

const int ledPin = 9; // the pin that the LED is attached to

void setup ()

{
// initialize the serial communication:
Serial.begin (9600) ;
// initialize the ledPin as an output:
pinMode (1ledPin, OUTPUT) ;

void loop () {
byte brightness;

// check if data has been sent from the computer:
if (Serial.available()) {
// read the most recent byte (which will be from 0 to 255):
brightness = Serial.read();
// set the brightness of the LED:
analogWrite (ledPin, brightness)s

/* Processing code for this example
// Dimmer —»sends bytes over a serial port
// by-David A. Mellis

//This example,code is in the public domain.

import processing.serial.*;

Serial port;

void setup() {
size (256, 150);

println ("Available serial ports:");

println (Serial.list());

// Uses the first port in this list (number 0). Change this to
// select the port corresponding to your Arduino board. The last
// parameter (e.g. 9600) is the speed of the communication. It
// has to correspond to the value passed to Serial.begin() in your
// Arduino sketch.

port = new Serial (this, Serial.list()[0], 9600);

104

Language Reference

sSMmMirazQ

V1.0

// If you know the name of the port used by the Arduino board, you
// can specify it directly like this.

//port = new Serial (this, "COM1", 9600);

}

void draw() |

// draw a gradient from black to white
for (int 1 = 0; 1 < 256; 1++) {
stroke (1) ;

line(i, 0, i, 150);

}

// write the current X-position of the mouse to.the serial port
as

// a single byte

port.write (mouseX) ;

}

*/

/* Max/MSP v5 patch for this examplé

1008.30cuXszaiaCD9r8uhAS5rqgAeHIa0aAMaAVE1S6hdoYQAsSDIL6JQZHQZM
YWr+2KeX4vjnjXKKkKhhiGO9MeyCNz+X9rnMp63sQvuB+MLal010alSjUvrC
ymEUytKuh05TKIWUWyk 5nE9eSyuS6jesvHu4F4MxOuUzB6X57s PKWVzBLX1 P
xZtGjeg2vafaal0.BzJfjj.p82PukazsQvpfcpFs8mXR3plh8BoBxURIOWyK
rxspZ0YI.eTCEhSVqp+wGtEXZMKe6CZc3yWZwTdCmYW. BBkdiby8vO0r+ST. W
sD9SdUkn8FYspPbqvnBNFtZWiUyLmledWoOvuKzeuj2vpJLaWA7YiE7wREu1
FpDFDplKcbhbAFcP55JoVxp4NB5Jg40ougIDxJt1wo3GDZHINOoCKhi IEXX+0OWV
AdOEAksDs .RRrOowwlArc. SRvN2J9tamwjkcgknvAEOL+8WnjHgreNet 8whK
zbmukIK4d+Xknv3jstvJs8EirMMhxsZIusET25jXbX8xczI15xPVxhPcTGFu
XNDu9rXtUCg37g908Yc+EuofI¥Ymg8Q0dkPCrOnXsaHwYs3rWx9PGsO+pqueG2
UNOBQWFh1X7q0G+3. VHCHr fO1nyR2T1qpTMIMDS LKNCQVz 6KO. +Sfc571Yk 7
Jzkn2jwNDRP7LVb3d9LtoWBAONVvBI92Le6yRmZ4UF7YpQhiFi7A5Ka8zXhKdA
4r9TRGG7V4CO1SbAJKAXrWNhhFOhNUh 7uBa4Mba017JUK+omjDMwkSn95Izr
TOwkdp7W.o0PRmNRQsiKeu4j3CkfVgt.NYPEYgQMGvvJ48vI1PiyzrIuZskWwIS
xXGIPcmPiWOfLodybH3wj PbMYwlbFIMNHPHFOt LBNaLSa9sGk1TxMzCX5KTa6
WIH20cxSdngMOQPqFRxyPHEsprrhGc9Gy9xoBjz0ONWAR2yW9DUaZF857G2v9
FgT0408qiC7fzzQNpmNpsY3BrYPVJIBMJQ1uVmoIt RhwINrVGO3INMNzYZ+2zS57
SWTvTOnUydG5kHMKLQAO] Te 7fN2bGSx0ZDkMrBrGQ9J1gONBEy0k4gVo8gHc
cxmfxVihWz6a3yqY9NazzUYkua9UnynadOtog. JfsVGRVNEbWF8I+eHtcwJ
+wLXqZeSAWLo+FQF6731Tva0OBISKTx.cLwmgJsUTTvkglYsnXmxDge.CDR7x
D6YmX6fMznaF7kdczmJXwm.XSOOrdoHhNA7GMiZYLZZR. +41conMaJP6J0Z8

105

Language Reference

smraza

ftCslYWHZI30.sIXezX51hMSuXzZtk3ailmXRSczoCS32hAydeyXNEu5SHyS
xqZqbd3ZLderaliPqYxOm++v7SUSz

[Get Code]

Processing Code

The Processing sketch in the code sample above will send bytes out the serial port to the
Arduino to dim the LED.

Max code

The Max/MSP patch in the code sample above looks like the image below. Copy it and
paste it into a new patch window.

Dimmer

This patch sends a binary number from 0 to 255 out the serial
port to an Arduino connected to the port. It dims an LED
attached to the Arduino.

created 2006

by Dawvid A, Mellis

modified 14 Apr 2000

by Scott Fitzgerald and Tom lgoe

change the slider to
alter the brightness

of the LED Click to start

select o] 1_

print Click here to get a list of serial ports
3
T
port a click here to open the serial port
i
close click here to close the serial port

serial a 9600 _

Graph

This example shows you how to send a byte of data from the Arduino to a personal
computer and graph the result. This is called serial communication because the
connection appears to both the Arduino and the computer as a serial port, even though it
may actually use a USB cable.
You can use the Arduino serial monitor to view the sent data, or it can be read by
Processing (see code below), Flash, PD, Max/MSP, etc.
Hardware Required

Arduino Board

Analog Sensor (potentiometer, photocell, FSR, etc.)
Software Required

Processing or
Max/MSP version 5

106

http://arduino.cc/en/Tutorial/Dimmer?action=sourceblock&num=1
http://www.processing.org/
http://www.cycling74.com/products/max5
http://arduino.cc/en/uploads/Tutorial/maxDimmer.png

Language Reference

sSMmMirazQ

V1.0

Circuit
Connect a potentiometer or other analog sensor to analog input o.

click the image to enlarge

SEL

PUR

wwwearduino.cc

-
Bm POUER wiacoc n @
o

WSV Gnd Y D L2345

image developed using Fritzing. For more circuit examples, see the Fritzing project page
Schematic v

click the image to enlarge

I Arduino1
V3 sV Vin
Power
—— RsT D13 f—
— AREF D12 fre
Arduino on L
w2 Do =
P
L DQ e
1 S DB fe
g
% D7 |
£ D8 P
=
E Pun
Al g D5 fr—
— a1 D4 e
= Py
e D3
&
— A3 3 D2 |
b=}
—_— g 5 D1 ek
— a5 po 2
GND

Code
/ *
Graph

107

http://www.fritzing.org/
http://fritzing.org/projects/
http://arduino.cc/en/uploads/Tutorial/graph-circuit3.png
http://arduino.cc/en/uploads/Tutorial/AnalogReadSerial_sch.png

Language Reference

sSMmMirazQ

V1.0

A simple example of communication from the Arduino board to the
computer:

the value of analog input 0 is sent out the serial port. We call
this "serial"

communication because the connection appears to both the Arduino
and the

computer as a serial port, even though it may actually use

a USB cable. Bytes are sent one after another (serially) from the
Arduino

to the computer.

You can use the Arduino serial monitor to view the sent data, or
it can

be read by Processing, PD, Max/MSP, or any other<program capable
of reading

data from a serial port. The Processing code below graphs the
data received

so you can see the value of the analog input changing over time.

The circuit:

Any analog input sensor is attached to analog in pin 0.

created 2006

by David A. Mellis

modified/9 Apr 2012

by Tom Igoe and.Scott Fitzgerald

This' example code 1is in the public domain.

http://www.arduino.cc/en/Tutorial/Graph
*/

void setup () {
// initialize the serial communication:
Serial.begin (9600) ;

void loop () {
// send the value of analog input 0:
Serial.println (analogRead (A0)) ;
// wait a bit for the analog-to-digital converter
// to stabilize after the last reading:
delay(2);

108

Language Reference
smMraza
}

/* Processing code for this example

// Graphing sketch

// This program takes ASCII-encoded strings

// from the serial port at 9600 baud and graphs them. It expects
values in the

// range 0 to 1023, followed by a newline, or newline and carriage

return

// Created 20 Apr 2005
// Updated 18 Jan 2008
// by Tom Igoe

// This example code is in the public domain.
import processing.serial.*;

Serial myPort; // The serial port
int xPos = 1; // horizontal position of the graph

void setup () |
// set the window size:
size (400, 300) ;

// List all the available serial ports

printiln (Serial.list());

// I know that the first port in the serial 1list on my mac
// is always my Arduino, so I open Serial.list()[0].

// Open whatever port 1is the one you're using.

myPort = new Serial (this, Serial.list()[0], 9600);

// don't generate a serialEvent() unless you get a newline
character:

myPort.bufferUntil ('\n'");

// set inital background:

background (0) ;

}

void draw () {

// everything happens in the serialEvent ()

}

void serialEvent (Serial myPort) {

109

Language Reference

sSMmMirazQ

V1.0

// get the ASCII string:
String inString = myPort.readStringUntil('\n'),

if (inString != null) |

// trim off any whitespace:

inString = trim(inString);

// convert to an int and map to the screen height:
float inByte = float (inString);

inByte = map(inByte, 0, 1023, 0, height) ,

// draw the line:
stroke (127,34,255) ;
line (xPos, height, xPos, height - inByte);

// at the edge of the screen, go back to the beginning:
1f (xPos >= width) {

xPos = 0;

background(0) ;

}

else |

// increment the hordzontal position:
xXPos++;

}

}

}

*/

/* Max/MSP v5 patech for this example

1591.30c0YszbaaCD9r7uBL5RalQUAO3CvdyS5zVenWzxs5NcfHgjPCIfJIT
RTxj+6A0HkoTRooroUsOAQPR73a+1cwtRK3WtZxzEpOwqlB9YveAIL4KWMYh6
Q1GL099ISKXedMmU451 zTUQAWPmMNy +NM+SZ2y+sR1102JuU9t 0hJvF1NcMPy
dOuBv.US5Rgb0LPpRpYBooM35291atArTUVvzZdFPtsXAuDrrTU. f.sBffXxL
VGE501TIHkUVJIXq3fRtdaoDvjYfbgjujaFJSCzqg4.tLaN.biltJefWpgbOOuz
1IjIABoluxrJlguxh2JfPO2B5zRNyBCLDFcgbwNvuvI9fHCb8bvevyyEU2JKT
YhkBSWPAfq2TZ6YhgqmuMUoOfeUn+rYpY4YtY+cFw31UJdCMYAapZqzwUHX8S
crjAd+SIOU6UBAwIygy.Ql+HAAIKHOEVveWOFQ11itUK92ehfal 9kFhUxJ3tWc
sgpxadigWExbtlo7Ps5dk3yttivyg20W0VeSmglG90qtx92rAZbH4ez. ruyl
nhmaDPidEQ7J+5n2sg6E60KXxUSmc2006E3SPRDbrkXnPGUYE . 15nCNBI9TxQ
7G.GOKCTZtH88f0 7Rt 0ZMMWUw8VVbKVAaTk 6GyoraPdZff7rQTejBN541gyv
HEQFt7AvIvvgvIw023jBdUKYOuSvIFSiNcjFhiSsUBwsUChlAgfNSBAeNDBZ
DIDQY.f8.YjfjVIHANOXDTxyNFYatVTkKx3kcK9GraZpI5jv7GOx+Z37Xh82
LSKHIDmDXaESoXRngIZQDKVKkpxUKMCyXCQOhcCKlz.G457g13TzMz4RFD515F

110

Language Reference

smraza

G3bIQQwcP3SOF(0z1kGhiCBQl1kOHHFF1XaEBQIQnCwvI9QF1LxPZ.A4jR5cyQs
VbVvHMJIsL1101We+rE2LazX6zYmCraRrsPFwKglANBZFY.IA1hr80x.aHO00AL
hB8nQVwOFSJiZeunOykbT6t3r.NP8.1iL+bnwNiXuVMNIJHIHIYCm8 9CFXPBER
bz422p8.04dg6kRxdy jDGQRWMIHTbT3QFLskxJ8tbmQK4tm0OXGeZWEF 7wKKtYY
aTAF.XPNFaaQBinQMJ4QLFO0aNHFO0JtYuHSxoUZfZY6.UU2ejJTbhb81Qw8Fo5k
Rv6e2PI+fOM7102ecY1VgTYdCSxxUqLokuYq9jYJi61lxPgD2NIPePLBOmwbG
YA9Rgxdiulkb5xiL1SU6JVnxéwzg3sYHwTesB8Z5D7RiGZpXyvDNJY.DQX3.H
hvmcUN4bPlyCkhpTle2P37jtBsKrLWcMScEmltOPv22ZfAqQQAdKr 9HZzATQwWZ
ql8PrUGt6Tst2XMCRUfGuhXs6ccn23Y1loomMgcTiC5iMGPsHsSHRWhWF1aenV
XcqwgCQiGGIzptyS2ZMODBz6£fGza0bzmXBj 7+DA94bvpROIMf fAIueO7HwcI
PWCwmzJdvi9ILgf1LAFmyXB60O7MLOYbD261lenmcGxjVsZUN+A6pUK7At TrPg
M+eRYG0qD974I7eEbco8Xh6WcO.or9XDC6UCiewbXHkhb6xm5L1PEkzpJDRTu
mEB44Fgz4NCtJvX.SMIvo2S1TCZGAe7GZubahdRyzFOhYZ+mbVVSYptBw. K1
tboIlkatIA7clcTKDlu.honLYV04VkluHsXe0szvI9pQCE9Ro3jaVBlolb5pz2X
zYOBVOSKXCAeOLCYJybE8ZODf4fV8tI9qWlzYxXqg.YJfTosjlbvixc.SaCO0+AV
9VIL.KKyV3SyTcRtmzi6r0.016USvts4B5xe 9EymDvebK0eMfW6+NIsSNIEZm
eqRyJOutRql3+RjmgYKNle.4d61jjdsauXe3.2p6jgi9hsNIv97CoyJ01xz1
c3ZhUCtSHx3UZgjoEJYQNY+hYs5zZQVFW19L3JDYaTlMLgAAtIG2yX1nFg9a
53L1FJVev.cOX0dh7mCVGCLce 7GFcQwDAHS5 Ta3nyASOpObHxegr+tGIZORgM
RnMj5vG11Fsl6drnk7Tf1X0OLgvin0d2iEsCXR.e0sNOZ4FGE7whofgfI3kKES
1kCeOX5L2rifbdulA9aelX.V33B1Z+.Bj1FErP51FrCYCGSEUWSG. hhunHJd.
HJ5hhnng3h9HPj41ud02.1bxGw.

[Get Code]

Processing Sketch
Using the Processing sketch in the code sample above, you'll get a graph of the sensor's
value. As you change the value of the analog sensor, you'll get a graph something like this:

111

http://arduino.cc/en/Tutorial/Graph?action=sourceblock&num=1

Language Reference

sSMmMirazQ

V1.0

& O Graph

Max Code
The max patch looks like this. The text of the patch is in the code sample above. Copy the
text and paste it into a new Max window to see the sketch.

112

Language Reference

V1.0

sSMmMirazQ

Graph

Click to open/close serial port and This patch takes a string, containing ASCI| formatted num
start/stop patch

Read serial input buffer every 10

milliseconds gmetro 10

select 01

from O to 1023, with a carriage return and linefeed at the
It converts the string to an integer and graphs it.

created 20086

by David A. Mellis

modified 14 Apr 2009

by Scott Fitzgerald and Tom |goe

print Click here to get a list of serial ports

serial a 9600

select 10 13

Here's the number from
Arduino's analog input

zl group)

close

T
port a click here to open the serial port
J

click here to close the serial port

If you get newline (ASCII 10), send the list. If you get
return (ASCII 13) do nothing. Any other value, add to the

list

itoa

T
fromsymbol

Convert integer to ASCII
Convert ASCII to symbol

Physical Pixel
This example example uses the Arduino board to receive data from the computer. The
Arduino boards turns on an LED when it receives the character 'H', and turns off the LED

when it receives the character 'L'.

The data can be sent from the Arduino serial monitor, or another program like Processing
(see code below), Flash (via a serial-net proxy), PD, or Max/MSP.

Hardware Required
Arduino Board

Analog Sensor (potentiometer, photocell, FSR, etc.)

Software Required
Processing or
Max/MSP version 5
Circuit

Attach an LED to pin 13. The long leg, or anode, goes to pin 13. The short leg, or cathode,
goes to ground. You can also use the built-in LED on most Arduino boards.

click the image to enlarge

113

http://www.processing.org/
http://www.cycling74.com/products/max5
http://arduino.cc/en/uploads/Tutorial/max-graph.png

Language Reference

sSMmMirazQ

V1.0

-
I
7]
o
=
B

www_arduino_cc

» POWER ANALOG IN
5/ 6Gnd Vin 0 1 2 3 4

image developed using Fritzing. For more circuit examples, see the Fritzing project page
Schematic

click the image to enlarge

Code
/*
Physical Pixel

An example of using the Arduino board to receive data from the
computer. In this case, the Arduino boards turns on an LED when
it receives the character 'H', and turns off the LED when it

receives the character 'L'.

The data can be sent from the Arduino serial monitor, or another
program like Processing (see code below), Flash (via a serial-net
proxy), PD, or Max/MSP.

The circuit:

* LED connected from digital pin 13 to ground

114

http://www.fritzing.org/
http://fritzing.org/projects/
http://arduino.cc/en/uploads/Tutorial/ExampleCircuit_bb.png
http://arduino.cc/en/uploads/Tutorial/ExampleCircuit_sch.png

Language Reference

sSMmMirazQ

V1.0

created 2006

by David A. Mellis

modified 30 Aug 2011

by Tom Igoe and Scott Fitzgerald

This example code 1is in the public domain.

http://www.arduino.cc/en/Tutorial/PhysicalPixel
*/

const int ledPin = 13; // the pin that the LED is attached to
int incomingByte; // a variable to read incoming serial data

into

void setup () {
// initialize serial communication:
Serial.begin (9600) ;
// initialize the LED pin as an.output:
pinMode (ledPin, OUTPUT) ;

void loop () {
// see 1if there's incoming serial data:
if (Serial.available() > 0) {
// read the oldest byte in the serial buffer:
incomingByte = Serial.read();
// if it's a capital H (ASCII 72), turn on the LED:
if (incomingByte == 'H') {
digitalWrite (ledPin, HIGH);
}
// 1f it's an /L (ASCII 76) turn off the LED:
if (incomingByte == 'L') {
digitalWrite (ledPin, LOW) ;

/* Processing code for this example
// mouseover serial

// Demonstrates how to send data to the Arduino I/0 board, in order

to

115

Language Reference

smraza

// turn ON a light if the mouse is over a square and turn it off

// 1f the mouse 1s not.

// created 2003-4

// based on examples by Casey Reas and Hernando Barragan
// modified 30 Aug 2011

// by Tom Igoe

// This example code is in the public domain.

import processing.serial.*;

float boxX;
float boxY;,
int boxSize = 20;

boolean mouseOverBox = false;,

Serial port;

void setup() {
size (200, 200);
boxX = width/2.0;
boxY = height/2.0;
rectMode (RADIUS) ;

// List.all the available serial ports in the output pane.

// You will need to.choose the port that the Arduino board 1is
// connected to from this list. The first port in the 1list is
// port #0 and the third port in the list is port #2.

println (Serial.list())

// Open the port that the Arduino board is connected to (in this
case #0)

// Make sure to open the port at the same speed Arduino is using
(9600bps)

port = new Serial (this, Serial.list()[0], 9600)

void draw/()

{
background (0) ;

116

Language Reference

smraza

// Test if the cursor is over the box

i1f (mouseX > boxX-boxSize && mouseX < boxX+boxSize &&
mouseY > boxY-boxSize && mouseY < boxY+boxSize) |
mouseOverBox = true;

// draw a line around the box and change its color:
stroke (255) ;

fill1(153);

// send an 'H' to indicate mouse 1s over square:
port.write('H'),;

}

else {

// return the box to it's inactive state:

stroke (153) ;

fill(153);

// send an 'L' to turn the LED off:
port.write('L"'),

mouseOverBox = false;,

}

// Draw the box
rect (boxX, boxY, boxSize, boxSize)s;

}

*/

/*

Max/MSP version.5 patch to run with this example:

1672.30c2Z2szaaiCD9ryuBBebQVCQRYao8xhf1cQCPVfBzh8RRQ.sDsM2HSZ
HOmlzh9eu7gjsjsEk7yOoWjiHoHm4aluYHGlueUmtiDuPy5BI9Cv8£Nc99UcS
XZR2Pm726zcF4knDR1YXciDylQ4xtWa6SReQZZ+1SeMiEQR.ej8BM4A9C700
kkAISFOSAYTdbFfvA2702c6sf0.Doqd6NfXgDHMRUCKkolg4hT06BfbQJGH3
50d2e8d.QJIQSowStzebZ 7BFW. FIHow8 . 2JAQpVIIYByxo9KIMkSjLI9DOBRT
SbGHZJIkDoZOSMuQT.8YZ5qpgGI31ocF4IpQRzqg2nDF+0dZMIJkRjpEF44M3
A9nWAum7LKFbSOv+PSRXYOvmIhYiYpg.8A2LOUOxPyH+TjPJA+MS9sIzTRRr
QP9rXF31IBZAHpVHKkHrfaPRHLuUCz0j9GSOQRQIB52y67. tu8o4EX+fddfuj
+MrXiwPL5+9cXwrOVvkbxLpomazHbQO7EyX7DpzXYgkFdF6algCOpkX4XUlo
hA6oa7GWck 9w0Gnmy 6RXQ00QeCtiWwlzsdnHLTq8n9PCHLv7Cxa 6 PAN3RCKjh
ISRVZ+s51704Tqt0kocE9RE8I+P+RJIOZ4yspbgNOvppBbOTENSqp0YCg5bqg4 7
PUwfA5e766z7NbGMuncw7VgNRSyQhbnPMGrDsGaFSvKM5NciWoIVdzn44.eO1
9DTRUT. 7jDQzSTiF4UzXLc7tLGh4T9pwaFQkGUGIi0O0OkpBSJUwGsBd40krHQ
I9XEvwq2V6eLIhV6GuzP7uzzXBmzsXPSRYwBtVLp7s51KVv6UN2VW7xRt YDbx

117

Language Reference

smraza

75 7WRgHYDI8YVFaTBshkP49R3rYpH3RIUhNTOmMKS5 jMadJyF3cYaTNQMGSyhRE
IIU1Ja0O0OukdhoOyhnekEKmZ1qU3UkLrk 7bpProzt KBVURIuorLddk6xIOgNt
1BOroRrNVFJGLrDxudpET4kzkstNp21lzuUHVMgk5TDZx 9GWumnoQTbhXsEtF
tzCcM+z0QKXsngCUtTOEINOSX21HTTIIZz968.Kf.uhfzUCUuAd3UKd.OKt.N
HTynxTQyjpQD9j I1wEXeKQxfHCBahUge 6RprSa2V4m3aYOMyaP6égah2Yf1zbD
JVWZVGFZHHXINExpjr5CiTS9J1Zn6ebnTI1XQZTAFj6QCopQwzL0AXVtol 6WE
OXsANkEGWMEuwNvhmKTnat 7A9RqLg6pXuEwY6xM5xRraoTiurj51J1vKLzF's
CvM7HI14Mpjeb6YRxXHOS1ieTsJpvJORJXxTInERK6S7YTN7sr6rylNwf5zMiHI4
meZ4rTYt2PpVettZERbjJ6PjfqN210oPSrUcusHO1CegsGEES5467rnCAqQT1ES
OxtCvFq.cvGz+BaAHXKzRSfP+2Jf.KCvj5ZLJRAhwi+SWHvPyN3vXiaPn6JR
3e0A.0TkFhTvpsDMIrL20nAkCI4E0YfSHAu1 PBAmJRyd. IynYYjIzMvjOTKf
3DLvnvRLDLpWeEOYXMfAZQfQ0.qsnlUdmA33t8CNJI7MZEb.u7f1iZHLYzDkJp
R7CgQEVLGN75U+1JXxFUY.xEEBCRCQhOEkz2bENEWnh4pbhOwY25EefbD6EmW
UA6Ip8WELyuFXx+Wrp8mé6iff1B86W7bqdO9+mx8er4E3.abCLrYdAl 6sBuHx
VKT6BlpIGQIhL55W70icf3ayv3ixQCm4aQuYlHZUPQWY+CASX2WZ3£1fICuz
vj5S5R5ZbM1y8gXYN4dIXaYGq4NhQvS5MmcDADy+S. j8CQ78vk 7079t PDX3kFh
3NGaAsYBUAO.8N1U4WKycxbQdrWxJdXd10gNIO+hkUMmm. CZwknu7JbNUYUqg
0s0sTsI1QudDtjwOt+xZ85wWzd80tMCiiMADNX4UzrcSeK23su87IANgQmA7j
tiRzoXi2YRh671dAk79gPmTe3YKuoY0qdEDV3X8xylCIMTN45JIakB7uY8XwW
uVr3POSWWWEOTW81straX7ZqzZDDXCRGNkztHsGCYpIDDAOGxDpMVUMKcOrp
942acPvx2NPocMClwQZ8gdRn3my TykVaEUNLOEeJj VaAeVA4EAZnsNgkeyO+
3rEZB7f0DTazDcQTNmdt8aACG11QOWnMmd+. 6YjMHHI 90B5gKsMF87 7x8wsJ
hN97JSnSfLUXGUo0F 6ujWXd6Fk1SAC+Pkogma.tZ.11X1qL.pe6PEl1DPeMMZ2
. POK+3peBt3NskC

*/
[Get Code]
Processing Code
Copy the Processing code from the code sample above. As you mouse over the center
square, the LED on pin 13 should turn on and off. The Processing applet looks like this:

™ ™ 7 PhysicalPixel

Mouse over the square to turn the LED on and off.

Max patch
The Max/MSP patch looks like the image below. Copy it from the code sample above and
paste it into a new patch window.

118

http://arduino.cc/en/Tutorial/PhysicalPixel?action=sourceblock&num=1

Language Reference

sSMmMirazQ

V1.0

Physical Pixel

This patch sends an ASCII H ar an ASCII L out the serial port to
turn on an LED attached to an Arduino board. It can also send

alternating H and L characters once every second to make the
LED blink.

created 2006

by David A. Mellis

modified 14 Apr 2009

by Scott Fitzgerald and Tom Igoe

@ Click to start
Click to turn the LED on
and off

Click to blink every second

p blink

select 0 1

is it on or off? select 01
T o=
send Lif 0, Hif 1 L H . ' '
i —— print Click here to get a list of serial ports

convert to int atoi .
- paorta click here to open the serial port
J

close click here to close the serial port

I

serial a 9600_

Virtual Color Mixer
This example demonstrates how to send multiple values from the Arduino board to the
computer. The readings from three potentiometers are used to set the red, green, and
blue components of the background color of a Processing sketch or Max/MSP patch.
Hardware Required

Arduino Board

(3) Analog Sensors (potentiometer, photocell, FSR, etc.)

(3) 10K ohm resistors

breadboard

hook-up wire
Software Required

Processing or

Max/MSP version 5
Circuit
Connect analog sensors to analog input pins o, 1, and 2.

This circuit uses three voltage divider sub-circuits to generate analog voltages from the
force-sensing resistors. a voltage divider has two resistors in series, dividing the voltage
proportionally to their values.

Click on the image to enlarge

119

http://www.processing.org/
http://www.cycling74.com/products/max5
http://www.tigoe.net/pcomp/code/input-output/analog-input
http://arduino.cc/en/uploads/Tutorial/max-physicalPixel.png

Language Reference

V1.0

3

image developed using Fritzing. For more circuit examples, see the Fritzing project page
Schematic
Click on the image to enlarge

V3 5V win
Power
= RST D13

— AREF D12
Arduino ot
D10

EET I

g

Dg

D8

D7

D&

Digital Input/Output

D5

Al D4

A2 D3

AA

A3 D2

W
nduj Bojeuy

\Ads

Ad D1

w
\
y
[11
ERTETEETTI

A5 Do

GND

Code
The sensor values are sent from the Arduino to the computer as ASCII-encoded decimal
numbers. This means that each number is sent using the ASCII characters "0" through
"9". For the value "234" for example, three bytes are sent: ASCII "2" (binary value 50),
ASCII "3" (binary value 51), and ASCII "4" (binary value 52).
/*

This example reads three analog sensors (potentiometers are

easiest)

120

http://www.fritzing.org/
http://fritzing.org/projects/
http://www.tigoe.net/pcomp/code/communication/interpreting-serial-data-bytes
http://www.tigoe.net/pcomp/code/communication/interpreting-serial-data-bytes
http://arduino.cc/en/uploads/Tutorial/virtualColorMixer_bb.png
http://arduino.cc/en/uploads/Tutorial/VCM_schem.png

Language Reference

smraza

and sends their values serially. The Processing and Max/MSP
programs at the bottom
take those three values and use them to change the background color

of the screen.

The circuit:

* potentiometers attached to analog inputs 0, 1, and 2
http://www.arduino.cc/en/Tutorial/VirtualColorMixer
created 2 Dec 2006

by David A. Mellis

modified 30 Aug 2011

by Tom Igoe and Scott Fitzgerald

This example code is in the public domain.

*/
const int redPin = AQ; //.sensor to control red color
const int greenPin = Al; // sensor to control green color
const int bluePin = A2; // sensor to.control blue color

void setup ()

{
Serial.begin (9600);

void loop ()

{
Serial.print (analogRead (redPin));
Serial.print(",™);
Serial.print (analogRead (greenPin)) ;
Serial.print(",");

Serial.println (analogRead (bluePin));
/* Processing code for this example
// This example code is in the public domain.

import processing.serial.*;

float redValue = 0; // red value

float greenValue = 0; // green value

121

Language Reference

smraza

float blueValue = 0; // blue value

Serial myPort;

void setup () |
size (200, 200) ;

// List all the available serial ports

println(Serial.list());

// I know that the first port in the serial 1list on my mac

// 1s always my Arduino, so I open Serial.list()[0].

// Open whatever port is the one you're using.

myPort = new Serial (this, Serial.list()[0], 9600);

// don't generate a serialEvent() .unless. you. get a newline
character:

myPort.bufferUntil ('\n'");

}

void draw() |
// set the background color with the color values:
background (redValue, <greenValue, bdueValue) ;

}

void serialEvent (Serial myPort) {
// get the ASCII string:
String inString = myPort.readStringUntil('\n');

if (inString != null) {

// trim off any whitespace:

inString = trim(inString);

// split the string on the commas and convert the
// resulting substrings into an integer array:
float[] colors = float(split(inString, ","));

// 1f the array has at least three elements, you know
// you got the whole thing. Put the numbers in the
// color variables:

if (colors.length >=3) {

// map them to the range 0-255:

redValue = map(colors(0], 0, 1023, 0, 255);
greenValue = map(colors[(1], 0, 1023, 0, 255);
blueValue = map(colors([Z2], 0, 1023, 0, 255);

}

}

}

122

Language Reference

sSMmMirazQ

V1.0

*/

/* Max/MSP patch for this example

1512.30c4Z00aaaCE8YmeED9ktB35x0jrjlaAsXX498xZQ0eYoXfVhlgqRjdT
TsIsn+2K+PJUoVvVVJI1IVMACAvxThV7b07b48dIyWtXxzkxaYkSA+J3u.S17kK
1LwcK6M1T2dxzB5s04zRW21JXeRt7e1Ny+HM6Vs61uDDzbOYkNmo0O2sg4eusS
4BSede8S2P002VEq+aERKU66PPP7b3LPHDauPvyCmAvv4v6+M7L2XXF2WECaF
1URQVPKbCxzKUbZdySDUEbgABN.1a08R9mccGYGn66qGUtNir2 7gwbg8iY+7
HDRx.Hjf+OPHCQgPdpQHoxhBl1wB+QF4chbkthlCRk4REnfeKScs3ZwaugWBbj
. PS+.qDPAkZkgP1Y50PS4By2A5aTLFvI9pounjsgpnzZVE3x27pqtBrRpdnZaa
C3WxTkfUJYA.BzR.BhIy.ehquw7dSoJCsrlATLckR.nhLPNWvVwL+VpILHL.
SjMG. tRaG70xT5R2c8Hx9B8.wLCxVaGIleqnpj45U984kL+6YIMECqUxJyyCF
7bqsBRULGvwEWyRMyovElat 7Nvqoejalm4f+fkmyKuVTHy3q3LldhB. WtQY6Z
X0BSOeSpTqA+FW+Yy3SyybH3sFy8p0ORVCmaMpTyX6HdADZ2JsPbfSogbhBMueH
JLd6RMBAfRMzPj ZvimuWIK2XgFA.Zmt fKoh0Sm88qcb60OF4bDO3P6kEtFb6xe]
.0kjD4H5011yS+.3F1hY0s04xRINgyrXErQpt+2rsnXgONZHZgmMVzEOfW7T
S4zORQtgIdDbRHrObRzSMNofUVZVcbKbhQZrS00934TgRHINZncr 7BF8TKR1
tHDgL. Pe jLRRPKMR . pKFAkbtDa+UOvsYsIFHODYsTCjqZ66T1CmGeDILLpSm
myk0SdkOKh5LUr4GbWwRYdW7fm. BvDmzHnSAH3b1GoShbxxDNJoGDADIChH7L
I0DaloOTBLvkO7zPs5HINKNoGAXbol5eytUhfyiSfnjEluAqg+FpOa+wygGwR
g32I8.psJpkpdnyPzwmXBj7Sh.+bNvVZx1cKAmOOYHIxcIjzEKARChgO5UME
LkMPNNOMfiS7EveTYQct . F5INcCZ4504rGsiVswGWWSYyma0lQcZgmL+f+st
oU18Hn606dXkMkFF14TL9r IAWE+6wvGV.p.TPqz3HK5L+VxYx14UmBKEjr.B
6zinuKI3C#D2Y7azIM6N7QL6t+7QyZxymKlI ToAKqQVsxj1Gyjz2clkTK3180h
kJEYkacWpv6lyp2VJT i WK4 7wHAG £yBOWxHIpUL 67 Ut Zk LoNKW. 9EeUBH3ymY
XS01aqGrkQMGzp20adYSmIOGj IABolxZyANJt CX9tg6+HMuhMCPyx76a0+Us
UxmzUE79H8d2ZBImlztbnOalmGeAglawyK8a9UqBUcépZolpzurTK232e5gp
aInVw80TIcpaiNSJIfY4Z+92Cs+Mc+mgg2cEsvGlLY6V+1kMuioxnB5VM+fsY
9vSu4WI1lPMBGXye6KXvNuzmZTh7U9h576vvASdngPdgOFxycNL6ialaxUMmT
JIzebXcQCn3SKMf+4QCMmOZung+6xBCPLfwO8ngcEIS2YJ1ly 7/mx3CNIXKUYU
bg7Y1yXj1KW6SrZngquQdsStfOSSDItqv2jwJFjavclvO70igyBr2+gDYorRk1
HXZpVFfulFxXkZtfp4ROQNkX5y2syal3YYL2iaviWAOaizH+pw. Ibg8f1I9h3Z
2B79sNeOHVBOt fEalWsvyuOKMf015.AaROvZ7vv5AhnndfHLbTgjcCK1K1HvV
gOk5B260qrXjcJ005.0qCHN8fVTxnxfj935fQ01iJ1v8YVOVTIFVUwWOOhSV3uD
eeqCUC1bBPa. j3vWDoMZssNTzRNEnE6gYPXazZaMF921syaLiWyAeBXvCESAS
ASi6Zyw8.RQ165J82sNx3ho930hGWENtWpowepae4YhCFeLErOLENtXJrOSc
iadi39rf4hwc8xdhHz3gn3dBI7iDR1Fe8huAfIZhqg

*/

[Get Code]

123

http://arduino.cc/en/Tutorial/VirtualColorMixer?action=sourceblock&num=1

Language Reference

V1.0

Processing Code
Copy the Processing sketch from the code sample above. As you change the value of the

analog sensors, the background color will change:

sSMIrazaQa

Max Code
The max patch looks like this. Copy the text of it he code sa ove and paste

into a new Max window.

unpack 0000 O
) 252

124

http://arduino.cc/en/uploads/Tutorial/max-virtualColorMixer.png

Language Reference

sSMmMirazQ

Serial Call and Response (handshaking)
This example demonstrates multi-byte communication from the Arduino board to the

V1.0

computer using a call-and-response (handshaking) method.
This sketch sends an ASCII A (byte of value 65) on startup and repeats that until it gets a
serial response from the computer. Then it sends three sensor values as single bytes, and
waits for another response from the computer.
You can use the Arduino serial monitor to view the sent data, or it can be read by
Processing (see code below), Flash, PD, Max/MSP (see example below), etc.
Hardware Required

Arduino Board

(2) analog sensors (potentiometer, photocell, FSR, etc.)

(1) momentary switch/button

(3) 10K ohm resistors

breadboard

hook-up wire
Software Required

Processing or

Max/MSP version 5
Circuit
Connect analog sensors to analog input pin 0 and 1 with 10K ohm resistors used as
voltage dividers. Connect a pushbutton or switch to digital I/O pin 2 with a 10Kohm
resistor as a reference to ground.

click on the image to enlarge

image developed using Fritzing. For more circuit examples, see the Fritzing project page
Schematic

click the image to enlarge

Code
/*

Serial Call and Response

125

http://www.processing.org/
http://www.cycling74.com/products/max5
http://www.fritzing.org/
http://fritzing.org/projects/
http://arduino.cc/en/uploads/Tutorial/SerialCallResponse-circuit3.png

Language Reference

V1.0

sSMmMirazQ

Language: Wiring/Arduino

This program sends an ASCII A (byte of value 65) on startup

and repeats that until it gets some data in.

Then it waits for a byte in the serial port, and

sends three sensor values whenever it gets a byte in.

Thanks to Greg Shakar and Scott Fitzgerald for the Improvements

The circuit:

* potentiometers attached to analog inputs 0 and 1
* pushbutton attached to digital I/0 2

Created 26 Sept. 2005

by Tom Igoe

modified 24 April 2012

by Tom Igoe and Scott Fitzgerald

This example code 1s in the public domain.

http://www.arduino.ce/en/Tutorial /SerialCallResponse

*/
int firstSensor = 0;
int secondSensor = 0;
int thdrdSensor = 0;

int inByte = 0;

void setup ()

{

// first analog sensor
// secoend analog sensor
//~digital sensor

// incoming serial byte

// start serial port at 9600 bps:

Serial.begin(9600) ;
while (!Serial) {

; // wait for serial port to connect. Needed for Leonardo only

pinMode (2, INPUT);
establishContact () ;
receiver responds

}

void loop ()
{

// digital sensor is on digital pin 2

// send a byte to establish contact until

126

Language Reference

smraza

// 1if we get a valid byte, read analog 1ins:
if (Serial.available() > 0) {

// get incoming byte:

inByte = Serial.read();

// read first analog input, divide by 4 to make the range 0-
255:

firstSensor = analogRead (A0)/4;

// delay 10ms to let the ADC recover:

delay (10);

// read second analog input, divide by 4 to make the range 0-
255:

secondSensor = analogRead (1) /4;

// read switch, map it to 0 or 255L

thirdSensor = map(digitalRead(2), 0, 1, 0, 255);

// send sensor values:

Serial.write (firstSensor) ;

Serial.write (secondSensor) ;

Serial.write (thirdSensor)gs

void establishContact () {
while (Serial.available() <= 0) {
Serial.print ('A'); // send a capital A
delay (300) ;

/*

Processing sketch to run with this example:

// This example code is in the public domain.

import processing.serial.*;

int bgcolor; // Background color

int fgcolor; // Fill color

Serial myPort; // The serial port

int[] seriallnArray = new 1int[3]; // Where we'll put what we
receive

int serialCount = 0; // A count of how many bytes

we receive
int xpos, ypos; // Starting position of the ball

boolean firstContact = false; // Whether we've heard from

127

Language Reference
smMraza

the microcontroller

void setup () {
size (256, 256); // Stage size
noStroke () ; // No border on the next thing drawn

// Set the starting position of the ball (middle of the stage)
xpos = width/2;
ypos = height/2;

// Print a list of the serial ports, for debugging purposes:
println(Serial.list());

// I know that the first port in the .serial list. on my mac
// is always my FTDI adaptor, so I open Serial.list()[0].
// On Windows machines, this genérally opens COMI.

// Open whatever port is the one you're using.

String portName = Serial.list()[0];

myPort = new Serial (this, portName, 9600);

void draw() {
background (bgcolor) ;
fill(fgcolor);
// Draw the shape
ellipse(xpos, ypos, 20, 20);

void serialEvent (Serial myPort) {
// read a byte from the serial port:
int inByte = myPort.read();
// 1if this.is the first byte received, and it's an A,
// clear the serial buffer and note that you've
// had first contact from the microcontroller.

// Otherwise, add the incoming byte to the array:

i1f (firstContact == false) {
if (inByte == 'A') |
myPort.clear () ; // clear the serial port buffer
firstContact = true; // you've had first contact from the

microcontroller

myPort.write('A') ; // ask for more

else |

128

Language Reference

sSMmMirazQ

V1.0
// Add the latest byte from the serial port to array:
seriallnArray[serialCount] = inByte;,
serialCount++;

// If we have 3 bytes:

i1f (serialCount > 2) {
xpos = seriallnArray|[0];
ypos = seriallnArray[1l];
fgcolor = seriallnArray[2];

// print the values (for debugging purposes only):
println(xpos + "\t" + ypos + "\t" + fgcolor);

// Send a capital A to request new sensor readings:
myPort.write('A');
// Reset serialCount:

serialCount = 0;

}
*/

/*

Max/MSP version 5 patch to run .with this example:

3908.30¢c6ckziiaikE9b0+J3XjCIXpp.WzZNMURv. jCInQ5fYNjNngrDssRKK
4dnkp6JA4+973hrkrsjncKu0SRiXasQ83G+dKj 70V+4qtaxzrOxK1f9Zzufté
t+702em7ThSbm9361rL31gTAExaaRJ+CYS+sI2qtTI+1ikxSuBMKNojm+N3D4
Aua5Kk PwpuoUAkgKhSm+tbdXo5cQOXVOhuGwrohuHD4WT 71 Xzupen3HY4BuqgG
rHOkzrrzxzfkb4dkdJONHO9JOUK1SS3kRgjt4jYUkOmkznPJh+CYgHewpSqty
XWVwUh37 IgkEYEfmqQEMr . ETbB+YddQbVZix+tIAqQV03z2030DX4uk IKHm6W
ep3T00vqOUN+435m2Rcx+5U0E+FTzVBh9xOsHXTh5YuADglx4IYgumGOr3mj
shmFmtImWvSKCI0umOWNhOKnJo7¢c6GmZe8YAg7Ne381Rc2j44wQYoBgn0SJIN
c8qCHHI1RhQqQJ1i 7NRCVsmGt . pGUESCxXE31zDdACV. PRyxRZeoOMU. WOHMAYPIu
LVIrT75BMd4p73zxVuHdZ . TFKJByyRRZUTpq7 7dt RDzZFx+PbT4BYY0DJgaO
dUcSvjOXTT7bdQY6yUFLun8YZ071710TIt042RYNLa4RfCTWfsznKWDWfJp 1
tJHrbgVét.AZInfzWP.4INpJHA8za91u+60ONInk7hh.PpQwonxEbTAWzpilV
MimilkmsDtPbo3TPiUdY0pGa925hS4gYUJzlpwEliwCpxbAgJI 9DGGWWNzFT
ksLf3z7MOMybG6HF 1WngsD7VEXS835q7WubU0+391r80JIS5GMHAtRimL4m1
0elEVX0YsSE2YssINriYRoFRyWVMoRRUGQvnkmms3pnXDYHbBKMPpIOL511s8
3rMPwFcRCsGRyPH780.8HBnpWz . v1EQBWJ+0CSunehJSmJxiIZRtNGhhDYrU
Jt3ZQyA2fHIhZDifXIQHUHH80GYgOREISnqHI zhFWUndPyBdB3VzHIGwUhKV
rgvR12UCVNMHcd2341f1DN16HFEIAHt 99A5hrp7v5WWMSBQZgMP . Tkwogig8

129

Language Reference

smraza

W1.Snl1f3h3nnlwLpBypPDzI1J7XinEGKkLiMPI1oWOhrgR7dpZWJQV1faDy35Q7
MThMFkWFGsJChQPqrQp8iorV6Q28HBVF4nMVDJj7f1xyYACFScisqg. ruLHOW
uMUS4Am4pI4PTnHi. 6bi02HNzSYnDBe4cgAgKzRk1jc8PJLOH3Ydz6.Q. 7K8
tfxx730UkJgqlMGuCy5TpAi. POWZ3AenidLOOIaZPhdjZViW3sdk 6LXEGzHb7p
Mfr7SEy3SXHyBSxJ3J2ncNNYVJsXG6MelOnj4cfCRFATFjLo793S1iCpjjEDM
.nvra.GN39.E2CDTHWXPo8.xzfqrHCHKNnf5QUYUVdoZPUFCSC7LU8 . Xt TUX1
X8vr51GjwFGLC2A1IMdLkU4RiaRrnmJuiudnDk0ZW+9p6TuKBe433JUCzp6fU
10F0SUk2UQYUPNTEk1iZubvKaltsmgL5SCTXGHnnGOCceLpkpRI9Rs28IUESWI
EwWNKfHI1g.zj6Ee7S+nE8A+mI9F7Cu40u9gMm+aRp3kYYkKd3GDOz5y+c7b96
K9gfvuIK68uNO6g2vUUL80WxihCVFDI9vIB30e2S0rmxUb527RZ3nZNr1jGrR
70vs1J9suliuz3zaHVAG3RIJLGGj2Gtn6TcGestELvtH. hpFLInBndjOLGQAT
z98BXc6yQxghmOn6gZqj0ShPOXhynLOjzCESt+XwE8TxrCvrdXol 6rqnLgvb
HaFmbh29QD+K0DyNdjDwvzQL.NXpoMvoOBxkger OHWMRObpbCh91£jjG9Idw
prTH9SzaSeaba.GOEPnnh43WNefM1sOgx18n.vgUNO. tK1l7tDyI3iHzafJHZ
VVNedVEbGgYIY42193prB0i7B7KT1LnnCiyAiinpBnsPV70G. tYKEBsrJOkG
UG5aq261Jw6GyJ4eMbmEgGEKaNQPMEBUp. 8. krplOVT1ZdJAW2 7bjvGK7pZp
HQOPgLOSJDYV4E99QOBYBjMUselRxDy+4WplIzm9JQAWOEmtb.E364B43CAwpS
URRDEV8hWXprjADMUOYpOg9.bVOpEfhKgGCnAnk . rghBJCdTVICA3sDvAhES
oU4hf67eabzWPulLgqrD8uiK+1i477fjJHIt9y . V88yy3uMsZUj 7wnxGKNAdPx5
fAZMErDZOcJU4MO1IWFQokix . pKa+JEIWacmnKFeYd7b. 0PelIzB8Kk+5WIZpB
Ejt34KJeHgOCh4HK8Y301AkAfs8TRhhOkG7AAGQL0gxy fmOxa+PLb8Ex.2PS
4BdO5GBI9Hvg+cfJCMOofAIMu9Qz+UPCjckqVJII1EmyA8Bf. rC6.3hAEuG8TATU
bZ1j00nrlayIgmTwQYfyRGatZhurb5viuyMSqQYNWmtAPwiWHalDSuUgT0OBosh.
JpAR8I9Y6Ez5QEfPTQO4J0DHLINT112z8B2V2J£fV3Bd36qgsQwAVVXbr1BGXp6s
Sd5sSDruo74wofx. HxUgxQwTnMLgTXvRmiGh2PUZr5pBynKChjl6feNUjSRn
hEUfRPT1GfG9Ik4TOBm.hEZ%. bc 38HjAMKGzDR1 JEm1 i fx1dbgzQyKh6FZc3
wOCKkRJH+KUhOdaWs 6wzl tWx1puXx1WW6NZWY2J1iTBzzILRIANkuO2NourySM
VIIVITvQZf32AJr+dS9e340A0A6EGX1GFHIvk 7yyQAlVA3SRI4g+Tx0ulsU
FlgdéICI96LzazyPulcgqsZ8r74SgF.65+efbMf4pGHT71gHh30Sha3N5Ia.
oqjMf7nsuMwycf7iYDybiAAVr3eC.o0TMjpzEr8GDRCcO9PFRGHYXDrzg. T1x+q
NW8TY1ITkzCtZ2IftkQstbBO08HUezoDS+oFyI.cWIhWBaDiUo7qIrDO7f.Lé6n
AXgCmyNT9act «z+Iv.GROuES0ZXfjdz.IczAxQOUR+zVRsUTigRxmyPYeNl1j
VvXv8Peef2ZFzuLzWPPeAESELzWXY1he8WzAcUg+blUkIoCLzIH60zwASGXau
alDg2nUY. sox4vng+mOnACePngC91EMLZMBPodOxf+yx5d4uMCTHM3kJvIIG
jcLMedEQldkjpoBkQyjY1Hk.hmSY95Iwos8NDbIOVS1IIWOIntggxryUjL6bCJT
y111i5tWxrQ7YmqGY1c6shK1iY2drOwtNjYxgHyzaq00znY235awCr8zSz6
EGdIQNUKf. 74dADTBbTbeot jpW95I01YOWpKYONY8M83Rx2MChx3 fL+1G5Mm
tXpdmvXj8uTvaALlWjbbarQD4Z6kXBpnméa69oKV2PYIWY174IbC3CaRQ91K
Q4sYGQpwdtZ5wFrc7/n569.M8300R5ydSB1ZcAWCxdbKuavzI9LILxfD.wWO. W
Ng+Zu4Es+AP6s5p9jDWHBET+c85+XbW0.N1InDCTD7U4DGc60ohnU019fS7kQ0
0431uu0Gjv5agHp0DT.CysOfgLR3xX1XTUKm1 6RivRsn3z006c13YScAvtrb
hwekGB7BZugESUzBJWmCVK7t 9HF8Ts6cUAPoOFWso3aP8ApWy J3wqOPo2ZpJDC
BQONIOPF8QCQ2r1L5vKaUS1IDRYX7yRurlUYYZmJQ91i DHwWN9dndB5n5ej f1mm
UsBwLHnDkKXWRuAkb3NeuzgRstiQGP. fCQFdHNzaE.8ub58Nz9svFE9SGIE1X

130

Language Reference

smraza

kv9Iwf11BINWjA7xcThsWCS84710yFD8pZq2E2F041YULzBTDYhrEFSDDJd o
fisN2NUN26e4xRub51zD57seJ4HC63WyIX6jRgsp0jangBnK. Q1058 PCpWevt
ahzgK7fbKsdX6R64aao8LmWhBPh9jKVAPMzb5aZcVé6opdWHneMmgMEmMAGS Ph
1eigIjV+4g9F1GgbMNXg+NH44YaRYyd. .S1ThHzKhFwwGRaWVITqyj 9FvPqMT
dOpDuSqgDrOGF.Uogf. juCFi 9WAUkYR+rFPanDcPG8SbrtjyG03Z208m3AqC5H
NcUUoXSwVrgXKVcZu. 5ZnkwIfIVAXVZTwAuTTUIYuxwjZDK6ZgnRtYV8tJmP
hEcuXgz2Goxyaiw35UkaWbpgqtfzD020UkkYql.YQObZqIIWrIljFolsdmMKER
wCJ2+DTn.901k01d+d9Qy 9I1JdpLfy051Ik2b8GsGO9h8rdml ZFx1FrmmlA2snw
qI9%McdiZ2nr6q3Gc87nLawurbwldda+tMyGJIJ9HaQOmlkGwyb6davisMgrkM650z
eulfYCzG46am8tSDK144xV4cEVVMTRXqI9CIX8+ALNWb6sttKNkiZetnbz+1x
cOnbINds2C0tvLNel4hwQtxYbxhqgcl7qHfamUcZZ3NYSWqgjJuiDoizZ+ud2j
naRK4k3346IIVAdR1kKiQjM39adMamvcén+Xp36Yf3SIGh3uKbqugslJksTII
kuJd7RrZSFb2Cn9j5a6DT8cMo0iczU+1sYaU8YNVh5k5uzJdLU26ZcfuJE6XLY
OmcRpINTCp+L+Ap+in7Xf3b9jFOBLtIY06PbrGhcrU6NO0Q1lafINO+QPo9nS
P6gsI7aYNLSNOHpsAxisOggnZLjYqyyFkdSqinVsPaqSDZaYBZ6c93uLCjGm
1CroJVLzU45iNE.pIUfs3TWb.0FejHp9uANr0GcJRFTroFDNOHpkIweLnI1QT
dH13P7LhOF3Ahd9rnvILwAMy5JSdNezGlsIsWImW44xr26js+alhxjlkdhNOYE
YqiH5MTeWo6D40m. ieLS70ynmuVGSbmbFUInWWhiQlhOeN+Y135bg. tGo9JR
cj8AVqdz7nSgVB9zN7j . FTOU6805d9RKOSTUOGXVMw+jTO8T6wqgDOhEiHsOJOS5
TTOMoS.z1gN0SpZjz6GcHO5y1VMOjwuidlkmAi f374ih5M5QPfccr8Hqifff
otN8pt3hUcaWu8nosBhwmDOEpwSKmoF . poxy4YHbnjqfPJqgcM3Y2vun7nS. 1
f3eETiqcRX2LR.40mhZrkoCSGwzZrqKHrVR8caari+55d2caPqmgbn. ywe8Q
WrZL9fpwVXeaogMByE6ylSMdjk+gbavbN7fYvVttlC2XwHISzpk+tidUOZ25H
UB9onw9ml1FQ10fhpZBaDatcMTTEGcIpwzqg92qqiVtM6Cu0IRQONdAEdLCAQV
10qYAUmPrctbx04XCuPMalasYzKDks1D52ZCne6Mednz 9gW8+.vIigkDA

*/

[Get Code]
Processing Code
Copy the Processing sketch from the code sample above. As you change the value of the
analog sensor, you'll get a ball moving onscreen something like this. When you turn the
switch off, the ball will disappear:

131

http://arduino.cc/en/Tutorial/SerialCallResponse?action=sourceblock&num=1

Language Reference

sSMmMirazQ

V1.0

(2 N SerialCallResponse

Max Code
The max patch looks like this. Copy the text from the code sample above.

132

Language Reference

V1.0

sSMmMirazQ

DCIick tostat 3

Read serial input buffer

avery 10 milliseconds q-metro 15 s-elea 01 Eadbang closebang
—_— - - b
print Click here to get a list of serial ports 1
open click here to open the selected serial port

close

click here to close the serial port

2 -
route port

iter

1t clear

;?repend append

2 chooseas

[usbmodemfa141

p-repend port

serial a 9600 @autoopen O y
T -
1
gate 11 checks for the ascii value of "A" to begin
I - — cominucation. After initial communication
reinitialize the gatey I_22 5_’3' '52 is made, this block shuts down. A byte is
when turngd on and aff sent back to the Arduino, indicating the
\ D patch is ready to receive information.
- 4 \ =
gate 10 sel1 -1
P filter_extra_bytes &5

Egroup 3

'5_55_1 trigger (or [1]) forces right-left conventions. All the drawing and processing will
happen before Max requests new values. When this trigger fires, it sends an
ASCII A to ask Arduino for new values.

anack Qo0

p "draw the circle”"

Serial Call-Response

Sends a byte out the serial port, and reads 3 bytes in. Sets fore
and ypos of a circle using the values returned from the serial por

Mote: This patch assumes that the device on the other end of the
to send a single byte of value 65 (ASCII A) on startup. The skelc
then sends an ASCIl A whenever it wants more data.

created 14 Apr 2009
by Scott Fitzgerald and Tom Igoe
updated 24 April 2012

Serial Call and Response (handshaking) with ASCII-
encoded output

This example demonstrates string-based communication from the Arduino board to the
computer using a call-and-response (handshaking) method.
The sketch sends an ASCII string on startup and repeats that until it gets a serial
response from the computer. Then it sends three sensor values as ASCII-encoded
numbers, separated by commas and terminated by a linefeed and carriage return, and
waits for another response from the computer.

133

http://arduino.cc/en/uploads/Tutorial/Max5SerialCallResponse.png

Language Reference

smraza

You can use the Arduino serial monitor to view the sent data, or it can be read by
Processing (see code below), Flash, PD, Max/MSP (see example below), etc. The
examples below split the incoming string on the commas and convert the string into

numbers again.

Compare this to the Serial call and response example. They are similar, in that both use a
handshaking method, but this one encodes the sensor readings as strings, while the other
sends them as binary values. While sending as ASCII-encoded strings takes more bytes, it
means you can easily send values larger than 255 for each sensor reading. It's also easier

to read in a serial terminal program.
Hardware Required
Arduino Board
(2) analog sensors (potentiometer, photocell, FSR, etc.)
(1) momentary switch/button
(3) 10K ohm resistors
breadboard
hook-up wire
Software Required
Processing or
Max/MSP version 5
Circuit
Connect analog sensors to analog input pin 0.and 1 with 10Kohm resistors used as voltage
dividers. Connect a pushbutton or switch connected to digital I/O pin 2 with a 10Kohm

resistor as a reference to ground.

click the image to enlarge

image developed using Fritzing. For more circuit examples, see the Fritzing project page
Schematic

click the image to enlarge

134

http://arduino.cc/en/Tutorial/SerialCallResponse
http://www.processing.org/
http://www.cycling74.com/products/max5
http://www.fritzing.org/
http://fritzing.org/projects/
http://arduino.cc/en/uploads/Tutorial/SerialCallResponse-circuit3.png

Language Reference

sSMmMirazQ

V1.0
Arduinol
i sy Vin
Power
= RST 013 pb—
— AREF D2
Arduino DIt L
oo =L
s ==
E}L [al: Q) S—
=
9 p7
“b g PWM
FER1 S § E D6 fr—
[}
1:‘1 A0 g, D5 P 51
Al D4 e
=
10k ohm — A2 ﬁ D3 LN
+£ (=]
w
9 iokorm =] A3 5 D2)
E 5 e 10K ghm
e 11—
— 45 oo ==
GND
Code
J*

Serial Call and Response in ASCII

Language: Wiring/Arduino

This program sends an ASCII A (byte of value 65) on startup
and repeats that until it gets some data in.

Then it waits for a byte in the serial port, and

sends three. ASCII-encoded, comma-separated sensor values,
truncated by a linefeed and carriage return,

whenever it gets a byte 1in.
Thanks to Greg Shakar and Scott Fitzgerald for the Improvements
The circuit:

* potentiometers attached to analog inputs 0 and 1
* pushbutton attached to digital I/0 2

Created 26 Sept. 2005

135

http://arduino.cc/en/uploads/Tutorial/SerialCallResponse_sch.png

V1.0

Language Reference

sSMmMirazQ

by Tom Igoe
modified 24 Apr 2012
by Tom Igoe and Scott Fitzgerald

This example code 1is in the public domain.

http://www.arduino.cc/en/Tutorial/SerialCallResponseASCIT

*/
int firstSensor = 0; // first analog sensor
int secondSensor = 0; // second analog sensor
int thirdSensor = 0; // digital sensor
int inByte = 0; // incoming serial byte

void setup ()

{

// start serial port at 9600 bps and wait for port to open:
Serial.begin (9600) ;
while (!Serial) {

; // wait for serial port to connect. Needed for Leonardo only

pinMode (2, INPUT); // digital sensor is on digital pin 2
establishContact (); // send a byte to establish contact until

receiver responds

}

void loop ()

{

// 1f we get a valid byte, read analog ins:
if (Serial.available() > 0) {
// get incoming byte:
inByte = Serial.read();
// read first analog input:
firstSensor = analogRead (A0) ;
// read second analog input:
secondSensor = analogRead (Al);
// read switch, map it to 0 or 255L
thirdSensor = map(digitalRead(2), 0, 1, 0, 255);
// send sensor values:
Serial.print (firstSensor);

Serial.print(",");

136

Language Reference

sSMmMirazQ

V1.0

Serial.print (secondSensor) ;
Serial.print(",");

Serial.println (thirdSensor) ;

void establishContact () {
while (Serial.available() <= 0) {
Serial.println("0,0,0"); // send an initial string
delay (300) ;

/*

Processing code to run with this example:

// This example code is in the public domain.

import processing.serial.*; // »import the Processing serial
library

Serial myPort; // ‘The serial port

float bgcolor; //»Background color

float fgcolor; // Fill color

float xpos, ypos; // Starting position of the ball

void setup() {
size(640,480) ;

// List all the available serial ports
println (Serial.list());

// I know that the first port in the serial 1list on my mac
// is always my Arduino module, so I open Serial.list()[0].
// Change the 0 to the appropriate number of the serial port
// that your microcontroller is attached to.

myPort = new Serial (this, Serial.list()[0], 9600);

// read bytes into a buffer until you get a linefeed (ASCII 10):
myPort.bufferUntil ('\n'");

// draw with smooth edges:

smooth () ;

137

Language Reference
smMraza
}

void draw() {
background (bgcolor) ;
fill (fgcolor) ;
// Draw the shape
ellipse (xpos, ypos, 20, 20);

// serialEvent method is run automatically by the Processing applet
// whenever the buffer reaches the byte value set 1in the
bufferUntil()

// method in the setup():

void serialEvent (Serial myPort) {
// read the serial buffer:
String myString = myPort.readStringUntil('\n')
// 1f you got any bytes other than the Ilinefeed:
myString = trim(myString);

// split the string at the commas
// and convert the sections into integers:

int sensors[].= int(split (myString, ','));

// print out the wvalues you got:

for (int sensorNum = 0; sensorNum < sensors.length; sensorNum++)

{
print ("Sensor " + sensorNum + ": " + sensors[sensorNum] +
"\t")
}
// add a linefeed after all the sensor values are printed:
println ()
if (sensors.length > 1) {
xpos = map (sensors[0], 0,1023,0,width) ;
ypos = map (sensors([1], 0,1023,0,height) ;
fgcolor = sensors[Z2];
}
// send a byte to ask for more data:
myPort.write ("A");
}
*/
/*

138

Language Reference

sSMmMirazQ

V1.0

Max/MSP version 5 patch to run with this example:

3640.30c6cs0jZajE94Y9UzKkeHoVI1oTeSHkm1II0VkeHIthSs6ClobIlIjZ.E
KjHRhY7jT4+9d5KBj . jTCAXfoVéx.sj5VmyWet127ed6MCFmEEQw. z2£9.51
a9yaudFO0kjW3FS4aFLO3KgIAEpGaPX174hzxAC02qT7kR80mkk UHPAnBQdbP
BZQVdIZRdA1bT4r3BDTmkUOYQPY3r3zoedJWDVpelttr6cFhvXt 7KhyHE8W26f 9
USkhiTulrw+1czQUszjrzxzf4B0sdP9dqtS5x4woIhREQiWewrkkUW0oViTD
+GpFASt2Qd0+51akeLzRPIU7DPXagIFnH. 4653f9WAKKyxVHRQNCcfDX11ih2w
puvbdWHAICcTPBRKHg4x5mr74EBMINHV1+1FL.8qG.VMWTTDLUrs . TBH+zAVP
nTEhvvxun9pBd6FWH38DWHEDWvEIthbX. RKBOJ7XbP5ztvDesvhBLb6VIwcOg
DmiBjnXfiIrjjEDOCPpP490PEmt PExwQASEGUVFK.CKQJqtcY10nCMRAJ: 76D
Z7dQf1CCVV1i+ENiTy3AwYaghEA4 .KVJx+jHMXbhnt JRce03iBpPOPKtZqtU
JUOXtw28fkEimmEI1OI.304iMT9w0+1Lxc907sN28928t6Ve8uMyo. 7TEUN6t
ePVoUW+6E4hOW7CAgeaVimeWdlcuWnYLy8mKhhC1GDd25F3ce+C2s11Ud42+
bZ3IQJ0Xg7q96t80e50YvDjqHw7VvkRTXhHHUKEexRwmqfBFSS . g9h . HEN3X
hJf50d+xHZHgzc.mrqeYjbn4E84evfIDUjDt jNwD2iRHV6anmGdbms fKxTTJ
dd93rjtBJ2U42foCwzZDQKtYzKkrh4VgYIY4FxVRmN2646f8ck+xw/7Krjz01lZ
ZYAVfdZgKlaWn29FzA8nfdR2quj.3ejf1BJnKr.Dwpfl3cZBm85P0rPj.rOB
6fvzt PFGKkVIOSAPi 5NKHmih7E8Ph2e35uOtYN6x6JEQEIVIPYV 7gRtm2dZy 9W
+YMCXLHrEvAKknQktDVAY 7v82SEFosgmSGHOS6BRRt 6mEEKXRKDnNGdA+2812h9X
5GSeODOCAJ.M9YHHAf jPkyDOGIugn.Ht6bQ. 7TTS8DoPtCQCOxWobX+7YPUJ
hPn3zgnx7kogphieFZ2j3TwDgH5dzaUscJ77kEnIY4hoYKglVYzcH5KKxJzu
gmgegxl.OMLNGBNDsr.5IUz01iAPZFE.OTtLOEdCIQYrAAeORwW+XVo3aP+hb
DHUBCH.mfbEKfGOPyjQhGiCAANUUBRcQ7174X.ubMZRDzHSyTDQFbcYdHHIM
Az1F11noLjKG8UZH5quVl vEkA4kKWbOPGPCIYgiNAJHVy+ZJQ1 . Cq. FUNQPA
ke.8DbUwi . YEWBUCDhPyAXCEETFbuhICg9EIRIYNGVjKyt0+io. r+9vrxRz+
Nt 701JxCRhT35u.X0amlI9X5xEQppQwnedrLarPVU7JkGYWVHz2njevz1UoX
XkoEWOkxDWO9kXYocoTwuzF611zXJyimB3F5qf9n0OT9qgesryJTJ1IEOcV4cIh
IPVWYOOBUMFTI1.4SGRRzZRT4AOIkRjn8h7LnNJI2mhg60Sk5JZrPJ41i9gfu.R
w+NHLCcpfAMij88n+qTPRMt 4UTwj3bAnY.h.ale.RiAEeF8Pdzx3zLkLUs1Z
mcmczahOFH4ZmpLep . rVbX3d0zalKhSiKAXxBZ9BU2zTP3uPobgLl1Q.U0. k1+
jcBZj1AMOpzsJYjdz0n530XstYrgELKb1H7yUFoDf PVXbrwDGXqCijwjviT7a
rXZbpxOvxzXvpOnPHOGLITIMZog812UZJcdPjxjG7ywIYgeFULaInFDk8jpxZ
apvMA4cv9X.7.vaRRGFACPYHMROAF2BZC7wEJ2TOKeZnCRD+HzJo. OLWSWé6r
gk2wfI6pGr.pdjC4rpfL2YeK8JY1oVE93.o0cJEvocvIwWACEIMQOgBtl.1b0y9
heKnvtGRs+1HOJHM3uaZbN1jDrhED4FfwfLPCEmH8]V.BB0Z+aF.Vkgc4apU
EIb9ab5zAcGt5RE3WdsNI3R4 PXDUOmouHzIcaOMWO. KpQjT80qlSIyqV3mP24
ToxfHpdyOPNggwoK.W. fxfRNtwsiDSBVI1T9ociSMu+jfPQqUtk9paFLMONJK
URFMpq7xUuvOXF1HBuN6ndhzfE6nxPXQKKKFGjKQNyHtSptYYVVRyaspyBD3
CRiA0YQYrlbgHdptY77E4wZk5UNSOf 9y JByyRRZZT56 73Nt iNrvmhiJmoZqs
fI73wKp5DFrBihhmBNxadsxfoEMuRi Ibut fVcM4FWuyr.2bvrlNF5.3U+q9C
SKaab5jkMt7015d8bC2ZbEFUuAa0DWNgYF0tJ91p43649br2nZz2usLGuoxrnQq
6TArNx+1CjRLPoVWf62Kj592FRa38Y6D0kRo8ANT8b0g0edp8+f6.P4sBnaX

139

Language Reference

smraza

TgMmPsOdOc jG+dMtOmdzcgLdIGqjX0J+FAVrmSu.L8fAX19Ky1C.el.z+IB2
qpeCIUV+.I4fARXQGHO1 . 9ECVZrhZMTheMCkc4XRMsoCgbef2ZFjaF5MXzaH
n2PQugY¥mheOWjdcU47Z1Ukhb6CwFISy2HNtcvtaNRWdshHNVgHCNMULopRm4
tJByyLXfIOUN6GM7eUiFTm8BMbctZQC8atOegDuboveXrgpeaGntfakETvsBJIN
6AKUNST4n+zRVXJtQd+ciEEYKyCq.8ptRTSABRQrLNcUd5eXcjoa7fyhihZ1
UrNQxBYZob5g.vpdt8k1kJilQyPvdH7UFMStbvYu8AmulnY7ECMKGXBqnY2KH
Z218J714aYNnEYiQWVzrUxytWNzLOVZ14xglI6isN5kAMi2GZ1bYPyNma6FqC
aJRs9qgE0gO+ovivYFxxjGV07cLnH300zm.R.BG7SAkk4dwiWVpCl2p9jwX23ka
0zSz4Mé6elQZY.8ml jMNHwLURQZ9Fuzs1Mk8ZJXtcMPeblVut1XYDhdMCpmjZ
8BAqsU9DezKxJAa8Hmbbfi+wccuVv/c0qQELrEHB+UAhHWzCLfCbKPEyBki124Z
clythVwfkYSmIHrPdX8tC5v1iPb5ArPuOWC8NVrRZspql4UxhEOwBCASMyt2
2LLuqvkKZRXFEqQ5CM6S3tg9Zm6HD+8PrmOF+jDWnlpalUe+2ZuF259kxkiR5W
Qf6vzKBtMm+gFrMeuWsKW. 6B61VyWOFjz0Zsmwza+.1kxQcAL31iDtbLWMTKm
OtyMEFcjWM91iu0rMa81D8kU13v2ewcHWPSB2HX6kK7t7DL5fs6JVIr002113
bEpOP3zih9.gbspPzKDYbRVAQ7CFhtZsYzhWlkoOWEJcG30ACOaRIyxKsUETL
+1DPwOLfpOuNA68Mmt SUSmMRUNb8d1 ttWya7sVWESIwE. 1ILQEZUngNvT1bS6z
E502vEqQNSHS5bufQbuZV09M. E04Mj8XBUIBQNG15FSt3NG1ZaGRpVe6wc4kiWi
gO0twaaORhulljjsIi7cMjQlJJUaQuhR495n1 fROWRIXk rgmMGXWjKM4jAGIH
yovkl4HUetutzWuY5tjFHneGn77rtG31J92whCVIxKhBwgGtRaFIzabfNrRn
WThd9qg24vsZjf9IJVHwWOKBhprFDmtXYIZ7xISja01lGE40K2V9y1iS.gFhvrznh
8cKyMZs7EVepT01F1Ce0rICO01IUkK6NX4N9syCyAE660+ovE9hyGgjaGurrLak
GOYwoM1FO4YMSZFd9DcucsjUrlYqqgy8TIuCY3N908. +k0JCD3ZTSOCWEQyb
519n0xrgjw7VFU+300YviK66pCfimt SAAXHOOBkK+EajC2yayWtciMzgdvpM
NKORj29YyGcS4wFV1glOwcZTglywSwvMNI TouUzpu. YOmiR1gO0w7wpZI2Em
SUBGayVM5eqU4C+rV4ZSPkvXqLIJbAHIR3MKwT5ISL8+Kv0k . GWEKwpP3ewk3
7omKIN7EtDmp4ZtHkO0BfatXgLhgasHgZrVYaY8AIO7fq8PaslfFzjd4ibwpd
X04GX0e0G+1cyasNhlR+wVx2yBxeTOT+wiZFYAOP48PNyiiVjAhJINT4Qvpb
uj3aN2qYqJcBfSWhMbf+YCPcsfbNeTC219WNc+5eI1kSTORJgupzIn+kysgC
X6GGXnYpdYfPOGPOMKOXM3NIIh6XVvcLuym7BOB5w8v.ahgBI49qJdcJd. TaX.
N+xBP4NGHhhqYfkKRNMIqI f3ZweqyYCQYAGCSZGQ5wBx4 70 . Ssw+CkcgQOmud
KZ1c4QKzCw+7ROm8nY2LEfMsEDtdfeMKSn5Ev95IQhorcqdcBrzPsQUhRNe 8M
1X61h0OezC4BidvInKcFs8YimJ9n8RWZX107aSCxDRLAjd91qU5TnmXCeRvmR
97nm7b15RmJ9rO4Kr+Ig004BfczyOpgx9npzofOsI1aR8Mo0IUMR48i0mY1ly
1VMwlwb6gbloGRezy4yKEw6BHBBWik .eRi3DNM5KDahsS.SOE1EijmX17U0yqo9T
AtQAO8fG30LX3cZFxKhOFLNSRfDaoG74gdviW. ZDU9FMGSAFMBt+IQh. 6eIvw
Fuj TkJREGKKcJ3X2WtXf 7UblHywEqxh2tJnE . FcZhMBy rcXQwlx+bOWJIYFpy
1v8og55aEHLcwD8hJjxbVUSEigcNtL70176KVVp69HUhcb87vpoCkRYT+96v
HA5AylrofMgm+FkLYvvO0+GL3FKkL6bLp21kL6QFNVEBNM48foWBV4zt1wXmbV
4jkNEbL45dtNw13I1tmi9sAyY0S018BR+3yWjVXax7eOmKrp4mOQKIal6VYo
SAf5X0xSrCab510gk45k5kAzgEgMNgzkz9FmL5abpnu4IhNzZ+0s+0KCSg0.

[Get Code]

140

http://arduino.cc/en/Tutorial/SerialCallResponseASCII?action=sourceblock&num=1

Language Reference
smMraza

Processing Code
Copy the Processing sketch from the code sample above. As you change the value of the

analog sensor, you'll get a ball moving onscreen something like this. When you turn the
switch off, the ball will disappear:

) SerialCallResponse

Max Code
The max patch looks like this. Copy the text from the code sample above and paste it into

a new Max window

141

Language Reference

sSMmMirazQ

V1.0

[] clicktostart '3

closebang Eadbang

Read serial input buffer -:-metm 15 ;elea 0 1- n t- p
every 10 miliseconds T T r"' - LJ L clear
i _ .)
L Eﬁm Click here to get a list of serial ports 1 prepend append
s 1 -
.| open click here to open the serial port 2 choos
-
|~
close click here to close the serial port (usbmodemfai41
— 1
(prepend po
L
-
serial a 9600 @autoopen O
T
> 1 - checks for the ascii value of newline to begin
g-ate 1 '1" communication. After initial communication is
- e made, this block shuts down. A byte is sent
reinitializes the gat] sel 10 back to the Arduino, indicating the patch is

when turned on and ready to receive information.

gate 10

select 10 13

f?oms',rm bol

t- 65 | trigger (or [t]) forces right-left conventions. All the drawing and processing will
'__'j' T happen before Max requests new values. When this trigger fires, it sends an
ASCII A to ask Arduino for new values.

unpack 00000

299 vall 298 val2 E] val3

p "draw the circle”"

Serial Call-Response ASCII

Sends a byte out the serial port, and reads 3 ASCI er
linefeed. It then sets foregound color, xpos, and ypos
serial port.

Maote: This patch assumes that the device on the othel
single byte of value 65 (ASCIl A) on startup. The sket
whenever it wants more data.

created 14 Apr 2008
by Scott Fitzgerald and Tom Igoe
updated 31 October 2011

142

http://arduino.cc/en/uploads/Tutorial/Max5SerialCallResponseASCII.png

Language Reference

sSMmMirazQ

V1.0

Stream

Stream is the base class for character and binary based streams. It is not called directly,
but invoked whenever you use a function that relies on it.
Stream defines the reading functions in.Arduino. When using any.core functionality that
uses a read() or similar method, you can safely assume it calls on the Stream class. For
functions like print(), Stream inherits from the Print class.
Some of the libraries that rely.on Stream include

Serial

Wire

Ethernet Client

Ethernet Server

SD

Functions

available()
read()

flush()

find()
findUntil()
peek()
readBytes()
read BytesUntil()
parselnt()

parsefloat()
setTimeout()

143

http://arduino.cc/en/Reference/Serial
http://arduino.cc/en/Reference/Wire
http://arduino.cc/en/Reference/Ethernet
http://arduino.cc/en/Reference/Ethernet
http://arduino.cc/en/Reference/SD
http://arduino.cc/en/Reference/StreamAvailable
http://arduino.cc/en/Reference/StreamRead
http://arduino.cc/en/Reference/StreamFlush
http://arduino.cc/en/Reference/StreamFind
http://arduino.cc/en/Reference/StreamFindUntil
http://arduino.cc/en/Reference/StreamPeek
http://arduino.cc/en/Reference/StreamReadBytes
http://arduino.cc/en/Reference/StreamReadBytesUntil
http://arduino.cc/en/Reference/StreamParseInt
http://arduino.cc/en/Reference/StreamParseFloat
http://arduino.cc/en/Reference/StreamSetTimeout

Language Reference

sSMmMirazQ

1 available()

V1.0

Description
available() gets the number of bytes available in the stream. This is only for bytes that
have already arrived.
This function is part of the Stream class, and is called by any class that inherits from it
(Wire, Serial, etc). See the Stream class main page for more information.
Syntax
stream.available()
Parameters
stream : an instance of a class that inherits from Stream.
Returns
int : the number of bytes available to read
See also
Stream

2 read()

Description
read() reads characters from an incoming stream to the buffer.
This function is part of the Stream class, and is called by any class that inherits from it
(Wire, Serial, etc). See the Stream class main page for more information.
Syntax
stream.read()
Parameters
stream : an instance of a class that inherits from Stream.
Returns
the first byte of incoming data available (or -1 if no data is available)
See also
Stream

3 flush()

Description

flush() clears the buffer once all outgoing characters have been sent.

This function is part of the Stream class, and is called by any class that inherits from it
(Wire, Serial, etc). See the Stream class main page for more information.

Syntax

stream.flush()

Parameters

stream : an instance of a class that inherits from Stream.

Returns

boolean

144

http://arduino.cc/en/Reference/Stream
http://arduino.cc/en/Reference/Stream
http://arduino.cc/en/Reference/Stream
http://arduino.cc/en/Reference/Stream
http://arduino.cc/en/Reference/Stream

Language Reference
smMraza
See also

4 find()

Description
find() reads data from the stream until the target string of given length is found The
function returns true if target string is found, false if timed out.
This function is part of the Stream class, and is called by any class that inherits from it
(Wire, Serial, etc). See the Stream class main page for more information.
Syntax
stream.find(target)
Parameters
stream : an instance of a class that inherits from Stream.
target : the string to search for (char)
Returns
boolean
See also
Stream
Reference H

5 findUntil()

Description

findUntil() reads data from the stream until the target string of given length or
terminator string is found.

The function returns true if target string is found, false if timed out

This function is part of the Stream class, and is called by any class that inherits from it
(Wire, Serial; etc). See the Stream class main page for more information.
Syntax

stream.findUntil(target, terminal)

Parameters

stream : an instance of a class that inherits from Stream.

target : the string to search for (char)

terminal : the terminal string in the search (char)

Returns

boolean

6 peek()

Read a byte from the file without advancing to the next one. That is, successive calls to
peek() will return the same value, as will the next call to read().

This function is part of the Stream class, and is called by any class that inherits from it
(Wire, Serial, etc). See the Stream class main page for more information.

Syntax

stream.peek()

Parameters

stream : an instance of a class that inherits from Stream.

145

http://arduino.cc/en/Reference/Stream
http://arduino.cc/en/Reference/Stream
http://arduino.cc/en/Reference/HomePage
http://arduino.cc/en/Reference/Stream
http://arduino.cc/en/Reference/Stream

Language Reference

sSMmMirazQ

V1.0
Returns
The next byte (or character), or -1 if none is available.
See Also

7 readBytes()
Description

readBytes() read characters from a stream into a buffer. The function terminates if the
determined length has been read, or it times out (see setTimeout()).

readBytes() returns the number of characters placed in the buffer. A 0 means no valid
data was found.

This function is part of the Stream class, and is called by any class that inherits from it
(Wire, Serial, etc). See the Stream class main page for more information.

Syntax

stream.readBytes(buffer, length)

Parameters

stream : an instance of a class that inherits from Stream.

buffer: the buffer to store the bytes in (char[] or byte[])

length : the number of bytes to read (int)

Returns

byte
8 readBytesUntil()

Description
readBytesUntil() read characters from a stream into a buffer. The function terminates if
the terminator character is detected, the determined length has been read, or it times out
(see setTimeout()).
readBytesUntil() returns the number of characters placed in the buffer. A 0 means no
valid data was found.
This function is part of the Stream class, and is called by any class that inherits from it
(Wire, Serial, etc). See the Stream class main page for more information.
Syntax
stream.readBytesUntil(character, buffer, length)
Parameters
stream : an instance of a class that inherits from Stream.
character : the character to search for (char)
buffer: the buffer to store the bytes in (char[] or byte[]) length : the number of bytes to
read (int)
Returns
byte
See also
Stream
Reference Home

146

http://arduino.cc/en/Reference/StreamSetTimeout
http://arduino.cc/en/Reference/Stream
http://arduino.cc/en/Reference/StreamSetTimeout
http://arduino.cc/en/Reference/Stream
http://arduino.cc/en/Reference/Stream
http://arduino.cc/en/Reference/HomePage

Language Reference

sSMmMirazQ

V1.0

9 parseint()

Description

parselnt() returns the first valid (long) integer number from the current position. Initial
characters that are not integers (or the minus sign) are skipped. parseInt() is terminated
by the first character that is not a digit.

This function is part of the Stream class, and is called by any class that inherits from it
(Wire, Serial, etc). See the Stream class main page for more information.

Syntax

stream.parselnt(list)

Parameters

stream : an instance of a class that inherits from Stream.

list : the stream to check for ints (char)

Returns

int

See

10 parseFloat()

Description

parseFloat() returns the first valid floating point number from the current position.
Initial characters that are notdigits (or the minus sign).are skipped. parseFloat() is
terminated by the first character that is not a floating point number.

This function is part of the Stream class, and is called by any class that inherits from it
(Wire, Serial, etc). See the Stream class main page for more information.

Syntax

stream.parseFloat(list)

Parameters

stream : an instance of a class that inherits from Stream.

list : the stream to check for floats (char)

Returns

float

See

11 setTimeout()

Description

setTimeout() sets the maximum milliseconds to wait for stream data, it defaults to 1000
milliseconds. This function is part of the Stream class, and is called by any class that
inherits from it (Wire, Serial, etc). See the Stream class main page for more information.
Syntax

stream.setTimeout(time)

Parameters

stream : an instance of a class that inherits from Stream.

time : timeout duration in milliseconds (long).

147

http://arduino.cc/en/Reference/Stream
http://arduino.cc/en/Reference/Stream
http://arduino.cc/en/Reference/Stream

Language Reference

V1.0

sSMIrazaQa

Parameters
None

148

	Language Reference
	Structure
	setup()
	Example

	loop()
	Example

	Control Structures
	if (conditional) and ==, !=, <, > (comparison operators)
	Comparison Operators:
	Warning:

	if / else
	for statements
	Desciption
	Example
	Coding Tips

	switch / case statements
	Example
	Syntax
	Parameters

	while loops
	Description
	Syntax
	Parameters
	Example

	do - while
	Example

	break
	Example

	continue
	Example

	return
	Syntax:
	Parameters
	Examples:

	goto
	Syntax
	Tip
	Example

	Further Syntax
	; semicolon
	Example
	Tip

	{} Curly Braces
	The main uses of curly braces
	Functions
	Loops
	Conditional statements

	Comments
	Example

	Comments
	Example

	#Define
	Syntax
	Example
	Tip

	#include
	Example

	Arithmetic Operators
	= assignment operator (single equal sign)
	Example
	Programming Tips

	Addition, Subtraction, Multiplication, & Division
	Description
	Examples
	Syntax
	Parameters:
	Programming Tips:

	% (modulo)
	Description
	Syntax
	Parameters
	Returns
	Examples
	Example Code
	Tip

	Comparison Operators
	if (conditional) and ==, !=, <, > (comparison operators)
	Comparison Operators:
	Warning:

	Boolean Operators
	&& (logical and)
	|| (logical or)
	! (not)
	Warning
	Examples
	See also

	The pointer operators
	& (reference) and * (dereference)

	Bitwise Operators
	Bitwise AND (&), Bitwise OR (|), Bitwise XOR (^)
	Bitwise AND (&)
	Description and Syntax
	Bitwise AND (&)
	Bitwise OR (|)
	Example Program
	Bitwise XOR (^)
	bitshift left (<<), bitshift right (>>)
	Description
	Syntax
	Parameters
	Example:

	Compound Operators
	++ (increment) / -- (decrement)
	Description
	Syntax
	Parameters
	Returns
	Examples

	+= , -= , *= , /=
	Description
	Syntax
	Parameters
	Examples

	compound bitwise AND (&=)
	Description
	Syntax:
	Parameters
	Example:

	compound bitwise OR (|=)
	Description
	Syntax:
	Parameters
	Example:

	Variables
	Constants
	Defining Logical Levels, true and false (Boolean Constants)
	false
	true

	Defining Pin Levels, HIGH and LOW
	Defining Digital Pins, INPUT, INPUT_PULLUP, and OUTPUT
	Pins Configured as INPUT
	Pins Configured as INPUT_PULLUP
	Pins Configured as Outputs

	Data Types
	void
	Example:

	boolean
	Example

	char
	Description
	Example

	unsigned char
	Description
	Example

	byte
	Description
	Example

	int
	Description
	Example
	Syntax
	Coding Tip

	unsigned int
	Description
	Example
	Syntax
	Coding Tip

	word
	Description
	Example

	long
	Description
	Example
	Syntax

	unsigned long
	Description
	Example
	Syntax

	float
	Description
	Examples
	Syntax
	Example Code

	double
	Desciption
	Tip

	string
	Description
	Examples
	Example

	Arrays
	Creating (Declaring) an Array
	Accessing an Array
	To assign a value to an array:
	To retrieve a value from an array:
	Arrays and FOR Loops
	Example

	Conversion
	char()
	Description
	Syntax
	Parameters
	Returns

	byte()
	Description
	Syntax
	Parameters
	Returns

	int()
	Description
	Syntax
	Parameters
	Returns

	word()
	Description
	Syntax
	Parameters
	Returns

	long()
	Description
	Syntax
	Parameters
	Returns

	float()
	Description
	Syntax
	Parameters
	Returns
	Notes

	Variable Scope & Qualifiers
	Variable Scope
	Example:

	Static
	Example

	volatile keyword
	Example

	const keyword
	Example
	#define or const

	Utilities
	sizeof
	Description
	Syntax
	Example code

	PROGMEM
	Syntax
	Example
	The F() macro

	Functions
	Digital I/O
	pinMode()
	Description
	Syntax
	Parameters
	Returns
	Example
	Note

	digitalWrite()
	Description
	Syntax
	Parameters
	Returns
	Example
	Note

	digitalRead()
	Description
	Syntax
	Parameters
	Returns
	Example
	Note

	Analog I/O
	analogReference(type)
	Description
	Parameters
	Returns
	Note
	Warning

	analogRead()
	Description
	Syntax
	Parameters
	Returns
	Note
	Example

	analogWrite()
	Description
	Syntax
	Parameters
	Returns
	Notes and Known Issues
	Example

	Advanced I/O
	tone()
	Description
	Syntax
	Parameters
	Returns

	noTone()
	Description
	Syntax
	Parameters
	Returns

	shiftOut()
	Description
	Syntax
	Parameters
	Returns
	Note
	Example

	shiftIn()
	Description
	Syntax
	Parameters
	Returns

	pulseIn()
	Description
	Syntax
	Parameters
	Returns
	Example

	Time
	millis()
	Description
	Parameters
	Returns
	Example
	Tip:

	micros()
	Description
	Parameters
	Returns
	Example

	delay()
	Description
	Syntax
	Parameters
	Returns
	Example
	Caveat

	delayMicroseconds()
	Description
	Syntax
	Parameters
	Returns
	Example
	Caveats and Known Issues

	Math
	min(x, y)
	Description
	Parameters
	Returns
	Examples
	Note
	Warning

	max(x, y)
	Description
	Parameters
	Returns
	Example
	Note
	Warning

	abs(x)
	Description
	Parameters
	Returns
	Warning

	constrain(x, a, b)
	Description
	Parameters
	Returns
	Example

	map(value, fromLow, fromHigh, toLow, toHigh)
	Description
	Parameters
	Returns
	Example
	Appendix

	pow(base, exponent)
	Description
	Parameters
	Returns
	Example

	sqrt(x)
	Description
	Parameters
	Returns

	Trigonometry
	sin(rad)
	Description
	Parameters
	Returns

	cos(rad)
	Description
	Parameters
	Returns

	tan(rad)
	Description
	Parameters
	Returns

	Random Numbers
	randomSeed(seed)
	Description
	Parameters
	Returns
	Example

	random()
	Description
	Syntax
	Parameters
	Returns
	Note:
	Example

	Bits and Bytes
	lowByte()
	Description
	Syntax
	Parameters
	Returns

	highByte()
	Description
	Syntax
	Parameters
	Returns

	bitRead()
	Description
	Syntax
	Parameters
	Returns

	bitWrite()
	Description
	Syntax
	Parameters
	Returns

	bitSet()
	Description
	Syntax
	Parameters
	Returns

	bitClear()
	Description
	Syntax
	Parameters
	Returns

	bit()
	Description
	Syntax
	Parameters
	Returns

	External Interrupts
	attachInterrupt()
	Description
	Syntax
	Parameters
	Returns
	Note
	Using Interrupts
	Example

	detachInterrupt()
	Description
	Syntax
	Parameters
	See also

	Interrupts
	interrupts()
	Description
	Parameters
	Returns
	Example

	noInterrupts()
	Description
	Parameters
	Returns
	Example

	Communication
	Serial
	Functions
	Examples

	1 if (Serial)
	Description
	Syntax
	Parameters
	Returns
	Example:

	2 available()
	Description
	Syntax
	Parameters
	Returns

	Example

	3 begin()
	Description
	Syntax
	Parameters
	Returns
	Example:
	See also

	4 end()
	Description
	Syntax
	Parameters
	Returns

	5 Serial.find()
	Description
	Syntax
	Parameters
	Returns
	See als

	6 Serial.findUntil()
	Description
	Syntax
	Parameters
	Returns
	See als

	7 flush()
	Description
	Syntax
	Parameters
	Returns
	See als

	8 Serial.parseFloat()
	Description
	Syntax
	Parameters
	Returns

	9 parseInt()
	Description
	Syntax
	Parameters
	Returns

	Example

	10 peek()
	Description
	Syntax
	Parameters
	Returns

	11 print()
	Description
	Syntax
	Parameters
	Returns
	Example:
	Programming Tips
	See also

	12 println()
	Description
	Syntax
	Parameters
	Returns
	Example:
	See also

	13 read()
	Description
	Syntax
	Parameters
	Returns

	Example

	14 Serial.readBytes()
	Description
	Syntax
	Parameters
	Returns
	See

	15 Serial.readBytesUntil()
	Description
	Syntax
	Parameters
	Returns
	See

	16 Serial.setTimeout()
	Description
	Syntax
	Parameters
	Parameters
	See a

	17 write()
	Description
	Syntax
	Parameters
	Returns
	Example

	18 serialEvent()
	Description
	Syntax
	Parameters
	Examples
	Read ASCII String
	Hardware Required
	Circuit
	Code
	ASCII Table
	Hardware Required
	Circuit
	Code
	Output
	Dimmer
	Hardware Required
	Circuit
	Schematic
	Code
	Processing Code
	Max code
	Graph
	Hardware Required
	Circuit
	Schematic
	Code
	Processing Sketch
	Max Code
	Physical Pixel
	Hardware Required
	Circuit
	Schematic
	Code
	Processing Code
	Max patch
	Virtual Color Mixer
	Hardware Required
	Circuit
	Schematic
	Code
	Processing Code
	Max Code
	Serial Call and Response (handshaking)
	Hardware Required
	Circuit
	Schematic
	Code
	Processing Code
	Max Code
	Serial Call and Response (handshaking) with ASCII-encoded output
	Hardware Required
	Circuit
	Schematic
	Code
	Processing Code
	Max Code

	Stream
	Functions
	1 available()
	Description
	Syntax
	Parameters
	Returns
	See also

	2 read()
	Description
	Syntax
	Parameters
	Returns
	See also

	3 flush()
	Description
	Syntax
	Parameters
	Returns
	See also

	4 find()
	Description
	Syntax
	Parameters
	Returns
	See also

	5 findUntil()
	Description
	Syntax
	Parameters
	Returns

	6 peek()
	Syntax
	Parameters
	Returns
	See Also

	7 readBytes()
	Description
	Syntax
	Parameters
	Returns

	8 readBytesUntil()
	Description
	Syntax
	Parameters
	Returns
	See also

	9 parseInt()
	Description
	Syntax
	Parameters
	Returns
	See

	10 parseFloat()
	Description
	Syntax
	Parameters
	Returns
	See

	11 setTimeout()
	Description
	Syntax
	Parameters
	Parameters

