
Chapter	1.	Getting	Started	with	Python
and	Arduino
This	chapter	introduces	the	Python	programming	language	and	the	open	source	electronic
prototyping	platform	Arduino.	The	first	section	of	the	chapter	focuses	on	Python	and
briefly	describes	the	benefits	of	Python	along	with	installation	and	configuration	steps.
The	remaining	part	of	the	chapter	describes	Arduino	and	Arduino’s	development
environment.

At	the	end	of	this	chapter,	you	will	have	configured	a	programming	environment	for	both
Python	and	Arduino	for	your	favorite	operating	system.	If	you	are	a	beginner	with	either
or	both	platforms	(that	is,	Python	and	Arduino),	it	is	advisable	that	you	follow	the	given
steps	in	this	chapter,	as	the	later	chapters	will	assume	that	you	have	the	exact
configuration	described	here.	If	you	have	previous	experience	of	working	with	these
platforms,	you	can	skip	to	the	next	chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction	to	Python
Since	its	introduction	by	Guido	van	Rossum	in	1991,	Python	has	grown	into	one	of	the
most	widely	used	general-purpose,	high-level	programming	languages,	and	is	supported
by	one	of	the	largest	open	source	developer	communities.	Python	is	an	open	source
programming	language	that	includes	a	lot	of	supporting	libraries.	These	libraries	are	the
best	feature	of	Python,	making	it	one	of	the	most	extensible	platforms.	Python	is	a
dynamic	programming	language,	and	it	uses	an	interpreter	to	execute	code	at	runtime
rather	than	using	a	compiler	to	compile	and	create	executable	byte	codes.

The	philosophy	behind	the	development	of	Python	was	to	create	flexible,	readable,	and
clear	code	to	easily	express	concepts.	The	emphasis	on	using	whitespace	indentation	in	a
unique	way	differentiates	Python	from	other	popular	high-level	languages.	Python
supports	functional,	imperative,	and	object-oriented	programming	with	automatic	memory
management.

www.it-ebooks.info

http://www.it-ebooks.info/

Why	we	use	Python
Python	is	considered	to	be	one	of	the	easiest	languages	to	learn	for	first-time
programmers.	Compared	to	other	popular	object-oriented	languages	such	as	C++	and
Java,	Python	has	the	following	major	benefits	for	programmers:

It	is	easy	to	read	and	understand
It	enables	rapid	prototyping	and	reduces	development	time
It	has	a	humongous	amount	of	free	library	packages

Python	has	a	huge	open	source	community	that	drives	forth	the	effort	for	continuous
improvement	of	Python	as	a	programming	language.	The	Python	community	is	also
responsible	for	the	development	of	a	large	amount	of	open	library	packages,	which	can	be
used	to	build	applications	that	span	from	dynamic	websites	to	complex	data	analysis
applications,	as	well	as	the	development	of	simple	GUI-based	applications	to	plot	charts
from	complex	math	functions.	The	majority	of	Python	library	packages	have
systematically	maintained	the	code	that	was	obtained	from	the	community	with	regular
updates.	The	de	facto	repository	that	indexes	the	largest	number	of	Python	packages	is
PyPI	(http://pypi.python.org).	PyPI	also	provides	simple	ways	to	install	various	packages
on	your	operating	system,	which	will	be	covered	in	the	upcoming	section.

While	working	with	the	hardware	platform,	it	is	necessary	to	have	some	means	of
communication	between	the	hardware	and	the	computer	that	you	are	using	for
development.	Among	the	common	computer	to	hardware	interfacing	methods,	serial-	port-
based	communication	is	the	most	popular,	and	it	is	really	simple	to	establish,	especially
for	the	Arduino	platform.	Python	provides	a	library	called	pySerial	that	is	really	easy	to
use	and	quick	to	implement	to	interface	a	serial	port.	It	is	really	simple	to	use	similar
libraries	and	Python’s	interactive	programming	abilities	to	rapidly	test	and	implement	your
project	ideas.

Nowadays,	complex	Internet	of	Things	(IoT)	applications	not	only	require	serial
communication	support,	but	they	also	need	additional	high-level	features	such	as
graphical	user	interfaces	(GUIs)	for	operating	systems,	web	interfaces	for	remote
access,	plots	for	data	visualization,	tools	for	data	analysis,	interfaces	for	data	storage,	and
so	on.	Using	any	other	programming	language	such	as	C++	or	Java,	the	development	of
these	features	would	require	a	large	amount	of	programming	effort	due	to	the	distributed
and	unorganized	nature	of	the	supporting	tools.	Thankfully,	Python	has	been	very
successful	at	providing	support	for	these	types	of	applications	for	years.	Python	has	a
number	of	libraries	to	support	the	development	of	each	of	the	features	mentioned	here,
which	are	available	through	PyPI.	These	libraries	are	open	source,	easy	to	use,	and	widely
supported	by	the	community.	This	makes	Python	a	language	of	choice	for	IoT
applications.	Additionally,	Python	also	has	support	to	create	and	ship	your	custom-built
applications	as	libraries	so	that	everyone	else	can	also	utilize	them	in	their	projects.	This	is
a	helpful	feature	if	you	are	developing	custom	protocols,	APIs,	or	algorithms	for	your	own
hardware	products.

www.it-ebooks.info

http://pypi.python.org
http://www.it-ebooks.info/

When	do	we	use	other	languages
So,	when	should	we	not	use	Python	for	our	projects?	As	mentioned	earlier,	Python	is	a
dynamic	language	that	reduces	development	time,	but	it	also	makes	the	execution	of	your
code	slower	as	compared	to	other	static	high-level	languages	such	as	C,	C++,	and	Java.
These	static	languages	use	a	compiler	to	compile	the	code	and	create	binaries	that	get
executed	during	runtime,	thereby	increasing	the	runtime	performance.	When	the
performance	of	the	code	is	more	important	than	a	longer	development	time	and	higher
cost,	you	should	consider	these	static	languages.	Some	other	drawbacks	of	Python	include
being	memory	heavy,	not	having	the	proper	support	for	threading,	and	lacking	data
protection	features.	In	short,	we	can	say	that	even	though	Python	provides	quicker	and
easier	ways	for	quick	prototyping,	we	should	consider	other	static	high-level	languages	for
development	after	we	are	done	testing	our	prototype	and	we	are	ready	to	ship	our	product.
Nowadays,	this	scenario	is	changing	rapidly	and	companies	have	started	utilizing	Python
for	their	industrial	products.

Note
You	can	obtain	more	Python-related	information	from	the	official	website	at
http://www.python.org.

www.it-ebooks.info

http://www.python.org
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Installing	Python	and	Setuptools
Python	comes	in	two	versions:	Python	v2.x	and	Python	v3.x.	(Here,	x	represents	an
appropriate	version	number.)	While	Python	v2.x	is	a	legacy	branch	and	has	better	library
support,	Python	v3.x	is	the	future	of	Python.	Most	Linux	distributions	and	Mac	OS	X
operating	systems	are	equipped	with	Python,	and	they	have	v2.x	as	their	preferred	and
default	version	of	Python.	We	will	be	using	Python	v2.7	as	the	default	version	of	Python
for	the	rest	of	the	book	due	to	the	following	reasons:

It	is	the	most	current	version	of	the	Python	v2.x	branch
It	has	large	community	support	and	solutions	for	its	known	issues	are	available
through	support	forums
It	is	supported	by	most	of	the	major	Python	libraries

Even	though	the	code	samples,	exercises,	and	projects	provided	in	this	book	should	work
in	any	variant	of	Python	2.7.x,	it’s	better	to	have	the	latest	version.

www.it-ebooks.info

http://www.it-ebooks.info/

Installing	Python
Your	fondness	for	an	operating	system	is	developed	due	to	multiple	factors,	and	you	can
never	ignore	someone’s	bias	towards	a	particular	OS.	Thus,	this	book	provides	installation
and	configuration	guidelines	for	three	of	the	most	popular	operating	systems:	Linux,	Mac
OS	X,	and	Windows.	Let’s	begin	by	configuring	Python	for	a	Linux	computer.

www.it-ebooks.info

http://www.it-ebooks.info/

Linux
The	majority	of	Linux	distributions	come	with	Python	preinstalled.	To	check	the	latest
version	of	the	installed	Python,	use	the	following	command	at	the	terminal	window:

$	python	-V

Make	sure	that	you	are	using	an	uppercase	V	as	the	option	for	the	previous	command.
Once	you	execute	it	on	the	terminal,	it	will	print	the	complete	version	number	of	your
current	Python	installation.	If	the	version	is	2.7.x,	you	are	good	to	go	and	your	Linux	is
updated	with	the	latest	version	of	Python	that	is	required	for	this	book.	However,	if	you
have	any	version	that	is	less	than	or	equal	to	2.6.x,	you	will	need	to	first	upgrade	Python	to
the	latest	version.	This	process	will	require	root	privileges,	as	Python	will	be	installed	as	a
system	component	that	will	replace	the	previous	versions.

Ubuntu
If	you	are	using	Ubuntu	11.10	or	later	versions,	you	should	already	have	Python	v2.7.x
installed	on	your	machine.	You	can	still	upgrade	Python	to	the	latest	revision	of	v2.7.x
using	the	following	command:

$	sudo	apt-get	update	&&	sudo	apt-get	--only-upgrade	install	python

If	you	are	running	an	older	version	of	Ubuntu	(such	as	10.04	or	older),	you	should	have
2.6	as	the	default	version.	In	this	case,	you	will	need	to	run	the	following	set	of	commands
to	install	version	2.7:

$	sudo	add-apt-repository	ppa:fkrull/deadsnakes

$	sudo	apt-get	update

$	sudo	apt-get	install	python2.7

The	first	command	will	add	an	external	Ubuntu	repository,	which	will	allow	you	to	install
any	version	of	Python.	The	next	command	will	update	and	index	the	list	of	available
packages.	The	last	command	will	install	the	latest	version	of	Python	2.7.

Fedora	and	Red	Hat
Fedora	and	Red	Hat	Linux	also	ships	with	Python	as	an	in-built	package.	If	you	want	to
upgrade	the	version	of	Python	to	the	latest	one,	run	the	following	command	at	the
terminal:

$	sudo	yum	upgrade	python

Tip
Downloading	the	example	code

You	can	download	the	example	code	files	from	your	account	at	http://www.packtpub.com
for	all	the	Packt	Publishing	books	you	have	purchased.	If	you	purchased	this	book
elsewhere,	you	can	visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-
mailed	directly	to	you.

www.it-ebooks.info

http://www.packtpub.com
http://www.packtpub.com/support
http://www.it-ebooks.info/

Windows
Installation	and	configuration	of	Python	on	Windows	is	not	as	straightforward	as	it	is	for
Linux.	First	of	all,	you’ll	need	to	download	a	copy	of	Python	from
http://www.python.org/getit.

You	need	to	be	careful	about	the	version	of	Python	that	you	are	downloading.	From	the
system	properties	of	your	Windows	OS,	check	whether	the	operating	system	is	of	32	bit	or
64	bit.	At	the	time	this	book	was	being	written,	the	latest	version	of	Python	was	2.7.6.	So,
download	the	latest	available	version	of	Python,	but	make	sure	that	it	is	2.7.x	and	not	3.x.

For	many	third-party	Python	libraries,	the	installation	binary	files	for	Windows	are
compiled	for	the	32-bit	version.	Due	to	this	reason,	we	will	recommend	that	you	install	the
32-bit	version	of	Python	for	your	Windows	OS.

If	you	are	really	familiar	with	Python	and	know	your	way	around	installing	libraries,	you
can	install	the	64-bit	version	of	Python.	Select	and	run	the	downloaded	file	to	install
Python.	Although	you	can	install	it	to	any	custom	location,	it	is	advisable	to	use	the
default	installation	location	as	the	upcoming	configuration	steps	use	the	default	location.
Once	the	installation	is	complete,	you	can	find	the	Python	command-line	tool	and	IDLE
(Python	GUI)	from	the	Start	menu.

Although	you	can	always	open	these	tools	from	the	Start	menu	for	basic	scripting,	we
will	modify	the	Windows	system	parameters	to	make	Python	accessible	through	the
Windows	command	prompt.	To	accomplish	this,	we	will	have	to	set	up	PATH	in
environment	variables	for	the	location	of	the	Python	installation	directory.	Let’s	open
System	Properties	by	right-clicking	on	My	Computer	and	then	selecting	Properties.
Otherwise,	you	can	also	navigate	to	Start	|	Control	Panel	|	System	and	Security	|
System.

You	will	be	able	to	see	a	window	similar	to	the	one	that	is	displayed	in	the	following
screenshot.	The	System	window	shows	you	the	basic	information	about	your	computer,
including	the	type	of	Windows	operating	system	that	you	are	using	(such	as	the	32-bit	or
the	64-bit	version):

www.it-ebooks.info

http://www.python.org/getit
http://www.it-ebooks.info/

In	the	System	window,	click	on	Advanced	system	settings	in	the	left	navigation	bar	to
open	a	window	called	System	Properties.	Click	on	the	Environment	Variables…	button
in	the	System	Properties	window,	which	is	located	at	the	bottom	of	the	window.	This	will
open	an	interface	similar	to	the	one	shown	in	the	following	screenshot.	In	Environment
Variables,	you	need	to	update	the	PATH	system	variable	to	add	Python	to	the	default
operating	system’s	path.

Click	on	the	PATH	option	as	displayed	in	the	following	screenshot,	which	will	pop	up	an
Edit	System	Variable	window.	Add	C:\Python27	or	the	full	path	of	your	custom	Python
installation	directory	at	the	end	of	your	existing	PATH	variable.	It	is	required	to	put	a
semicolon	(;)	before	the	Python	installation	path.	If	you	already	see	Python’s	location	in
the	Path	variable,	your	system	is	set	up	for	Python	and	you	don’t	need	to	perform	any
changes:

www.it-ebooks.info

http://www.it-ebooks.info/

The	main	benefit	of	adding	Python	to	the	environment	variables	is	to	enable	access	to	the
Python	interpreter	from	the	command	prompt.	In	case	you	don’t	know,	the	Windows
command	prompt	can	be	accessed	by	navigating	to	Start	|	Programs	|	Accessories	|
Command	Prompt.

www.it-ebooks.info

http://www.it-ebooks.info/

Mac	OS	X
Mac	OS	X	ships	with	a	preinstalled	copy	of	Python,	but	due	to	the	long	release	cycle	of
the	operating	system,	the	frequency	of	updates	for	the	default	Python	application	is	slow.
The	latest	version	of	Mac	OS	X,	which	is	10.9	Maverick,	comes	equipped	with	Python
2.7.5,	which	is	the	latest	version:

Tests-Mac:~	test$	python

Python	2.7.5	(default,	Aug	25	2013,	00:04:04)

[GCC	4.2.1	Compatible	Apple	LLVM	5.0	(clang-500.0.68)]	on	darwin

Type	"help",	"copyright",	"credits"	or	"license"	for	more	information.

>>>

Previous	versions	such	as	Mac	OS	X	10.8	Mountain	Lion	and	Mac	OS	X	10.7	Lion
included	Python	2.7.2	and	Python	2.7.1	respectively,	which	are	also	compatible	versions
for	this	book.	If	you	are	an	experienced	Python	user	or	someone	who	wants	to	work	with
the	latest	version	of	Python,	you	can	download	the	latest	version	from
http://www.python.org/getit.

Older	versions	of	Mac	OS	X	such	as	Snow	Leopard	and	later,	which	came	with	an	older
version	of	Python,	can	be	updated	to	the	latest	version	by	downloading	and	installing	it
from	http://www.python.org/getit.

www.it-ebooks.info

http://www.python.org/getit
http://www.python.org/getit
http://www.it-ebooks.info/

Installing	Setuptools
Setuptools	is	a	library	containing	a	collection	of	utilities	for	building	and	distributing
Python	packages.	The	most	important	tool	from	this	collection	is	called	easy_install.	It
allows	a	user	to	look	into	PyPI,	the	Python	package	repository	that	we	mentioned
previously,	and	provides	a	simple	interface	to	install	any	package	by	name.	The
easy_install	utility	automatically	downloads,	builds,	installs,	and	manages	packages	for
the	user.	This	utility	has	been	used	in	the	later	part	of	this	book	to	install	the	necessary
packages	required	for	the	upcoming	projects	of	Python	and	Arduino.	Although
easy_install	has	been	used	as	a	simple	way	of	installing	Python	packages,	it	misses	out
on	a	few	useful	features	such	as	tracking	actions,	support	for	uninstallation,	and	support
for	other	version	control	systems.	In	recent	years,	the	Python	community	has	started
adopting	another	tool	called	pip	over	easy_install	that	supports	these	features.	As	both
easy_install	and	pip	utilize	the	same	PyPI	repository,	going	forward,	you	can	use	any	of
these	utilities	to	install	the	required	Python	packages.

Just	to	narrow	down	the	scope,	we	will	be	focusing	on	methods	to	install	Setuptools	and
the	default	utilities	that	get	installed	with	it,	that	is,	easy_install.	Later	in	this	section,
we	will	also	install	pip,	just	in	case	you	want	to	use	it	too.	Let’s	first	begin	by	installing
Setuptools	for	the	various	operating	systems.

Linux
In	Ubuntu,	Setuptools	is	available	in	the	default	repository	and	it	can	be	installed	using	the
following	command:

$	sudo	apt-get	install	python-setuptools

For	Fedora,	it	can	be	installed	using	the	default	software	manager	yum:

$	sudo	yum	install	python-setuptools

For	other	Linux	distributions,	it	can	be	downloaded	and	built	using	the	following	single-
line	script:

$	wget	https://bitbucket.org/pypa/setuptools/raw/bootstrap/ez_setup.py	-O	-	

|	sudo	python

Once	it	is	installed	on	your	Linux	distribution,	easy_install	can	be	directly	accessed
from	the	terminal	as	a	built-in	command.

Windows
Installation	of	Setuptools	is	not	that	straightforward	for	Windows	as	compared	to	Linux.	It
requires	the	user	to	download	the	ez_setup.py	file	from	the	Windows	section	at
https://pypi.python.org/pypi/setuptools.

Once	this	is	downloaded,	press	Shift	and	right-click	in	the	folder	where	you	downloaded
the	ez_setup.py	file.	Select	Open	command	window	here	and	execute	the	following
command:

www.it-ebooks.info

https://pypi.python.org/pypi/setuptools
http://www.it-ebooks.info/

>	python	ez_setup.py

This	will	install	Setuptools	in	the	Scripts	folder	of	your	default	Python	installation	folder.
Using	the	same	method	that	we	used	when	we	added	Python	to	Environment	Variables,
now	include	Setuptools	by	adding	C:\Python27\Scripts	to	PATH,	followed	by	the
semicolon	(;).

This	will	enable	the	installation	of	various	Python	packages	using	easy_install	to	your
Python	packages	folder	called	Libs.	Once	you	have	added	the	package	manager	to	the
environment	variables,	you	need	to	close	and	reopen	the	command	prompt	for	these
changes	to	take	effect.

Mac	OS	X
Setuptools	can	be	installed	in	Mac	OS	X	using	any	of	the	following	methods.	It	is
advisable	for	beginners	to	use	the	first	method,	as	the	second	method	requires	the	external
package	manager	Homebrew.

If	you	have	never	worked	with	Homebrew	before,	you	will	need	to	follow	these	steps	to
install	Setuptools	on	your	Mac:

1.	 Download	ez_setup.py	from	the	Unix/Mac	section	at
https://pypi.python.org/pypi/setuptools.

2.	 Open	the	terminal	and	navigate	to	the	directory	where	you	downloaded	this	file.	For
most	browsers,	the	file	gets	saved	to	the	Download	folder.

3.	 Run	the	following	command	in	the	terminal	to	build	and	set	up	Setuptools:

$	sudo	python	ez_setup.py

If	you	are	familiar	with	Homebrew-based	software	installation,	just	follow	these	quick
steps	to	install	Setuptools:

1.	 First,	install	wget	from	Homebrew	if	you	don’t	have	it	already:

$	brew	install	wget

2.	 Once	you	have	installed	wget,	run	the	following	command	in	the	terminal:

$	wget	https://bitbucket.org/pypa/setuptools/raw/bootstrap/ez_setup.py	

-O	-	|	python

Note
More	information	regarding	the	Homebrew	utility	can	be	obtained	from
http://brew.sh.

You	can	install	Homebrew	on	your	Mac	by	running	the	following	simple	script	in	the
terminal:

ruby	-e	"$(curl	-fsSL	

https://raw.githubusercontent.com/Homebrew/install/master/install)"

www.it-ebooks.info

https://pypi.python.org/pypi/setuptools
http://brew.sh
http://www.it-ebooks.info/

Installing	pip
As	you	have	successfully	installed	Setuptools,	let’s	use	it	to	install	pip.	For	Linux	or	Mac
OS	X,	you	can	run	the	following	command	in	the	terminal	to	install	pip:

$	sudo	easy_install	pip

For	Windows,	open	the	command	prompt	and	execute	the	following	command:

>	easy_install.exe	pip

If	you	have	already	installed	pip	on	your	computer,	please	make	sure	that	you	upgrade	it
to	the	latest	version	to	overcome	the	few	bugs	that	are	associated	with	the	upgrade.	You
can	upgrade	pip	using	the	following	command	at	the	terminal:

$	sudo	easy_install	--upgrade	pip

Since	you	have	already	used	easy_install	to	install	a	Python	package,	let’s	get	ourselves
more	familiar	with	Python	package	management.

www.it-ebooks.info

http://www.it-ebooks.info/

Installing	Python	packages
With	the	installation	of	pip,	you	have	two	different	options	to	install	any	third-party
Python	package	listed	on	the	PyPi	repository	(http://pypi.python.org).	The	following	are
the	various	procedures	that	you	need	to	know	to	work	with	the	installation	of	Python
packages.	In	the	following	examples,	the	term	PackageName	is	a	pseudo	name	that	is	used
for	a	Python	package	that	you	want	to	work	with.	For	your	package	of	choice,	identify	the
appropriate	package	name	from	the	PyPi	website	and	put	its	name	in	place	of
PackageName.	In	some	cases,	you	will	need	root	(super	user)	privileges	to	install	or
uninstall	a	package.	You	can	use	sudo	followed	by	an	appropriate	command	for	these
cases.

To	install	a	Python	package,	execute	the	following	command	at	the	terminal:

$	easy_install	PackageName

Otherwise,	you	can	also	execute	the	following	command:

$	pip	install	PackageName

If	you	want	to	install	a	specific	version	of	a	package,	you	can	use	the	following	command:

$	easy_install	"PackageName==version"

If	you	are	not	aware	of	the	exact	version	number,	you	can	also	use	comparison	operators
such	as	>,	<,	>=,	or	<=	to	specify	a	range	for	the	version	number.	Both	easy_install	and
pip	will	select	the	best	matching	version	of	the	package	from	the	repository	and	install	it:

$	easy_install	"PackageName	>	version"

Meanwhile,	for	pip,	you	can	use	the	following	identical	commands	to	perform	similar
operations:

$	pip	install	PackageName==version

$	pip	install	"PackageName>=version"

As	an	example,	if	you	want	to	install	a	version	between	1.0	and	3.0,	you	will	need	to	use
the	following	command:

$	pip	install	"PackageName>=0.1,<=0.3"

It	is	really	easy	to	upgrade	a	package	using	either	easy_install	or	pip.	The	command
options	used	by	both	are	also	very	similar:

$	easy_install	--upgrade	PackageName

$	pip	install	--upgrade	PackageName

Although	easy_install	doesn’t	support	clean	uninstallation	of	a	package,	you	can	use	the
following	command	to	make	sure	that	Python	stops	searching	for	the	specified	package.
Later,	carefully	remove	the	package	files	from	the	installation	directory:

$	easy_install	-mxN	PackageName

A	much	better	way	to	perform	a	clean	uninstallation	of	the	majority	of	packages	is	to	use

www.it-ebooks.info

http://pypi.python.org
http://www.it-ebooks.info/

pip	instead	of	easy_install:

$	pip	uninstall	PackageName

A	detailed	list	of	the	Python	packages	supported	by	Setuptools	can	be	found	at	the	PyPI
website	at	https://pypi.python.org/.

www.it-ebooks.info

https://pypi.python.org/
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

The	fundamentals	of	Python
programming
If	you	have	previous	experience	of	working	with	any	other	programming	language,
Python	is	very	easy	to	get	started	with.	If	you	have	never	done	programming	before,	this
section	will	walk	you	through	some	of	the	basics	of	Python.	If	you	have	already	worked
with	Python,	you	should	skip	this	section	and	move	on	to	the	next	one.

Assuming	that	the	setup	instructions	are	followed	correctly,	let’s	open	the	Python
interpreter	by	executing	the	Python	command	at	the	terminal	or	the	command	prompt.	You
should	get	results	similar	to	those	displayed	in	the	following	screenshot.	If	you	have
installed	Python	by	downloading	the	setup	files	from	the	website,	you	should	have	the
Python	integrated	development	environment	(IDLE)	installed	as	well.	You	can	also
start	the	Python	interpreter	by	opening	its	IDLE	from	the	location	where	it	was	installed.

As	you	can	see,	after	printing	some	system	information,	the	interpreter	opens	a	prompt
with	three	greater-than	signs	(>>>),	which	is	also	known	as	the	primary	prompt.	The
interpreter	is	now	in	the	interactive	mode	and	it	is	ready	to	execute	scripts	from	the
prompt.

To	close	the	interactive	mode	of	the	Python	interpreter,	run	the	either	exit()	or	quit(),	at
the	primary	prompt.	Another	method	to	exit	from	the	interactive	mode	is	to	use	the
keyboard	shortcut	Ctrl	+	D.

Note
Note	that	Python’s	built-in	functions	are	case	sensitive.	This	means	the	following:

exit()	≠	EXIT()	≠	Exit()

The	official	Python	website	provides	comprehensive	tutorials	for	beginners	to	get	started
with	Python	programming.	It	is	highly	recommended	that	you	visit	the	official	Python
tutorials	at	https://docs.python.org/2/tutorial/index.html	if	you	are	looking	for	detailed
programming	tutorials	as	compared	to	the	upcoming	brief	overviews.

www.it-ebooks.info

https://docs.python.org/2/tutorial/index.html
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Python	operators	and	built-in	types
Now	that	you	have	a	brief	idea	regarding	the	Python	prompt,	let’s	get	you	familiar	with
some	of	the	basic	Python	commands.	For	these	exercises,	we	will	be	using	the	Python
IDLE,	which	also	opens	with	the	Python	interactive	prompt.	You	will	require	a	method	to
describe	the	code	segments,	tasks,	and	comments	when	writing	large	and	complex	code.
Non-executable	content	is	called	comments	in	any	programming	language,	and	in	Python,
they	start	with	the	hashtag	character	(#).	Like	comments,	you	will	be	frequently	required
to	check	the	output	by	printing	on	the	prompt	using	the	print	command:

>>>	#	Fundamental	of	Python

>>>	#	My	first	comment

>>>	name	=	"John"	#	This	is	my	name

>>>	print	name

John

Note
Instead	of	IDLE,	you	can	also	access	the	Python	interactive	prompt	from	the	terminal.
When	using	Python	from	the	terminal,	make	sure	that	you	are	taking	care	of	the
indentation	properly.

www.it-ebooks.info

http://www.it-ebooks.info/

Operators
Python	supports	the	usage	of	basic	mathematical	operators	such	as	+,	-,	*,	and	/,	directly
from	the	interpreter.	Using	these	operators,	you	can	perform	basic	calculations	in	the
prompt,	as	shown	in	the	following	examples.	Try	these	operations	in	your	prompt	in	order
to	start	using	the	Python	interpreter	as	a	calculator:

>>>	2	+	2

4

>>>	(2*3)	+	1

7

>>>	(2*3)	/	5

1

Note
When	working	with	the	Python	interpreter,	it	is	recommended	that	you	follow	the	Style
Guide	for	Python	Code,	which	is	also	popularly	known	as	PEP-8	or	pep8.	For	more
information	about	PEP-8,	visit	https://www.python.org/dev/peps/pep-0008/.

www.it-ebooks.info

https://www.python.org/dev/peps/pep-0008/
http://www.it-ebooks.info/

Built-in	types
Python	is	a	dynamically	typed	language,	which	means	that	you	don’t	have	to	explicitly
declare	the	type	of	the	variables	when	initializing	them.	When	you	assign	a	value	to	a
variable,	the	Python	interpreter	automatically	deduces	the	data	type.	For	example,	let’s
declare	the	following	variables	in	the	interactive	mode	of	the	interpreter:

>>>	weight	=	height	=	5

>>>	weight	*	height

25

>>>	type(weight)

<type	'int'>

While	assigning	the	value	to	the	weight	variable,	we	didn’t	specify	the	data	type,	but	the
Python	interpreter	assigned	it	as	an	integer	type,	int.	The	interpreter	assigned	the	int	type
due	to	the	reason	that	the	numerical	value	didn’t	contain	any	decimal	points.	Let’s	now
declare	a	variable	with	a	value	containing	a	decimal	point.	The	built-in	function	type()
that	can	be	used	to	find	out	the	data	type	of	a	specified	variable:

>>>	length	=	6.0

>>>	weight	*	height	*	length

150.0

>>>	type(length)

<type	'float'>

As	you	can	see,	the	interpreter	assigns	the	data	type	as	float.	The	interpreter	can	also
deduce	the	type	of	complex	numbers,	as	shown	in	following	examples.	You	can	access	the
real	and	imaginary	value	of	a	complex	number	using	the	dot	(.)	operator	followed	by	real
and	imag:

>>>	val	=	2.0	+	3.9j

>>>	val.real

2.0

>>>	val.imag

3.9

Just	to	play	more	with	complex	numbers,	let’s	try	the	abs()	and	round()	functions	as
displayed	in	the	following	examples.	They	are	built-in	Python	functions	to	obtain	the
absolute	value	and	the	rounded	number	respectively:

>>>	abs(val)

4.382921400162225

>>>	round(val.imag)

4.0

Like	numbers,	the	Python	interpreter	can	also	automatically	identify	the	declaration	of
string	data	types.	In	Python,	string	values	are	assigned	using	single	or	double	quotes
around	the	value.	When	the	interpreter	sees	any	value	enclosed	within	quotes,	it	considers
it	to	be	a	string.	Python	supports	the	usage	of	the	+	operator	to	concatenate	strings:

>>>	s1	=	"Hello"

>>>	s2	=	"World!"

>>>	s1	+	s2

www.it-ebooks.info

http://www.it-ebooks.info/

'HelloWorld!'

>>>	s1	+	"	"	+	s2

'Hello	World!'

A	character	type	is	a	string	of	size	one	and	the	individual	characters	of	a	string	can	be
accessed	by	using	index	numbers.	The	first	character	of	a	string	is	indexed	as	0.	Play	with
the	following	scripts	to	understand	indexing	(subscripting)	in	Python:

>>>	s1[0]

'H'

>>>	s1[:2]

'He'

>>>	s1	+	s2[5:]

'Hello!'

Note
Similar	to	the	primary	prompt	with	default	notation	>>>,	the	Python	interactive	interpreter
also	has	a	secondary	prompt	that	uses	three	dots	(…)	when	it	is	being	used	from	the
terminal.	You	won’t	be	able	to	see	the	three	dots	in	IDLE	when	you	use	the	secondary
prompt.	The	secondary	prompt	is	used	for	a	multiline	construct,	which	requires	continuous
lines.	Execute	the	following	commands	by	manually	typing	them	in	the	interpreter,	and	do
not	forget	to	indent	the	next	line	after	the	if	statement	with	a	tab:

>>>	age	=	14

>>>	if	age	>	10	or	age	<	20:

...		print	"teen"

teen

Data	structures
Python	supports	four	main	data	structures	(list,	tuple,	set,	and	dictionary)	and	there
are	a	number	of	important	built-in	methods	around	these	data	structures.

Lists
Lists	are	used	to	group	together	values	of	single	or	multiple	data	types.	The	list	structure
can	be	assigned	by	stating	values	in	square	brackets	with	a	comma	(,)	as	a	separator:

>>>	myList	=	['a',	2,	'b',	12.0,	5,	2]

>>>	myList

['a',	2,	'b',	12.0,	5,	2]

Like	strings,	values	in	a	list	can	be	accessed	using	index	numbers,	which	starts	from	0.	A
feature	called	slicing	is	used	by	Python	to	obtain	a	specific	subset	or	element	of	the	data
structure	using	the	colon	operator.	In	a	standard	format,	slicing	can	be	specified	using	the
myList[start:end:increment]	notation.	Here	are	a	few	examples	to	better	understand
the	notion	of	slicing:

You	can	access	a	single	element	in	a	list	as	follows:

>>>	myList[0]

'a'

www.it-ebooks.info

http://www.it-ebooks.info/

You	can	access	all	the	elements	in	the	list	by	having	empty	start	and	end	values:

>>>	myList[:]

['a',	2,	'b',	12.0,	5,	2]

You	can	provide	start	and	end	index	values	to	obtain	a	specific	subset	of	the	list:

>>>	myList[1:5]

[2,	'b',	12.0,	5]

Use	of	the	minus	symbol	with	an	index	number	tells	the	interpreter	to	use	that	index
number	backwards.	In	the	following	example,	-1	backwards	actually	represents	the
index	number	5:

>>>	myList[1:-1]

[2,	'b',	12.0,	5]

You	can	obtain	every	other	element	of	the	list	by	providing	the	increment	value	with
start	and	end	values:

>>>	myList[0:5:2]

['a',	'b',	5]

You	can	check	the	length	of	a	list	variable	using	the	len()	method.	The	usage	of	this
method	will	be	handy	in	the	upcoming	projects:

>>>	len(myList)

6

You	can	also	perform	various	operations	to	add	or	delete	elements	in	the	existing	list.
For	example,	if	you	want	to	add	an	element	at	the	end	of	the	list,	use	the	append()
method	on	the	list:

>>>	myList.append(10)

>>>	myList

['a',	2,	'b',	12.0,	5,	2,	10]

To	add	an	element	at	a	specific	location,	you	can	use	the	insert(i,	x)	method,
where	i	denotes	the	index	value,	while	x	is	the	actual	value	that	you	want	to	add	to
the	list:

>>>	myList.insert(5,'hello')

>>>	myList

['a',	2,	'b',	12.0,	5,	'hello',	2,	10]

Similarly,	you	can	use	pop()	to	remove	an	element	from	the	list.	A	simple	pop()
function	will	remove	the	last	element	of	the	list,	while	an	element	at	a	specific
location	can	be	removed	using	pop(i),	where	i	is	the	index	number:

>>>	myList.pop()

10

>>>	myList

['a',	2,	'b',	12.0,	5,	'hello',	2]

>>>	myList.pop(5)

'hello'

>>>	myList

www.it-ebooks.info

http://www.it-ebooks.info/

['a',	2,	'b',	12.0,	5,	2]

Tuples
Tuples	are	immutable	data	structures	supported	by	Python	(different	from	the	mutable
structures	of	lists).	An	immutable	data	structure	means	that	you	cannot	add	or	remove
elements	from	the	tuple	data	structure.	Due	to	their	immutable	properties,	tuples	are	faster
to	access	compared	to	lists	and	are	mostly	used	to	store	a	constant	set	of	values	that	never
change.

The	tuple	data	structure	is	declared	like	list,	but	by	using	parentheses	or	without	any
brackets:

>>>	tupleA	=	1,	2,	3

>>>	tupleA

(1,	2,	3)

>>>	tupleB	=	(1,	'a',	3)

>>>	tupleB

(1,	'a',	3)

Just	like	in	a	list	data	structure,	values	in	tuple	can	be	accessed	using	index	numbers:

>>>	tupleB[1]

'a'

As	tuples	are	immutable,	list	manipulation	methods	such	as	append(),	insert(),	and
pop()	don’t	apply	for	tuples.

Sets
The	set	data	structure	in	Python	is	implemented	to	support	mathematical	set	operations.
The	set	data	structure	includes	an	unordered	collection	of	elements	without	duplicates.
With	its	mathematical	use	cases,	this	data	structure	is	mostly	used	to	find	duplicates	in
lists,	as	conversion	of	a	list	to	a	set	using	the	set()	function	removes	duplicates	from	the
list:

>>>	listA	=	[1,	2,	3,	1,	5,	2]

>>>	setA	=	set(listA)

>>>	setA

set([1,	2,	3,	5])

Dictionaries
The	dict	data	structure	is	used	to	store	key-value	pairs	indexed	by	keys,	which	are	also
known	in	other	languages	as	associative	arrays,	hashes,	or	hashmaps.	Unlike	other	data
structures,	dict	values	can	be	extracted	using	associated	keys:

>>>	boards	=	{'uno':328,'mega':2560,'lily':'128'}

>>>	boards['lily']

'128'

>>>	boards.keys()

['lily',	'mega',	'uno']

Note

www.it-ebooks.info

http://www.it-ebooks.info/

You	can	learn	more	about	Python	data	structures	and	associated	methods	at
https://docs.python.org/2/tutorial/datastructures.html.

www.it-ebooks.info

https://docs.python.org/2/tutorial/datastructures.html
http://www.it-ebooks.info/

Controlling	the	flow	of	your	program
Just	like	any	other	language,	Python	supports	controlling	the	program	flow	using
compound	statements.	In	this	section,	we	will	briefly	introduce	these	statements	to	you.
You	can	get	detailed	information	about	them	from	the	official	Python	documentation	at
https://docs.python.org/2/reference/compound_stmts.html.

The	if	statement
The	if	statement	is	the	most	basic	and	standard	statement	used	to	set	up	conditional	flow.
To	better	understand	the	if	statement,	execute	the	following	code	in	the	Python	interpreter
with	different	values	of	the	age	variable:

>>>	age	=	14

>>>	if	age	<	18	and	age	>	12:

		print	"Teen"

elif	age	<	13:

		print	"Child"

else:

		print	"Adult"

This	will	result	in	Teen	being	printed	on	the	interpreter.

The	for	statement
Python’s	for	statement	iterates	over	the	elements	of	any	sequence	according	to	the	order
of	the	elements	in	that	sequence:

>>>	celsius	=	[13,	21,	23,	8]

>>>	for	c	in	celsius:

		print	"	Fahrenheit:	"+	str((c	*	1.8)	+	32)

This	will	result	in	the	Python	interpreter	generating	the	following	output	that	will	display
the	calculated	Fahrenheit	values	from	the	given	Celsius	values:

Fahrenheit:	55.4

Fahrenheit:	69.8

Fahrenheit:	73.4

Fahrenheit:	46.4

The	while	statement
The	while	statement	is	used	to	create	a	continuous	loop	in	a	Python	program.	A	while
loop	keeps	iterating	over	the	code	block	until	the	condition	is	proved	true:

>>>	count	=	5

>>>	while	(count	>	0):

		print	count

		count	=	count	-	1

The	while	statement	will	keep	iterating	and	printing	the	value	of	the	variable	count	and
also	reduce	its	value	by	1	until	the	condition,	that	is	(count	>	0),	becomes	true.	As	soon
as	the	value	of	count	is	lower	than	or	equal	to	0,	the	while	loop	will	exit	the	code	block
and	stop	iterating.

www.it-ebooks.info

https://docs.python.org/2/reference/compound_stmts.html
http://www.it-ebooks.info/

The	other	compound	statements	supported	by	Python	are	try/catch	and	with.	These
statements	will	be	explained	in	detail	in	the	upcoming	chapters.	Python	also	provides	loop
control	statements	such	as	break,	continue,	and	pass	that	can	be	used	while	a	loop	is
being	executed	using	the	compound	statements	mentioned	earlier.	You	can	learn	more
about	these	Python	features	from	https://docs.python.org/2/tutorial/controlflow.html.

www.it-ebooks.info

https://docs.python.org/2/tutorial/controlflow.html
http://www.it-ebooks.info/

Built-in	functions
Python	supports	a	number	of	useful	built-in	functions	that	do	not	require	any	external
libraries	to	be	imported.	We	have	described	a	few	of	these	functions	as	a	collection	of	a
respective	category,	according	to	their	functionalities.

Conversions
Conversion	methods	such	as	int(),	float(),	and	str()	can	convert	other	data	types	into
integer,	float,	or	string	data	types	respectively:

>>>	a	=	'a'

>>>	int(a,base=16)

10

>>>	i	=	1

>>>	str(i)

'1'

Similarly,	list(),	set(),	and	tuple()	can	be	used	to	convert	one	data	structure	into
another.

Math	operations

Python	also	supports	built-in	mathematical	functions	that	can	find	the	minimum	and/or
maximum	values	from	a	list.	Check	out	the	following	examples	and	play	around	with	the
different	data	structures	to	understand	these	methods:

>>>	list	=	[1.12,	2,	2.34,	4.78]

>>>	min(list)

1.12

>>>	max(list)

4.78

The	pow(x,y)	function	returns	the	value	of	x	to	the	power	of	y:

>>>	pow(3.14159,	2)

9.869587728099999

String	operations

Python	provides	easy	access	to	string	manipulation	through	built-in	functions	that	are
optimized	for	performance.	Let’s	take	a	look	at	the	following	examples:

Code	to	replace	occurrences	of	a	string	or	substring	with	a	different	one:

>>>	str	=	"Hello	World!"

>>>	str.replace("World",	"Universe")

'Hello	Universe!'

Code	to	split	a	string	with	a	separating	character	where	the	default	character	is	space:

>>>	str	=	"Hello	World!"

>>>	str.split()

['Hello',	'World!']

Code	to	split	a	string	from	a	separating	character	for	any	other	character:

www.it-ebooks.info

http://www.it-ebooks.info/

>>>	str2	=	"John,	Merry,	Tom"

>>>	str2.split(",")

['John',	'	Merry',	'	Tom']

Code	to	convert	an	entire	string	value	into	uppercase	or	lowercase:

>>>	str	=	"Hello	World!"

>>>	str.upper()

'HELLO	WORLD!'

>>>	str.lower()

'hello	world!'

Note
The	Python	documentation	on	the	official	website	covers	every	built-in	function	in
detail	with	examples.	For	better	understanding	of	Python	programming,	visit
https://docs.python.org/2/library/functions.html.

www.it-ebooks.info

https://docs.python.org/2/library/functions.html
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction	to	Arduino
Any	electronic	product	that	needs	computation	or	interfacing	with	other	computers	first
requires	a	quick	prototyping	of	the	concept	using	simple	tools.	Arduino	is	an	open	source
hardware	prototyping	platform	designed	around	a	popular	microcontroller	family,	and	it
includes	a	simple	software	development	environment.	Besides	prototyping,	you	can	also
use	Arduino	for	the	development	of	your	own	do-it-yourself	(DIY)	projects.	Arduino
bridges	the	computational	world	with	the	physical	world	by	letting	you	simply	connect	the
sensors	and	actuators	with	a	computer.	Basically,	you	can	write	code	to	monitor	and
control	various	electronic	components	in	your	daily	life	by	using	Arduino’s	input/output
pins	and	microcontroller.	Examples	of	these	components	include	motors,	thermostats,
lights,	switches,	and	many	more.

www.it-ebooks.info

http://www.it-ebooks.info/

History
In	2005,	Massimo	Banzi,	the	Italian	cofounder	of	Arduino,	developed	the	technology	for
his	students	at	Interaction	Design	Institute	Ivrea	(IDII).	Since	then,	Arduino	has
developed	into	one	of	the	largest	open	source	hardware	platforms.	All	software
components	and	schematics	of	the	Arduino	design	are	open	source,	and	you	can	buy	the
hardware	at	a	very	low	cost—approximately	30	dollars—or	you	can	even	make	it
yourself.

www.it-ebooks.info

http://www.it-ebooks.info/

Why	Arduino?
The	major	goal	of	the	Arduino	community	is	to	continuously	improve	the	Arduino
platform	with	the	following	objectives	in	mind:

The	Arduino	platform	should	be	an	affordable	platform
It	should	be	easy	to	use	and	easy	to	code
It	should	be	an	open	source	and	extensible	software	platform
It	should	be	an	open	source	and	extensible	hardware	platform
It	should	have	community-supported	DIY	projects

These	simple	but	powerful	objectives	have	made	Arduino	a	popular	and	widely	used
prototyping	platform.	Arduino	uses	Atmel’s	ATmega	series	of	microcontrollers	that	are
based	on	the	popular	hardware	architecture	of	AVR.	The	huge	support	that	is	available	for
AVR	architecture	also	makes	Arduino	a	hardware	platform	of	choice.	The	following
image	shows	the	basic	version	of	the	Arduino	board,	which	is	called	Arduino	Uno	(Uno
means	one	in	Italian):

www.it-ebooks.info

http://www.it-ebooks.info/

Arduino	variants
Like	any	other	project,	hardware	requirements	are	driven	by	project	specifications.	If	you
are	developing	a	project	that	requires	you	to	interface	with	a	large	number	of	external
components,	you	need	a	prototyping	platform	that	has	a	sufficient	number	of	input/output
(I/O)	pins	for	interfacing.	If	you	are	working	on	a	project	that	needs	to	perform	a	huge
amount	of	complex	calculations,	you	require	a	platform	with	more	computation	capability.

Fortunately,	the	Arduino	board	exists	in	16	different	official	versions,	and	each	version	of
Arduino	differs	from	the	others	in	terms	of	form	factor,	computational	power,	I/O	pins,
and	other	on-board	features.	Arduino	Uno	is	the	basic	and	most	popular	version,	which	is
sufficient	enough	for	simple	DIY	projects.	For	the	majority	of	exercises	in	this	book,	we
will	be	using	the	Arduino	Uno	board.	You	can	also	use	another	popular	variant	called
Arduino	Mega,	which	is	a	larger	board	with	extra	pins	and	a	powerful	microcontroller.
The	following	table	shows	the	comparison	of	some	of	the	more	popular	and	active
variants	of	the	Arduino	board:

Name Processor Processor
frequency

Digital
I/O

Digital	I/O	with
PWM

Analog
I/O

Arduino	Uno ATmega328 16	MHz 14 6 6

Arduino
Leonardo ATmega32u4 16	MHz 14 6 12

Arduino	Mega ATmega2560 16	MHz 54 14 16

Arduino	Nano ATmega328 16	MHz 14 6 8

Arduino	Due AT91SAM3X8E 84	MHz 54 12 12

LilyPad	Arduino ATmega168v	or
ATmega328v 8	MHz 14 6 6

Any	of	these	variants	can	be	programmed	using	a	common	integrated	development
environment	called	Arduino	IDE,	which	is	described	in	the	upcoming	section.	You	can
select	any	one	of	these	Arduino	boards	according	to	your	project	requirements,	and	the
Arduino	IDE	should	be	able	to	compile	and	download	the	program	to	the	board.

www.it-ebooks.info

http://www.it-ebooks.info/

The	Arduino	Uno	board
As	Uno	is	going	to	be	the	de	facto	board	for	the	majority	of	the	projects	in	this	book,	let’s
get	ourselves	familiar	with	the	board.	The	latest	revision	of	the	Uno	board	is	based	on
Atmel’s	ATmega328	microcontroller.	The	board	extends	the	I/O	pins	of	the
microcontroller	to	the	peripheral,	which	can	then	be	utilized	to	interface	components	using
wires.	The	board	has	a	total	of	20	pins	to	interface,	out	of	which	14	are	digital	I/O	pins	and
6	are	analog	input	pins.	From	the	14	digital	I/O	pins,	6	pins	also	support	pulse-width
modulation	(PWM),	which	supports	the	controlled	delivery	of	power	to	connected
components.

The	board	operates	on	5V.	The	maximum	current	rating	of	the	digital	I/O	pins	is	40	mA,
which	is	sufficient	to	drive	most	of	the	DIY	electronic	components,	excluding	motors	with
high	current	requirements.

While	the	previous	image	provided	an	overview	of	the	Uno	board,	the	following	diagram
describes	the	pins	on	the	Uno	board.	As	you	can	see,	the	digital	pins	are	located	on	one
side	of	the	board	while	the	analog	pins	are	on	the	opposite	side.	The	board	also	has	a
couple	of	power	pins	that	can	be	used	to	provide	5V	and	3.3V	of	power	to	external
components.	The	board	contains	ground	pins	on	both	sides	of	the	board	as	well.	We	will
be	extensively	using	5V	of	power	and	ground	pins	for	our	projects.	Digital	pins	D0	and
D1	support	serial	interfacing	through	the	Tx	(transmission)	and	Rx	(receiver)	interfaces
respectively.	The	USB	port	on	the	board	can	be	used	to	connect	Arduino	with	a	computer.

Now	that	we	are	familiar	with	the	Arduino	hardware,	let’s	move	on	to	programming	the
Arduino	board.

www.it-ebooks.info

http://www.it-ebooks.info/

Installing	the	Arduino	IDE
The	first	step	to	start	getting	familiar	with	Arduino	is	to	install	the	Arduino	integrated
development	environment	(IDE).	According	to	the	operating	system	that	you	selected	at
the	beginning	of	the	Python	installation	section,	follow	the	appropriate	subsection	to
install	the	correct	IDE.

Linux
The	installation	of	the	Arduino	IDE	is	really	simple	in	Ubuntu.	The	Ubuntu	repository
already	includes	the	Arduino	IDE	with	the	required	dependencies.

For	Ubuntu	12.04	or	a	newer	version,	execute	the	following	command	in	the	terminal	to
install	Arduino:

$	sudo	apt-get	update	&&	sudo	apt-get	install	arduino	arduino-core

The	latest	version	of	the	Arduino	IDE	in	the	Ubuntu	repository	is	1.0.3.	You	can	obtain
more	information	regarding	other	Ubuntu-related	questions	at
http://playground.arduino.cc/Linux/Ubuntu.

For	Fedora	17	or	a	newer	version	of	Red	Hat	Linux,	execute	the	following	script	in	the
terminal:

$	sudo	yum	install	arduino

Answers	to	additional	installation	questions	for	Fedora	can	be	obtained	at
http://playground.arduino.cc/Linux/Fedora.

Mac	OS	X
To	install	the	Arduino	IDE	on	Mac	OS	X	(10.7	or	newer),	perform	the	following	steps:

1.	 From	http://arduino.cc/en/Main/Software,	download	the	latest	version	of	the	Arduino
IDE	for	Mac	OS	X,	which	was	1.0.5	when	this	book	was	being	written.

2.	 Unzip	and	drag	Arduino	to	the	application	folder.

The	Arduino	IDE	is	built	in	Java	and	requires	that	your	computer	is	equipped	with	the
appropriate	version	of	Java.	Open	the	IDE	from	your	applications.	If	you	don’t	have	Java
installed	on	your	Mac,	the	program	will	prompt	you	with	a	pop-up	window	and	ask	you	to
install	Java	SE	6	runtime.	Go	ahead	and	install	Java	(as	per	the	request)	as	the	OS	X	will
automatically	install	it	for	you.

Windows
Installation	of	Arduino	for	Windows	is	very	simple.	Download	the	setup	file	from
http://arduino.cc/en/Main/Software.	Select	the	most	recent	version	of	the	Arduino	IDE,
that	is,	1.0.x	or	a	newer	version.

Make	sure	you	download	the	appropriate	version	of	the	Arduino	IDE	according	to	your
operating	system,	that	is,	32	bit	or	64	bit.	Install	the	IDE	to	the	default	location	as
specified	in	the	installation	wizard.	Once	installed,	you	can	open	the	IDE	by	navigating	to

www.it-ebooks.info

http://playground.arduino.cc/Linux/Ubuntu
http://playground.arduino.cc/Linux/Fedora
http://arduino.cc/en/Main/Software
http://arduino.cc/en/Main/Software
http://www.it-ebooks.info/

Start	|	Programs.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Getting	started	with	the	Arduino	IDE
The	Arduino	IDE	is	a	cross-platform	application	developed	in	Java	that	can	be	used	to
develop,	compile,	and	upload	programs	to	the	Arduino	board.	On	launching	the	Arduino
IDE,	you	will	find	an	interface	similar	to	the	one	displayed	in	the	following	screenshot.
The	IDE	contains	a	text	editor	for	coding,	a	menu	bar	to	access	the	IDE	components,	a
toolbar	to	easily	access	the	most	common	functions,	and	a	text	console	to	check	the
compiler	outputs.	A	status	bar	at	the	bottom	shows	the	selected	Arduino	board	and	the	port
name	that	it	is	connected	to,	as	shown	here:

www.it-ebooks.info

http://www.it-ebooks.info/

What	is	an	Arduino	sketch?
An	Arduino	program	that	is	developed	using	the	IDE	is	called	a	sketch.	Sketches	are
coded	in	Arduino	language,	which	is	based	on	a	custom	version	of	C/C++.	Once	you	are
done	with	writing	the	code	in	the	built-in	text	editor,	you	can	save	it	using	the.ino
extension.	When	you	save	these	sketch	files,	the	IDE	automatically	creates	a	folder	to
store	them.	If	you	are	using	any	other	supporting	files	for	a	sketch,	such	as	header	files	or
library	files,	they	are	all	stored	at	this	location	(which	is	also	called	a	sketchbook).

To	open	a	new	sketchbook,	open	the	Arduino	IDE	and	select	New	from	the	File	menu,	as
shown	in	the	following	screenshot:

You	will	be	prompted	with	an	empty	text	editor.	The	text	editor	supports	standard	features
(that	is,	copy/paste,	select,	find/replace,	and	so	on).	Before	we	go	ahead	with	an	Arduino
program,	let’s	explore	the	other	tools	provided	by	the	IDE.

Note
The	Arduino	IDE	version	prior	to	1.0	used	the	.pde	extension	to	save	sketchbooks.
Starting	from	1.0,	they	are	saved	with	the	.ino	extension.	You	can	still	open	files	with	the
.pde	extension	in	the	latest	IDE.	Later,	the	IDE	will	convert	it	to	the	.ino	extension	when
you	save	them.

www.it-ebooks.info

http://www.it-ebooks.info/

Working	with	libraries
The	Arduino	IDE	uses	libraries	to	extend	the	functionalities	of	existing	sketches.	Libraries
are	a	set	of	functions	combined	to	perform	tasks	around	a	specific	component	or	concept.
The	majority	of	the	built-in	Arduino	libraries	provide	methods	to	start	working	with
external	hardware	components.	You	can	import	any	library	by	navigating	to	Sketch	|
Import	Library…,	as	shown	in	the	following	screenshot:

You	can	also	use	a	library	for	your	sketch	by	just	specifying	the	library	with	the	#include
statement	at	the	beginning	of	the	sketch,	that	is,	#include	<Wire.h>.

The	Arduino	IDE	also	provides	the	capability	to	add	an	external	library	that	supports	a
specific	hardware	or	provides	additional	features.	In	the	upcoming	chapters,	we	will	be
dealing	with	some	of	these	external	libraries,	and	we	will	go	through	the	process	of
importing	them	at	that	time.

You	can	learn	more	about	built-in	Arduino	libraries	from
http://arduino.cc/en/Reference/Libraries.

www.it-ebooks.info

http://arduino.cc/en/Reference/Libraries
http://www.it-ebooks.info/

Using	Arduino	examples
The	Arduino	IDE	contains	a	large	number	of	built-in	example	sketches.	These	examples
are	designed	to	get	the	user	familiar	with	basic	Arduino	concepts	and	built-in	Arduino
libraries.	The	examples	are	well	maintained	by	the	Arduino	community	since	they	have
comprehensive	support	for	each	example	through	the	Arduino	website
(http://arduino.cc/en/Tutorial/HomePage).	In	the	Arduino	IDE,	you	can	access	these
examples	by	navigating	to	File	|	Examples,	as	shown	in	the	following	screenshot:

Let’s	start	with	a	simple	in-built	example.	Open	the	Blink	example	by	navigating	to	File	|
Examples	|	01.Basics	|	Blink.	The	IDE	will	open	a	new	window	containing	code	that	is
similar	to	the	code	in	the	following	program:

/*

		Blink

		Turns	on	an	LED	on	for	one	second,	then	off	for	one	second,	repeatedly.

		This	example	code	is	in	the	public	domain.

	*/

//	Pin	13	has	an	LED	connected	on	most	Arduino	boards.

//	give	it	a	name:

int	led	=	13;

//	the	setup	routine	runs	once	when	you	press	reset:

void	setup()	{

		//	initialize	the	digital	pin	as	an	output.

		pinMode(led,	OUTPUT);

}

//	the	loop	routine	runs	over	and	over	again	forever:

www.it-ebooks.info

http://arduino.cc/en/Tutorial/HomePage
http://www.it-ebooks.info/

void	loop()	{

		digitalWrite(led,	HIGH);			//	turn	the	LED	on	(HIGH	is	the	voltage	level)

		delay(1000);															//	wait	for	a	second

		digitalWrite(led,	LOW);				//	turn	the	LED	off	by	making	the	voltage	LOW

		delay(1000);															//	wait	for	a	second

}

This	Arduino	sketch	is	designed	to	blink	an	LED	on	digital	pin	13.	You	must	be
wondering	why	we	didn’t	discuss	or	ask	you	to	bring	any	hardware.	That’s	because	the
Arduino	Uno	board	is	equipped	with	an	on-board	LED	that	is	connected	to	digital	pin	13.
Now,	instead	of	diving	deeper	into	the	Arduino	code,	we	are	going	to	focus	on	the	process
of	dealing	with	the	Arduino	board	through	the	IDE.

www.it-ebooks.info

http://www.it-ebooks.info/

Compiling	and	uploading	sketches
Once	you	have	your	code	opened	in	the	IDE,	the	first	thing	you	need	to	do	is	to	select	the
type	of	Arduino	board	on	which	you	are	going	to	upload	your	sketch.	The	Arduino	IDE
needs	to	know	the	type	of	board	in	order	to	compile	the	program	for	the	appropriate
microcontroller,	as	different	Arduino	boards	can	have	different	Atmel	microcontrollers.
Therefore,	you	need	to	perform	this	step	before	you	go	ahead	with	the	compiling	or
uploading	of	the	program	to	the	board.

You	can	select	the	Arduino	board	by	navigating	to	Tools	|	Board,	as	displayed	in	the
following	screenshot:

Select	Arduino	Uno	from	the	list	of	boards,	unless	you	are	using	a	different	Arduino
board.	Once	you	have	selected	the	board,	you	can	go	ahead	and	compile	the	sketch.	You
can	compile	the	sketch	by	navigating	to	Sketch	|	Verify	/	Compile	from	the	menu	bar	or
by	using	the	keyboard	shortcut	Ctrl	+	R.	If	everything	is	set	up	well,	you	should	be	able	to

www.it-ebooks.info

http://www.it-ebooks.info/

compile	the	code	without	any	error.

After	successfully	compiling	the	sketch,	it	is	time	to	upload	the	compiled	code	to	the
Arduino	board.	To	do	this,	you	need	to	make	sure	that	your	Arduino	IDE	is	properly
connected	to	your	computer.	If	it	is	not	already	connected,	connect	your	Arduino	board	to
your	computer	using	a	USB	port.	Now,	it	is	time	to	let	your	IDE	know	the	serial	port	on
which	the	board	is	connected.	Navigate	to	Tools	|	Serial	Ports	and	select	the	appropriate
serial	port.

Note
In	the	case	of	some	Linux	distributions,	you	may	not	be	able	to	see	or	upload	the	Arduino
program	to	the	board	due	to	permission	restriction(s)	on	the	serial	port.	Running	the
following	command	on	the	terminal	should	solve	that	problem:

$	sudo	usermod	-a	-G	uucp,	dialout,	lock	<username>

You	can	now	upload	the	compiled	sketch	to	your	Arduino	board	by	navigating	to	File	|
Upload.	This	process	will	use	the	serial	connection	to	burn	the	compiled	firmware	in	the
microcontroller.	Please	wait	for	some	time	or	until	the	LEDs	(Tx	and	Rx	LEDs)	on	the
board	stop	flashing.	Now,	you	have	your	Arduino	board	ready	with	your	first	sketch.	You
can	observe	the	performance	of	the	blinking	LED	near	digital	pin	13.

www.it-ebooks.info

http://www.it-ebooks.info/

Using	the	Serial	Monitor	window
In	the	previous	process,	we	used	a	Universal	Serial	Bus	(USB)	cable	to	connect	your
Arduino	board	to	a	USB	port	of	your	computer.	The	USB	port	is	an	industrial	standard	to
provide	an	interface	for	connecting	various	electronic	components	to	a	computer	using	the
serial	interface.	When	you	connect	an	Arduino	board	using	USB,	the	computer	actually
interfaces	it	as	a	serial	peripheral	device.	Throughout	the	book,	we	are	going	to	refer	to	the
connections	made	using	a	USB	as	serial	connections.	The	Serial	Monitor	window	is	a
built-in	utility	of	the	Arduino	IDE.	The	Serial	Monitor	window	can	be	accessed	by
navigating	to	Tools	|	Serial	Monitor	or	by	using	the	Ctrl	+	Shift	+	M	keyboard	shortcut.	It
can	be	configured	to	observe	data	that	is	being	sent	or	received	on	the	serial	port	that	is
used	to	connect	the	Arduino	board	to	the	computer.	You	can	also	set	the	baud	rate	for	the
serial	communication	using	the	drop-down	menu	option.	This	utility	is	going	to	be	very
useful	(further	on	in	the	book)	when	testing	your	prototypes	and	their	performances.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction	to	Arduino	programming
The	Arduino	platform	was	introduced	to	simplify	electronic	hardware	prototyping	for
everyone.	For	this	reason,	Arduino	programming	was	intended	to	be	easy	to	learn	by
nonprogrammers	such	as	designers,	artists,	and	students.	The	Arduino	language	is
implemented	in	C/C++,	while	the	fundamentals	of	the	sketch	and	program	structures	are
derived	from	an	open	source	programming	language	called	Processing	and	an	open	source
electronic	prototyping	language	called	Wiring.

www.it-ebooks.info

http://www.it-ebooks.info/

Comments
Arduino	follows	a	commenting	format	that	is	adopted	from	C	and	it	is	similar	to	higher-
level	languages;	however,	it	is	different	from	the	Python	comment	format	that	we	learned
earlier	in	this	chapter.	There	are	various	methods	of	commenting,	which	are	as	follows:

Block	comment:	This	is	done	by	covering	the	commented	text	between	/*	and	*/:

/*	This	is	a	comment.

*		Arduino	will	ignore	any	text	till	it	finds	until	the	ending	comment	

syntax,	which	is,

*/

Single-line	or	inline	comment:	This	is	done	by	using	//	before	the	line:

//	This	syntax	only	applies	to	one	line.

//	You	have	to	use	it	again	for	each	next	line	of	comment.

int	pin	=	13;					//Selected	pin	13

Usually,	a	block	comment	at	the	beginning	of	the	sketch	is	mostly	used	to	describe	the
program	as	a	whole.	Single-line	comments	are	used	to	describe	specific	functions	or	to-do
notes,	such	as	the	following	one:

//TODO:	explain	variables	next.

www.it-ebooks.info

http://www.it-ebooks.info/

Variables
Like	any	other	high-level	language,	a	variable	is	used	to	store	data	with	three	components:
a	name,	a	value,	and	a	type.	For	example,	consider	the	following	statement:

int	pin	=	10;

Here,	pin	is	the	variable	name	that	is	defined	with	the	type	int	and	holds	the	value	10.
Later	in	the	code,	all	occurrences	of	the	pin	variable	will	retrieve	data	from	the
declaration	that	we	just	made	here.	You	can	use	any	combination	of	alpha-numeric
characters	to	select	the	variable	name	as	long	as	the	first	character	is	not	a	number.

www.it-ebooks.info

http://www.it-ebooks.info/

Constants
In	the	Arduino	language,	constants	are	predefined	variables	that	are	used	to	simplify	the
program:

HIGH,	LOW:	While	working	with	digital	pins	on	the	Arduino	board,	only	two	distinct
voltage	stages	are	possible	at	these	pins.	If	a	pin	is	being	used	to	obtain	an	input,	any
measure	above	3V	is	considered	a	HIGH	state.	If	you	are	using	a	pin	for	output,	then
the	HIGH	state	will	set	the	pin	voltage	to	5V.	The	opposite	voltage	levels	are
considered	as	LOW	states.
false,	true:	These	are	used	to	represent	logical	true	and	false	levels.	false	is
defined	as	0	and	true	is	mostly	defined	as	1.
INPUT,	OUTPUT:	These	constants	are	used	to	define	the	roles	of	the	Arduino	pins.	If
you	set	the	mode	of	an	Arduino	pin	as	INPUT,	the	Arduino	program	will	prepare	the
pin	to	read	sensors.	Similarly,	the	OUTPUT	setting	prepares	the	pins	to	provide	a
sufficient	amount	of	current	to	the	connected	sensors.

We	will	utilize	these	constants	later	in	the	book	and	we	will	also	explain	them	with
example	code.

www.it-ebooks.info

http://www.it-ebooks.info/

Data	types
The	declaration	of	each	custom	variable	requires	the	user	to	specify	the	data	type	that	is
associated	with	the	variable.	The	Arduino	language	uses	a	standard	set	of	data	types	that
are	used	in	the	C	language.	A	list	of	these	data	types	and	their	descriptions	are	as	follows:

void:	This	is	used	in	the	function	declaration	to	indicate	that	the	function	is	not	going
to	return	any	value:

void	setup()	{

//	actions

}

boolean:	Variables	defined	with	the	data	type	boolean	can	only	hold	one	of	two
values,	true	or	false:

boolean	ledState	=	false;

byte:	This	is	used	to	store	an	8-bit	unsigned	number,	which	is	basically	any	number
from	0	to	255:

byte	b	=	0xFF;

int:	This	is	short	for	integers.	It	stores	16-bit	(Arduino	Uno)	or	32-bit	(Arduino	Due)
numbers	and	it	is	one	of	the	primary	number	storage	data	types	for	the	Arduino
language.	Although	int	will	be	used	to	declare	numbers	throughout	the	book,	the
Arduino	language	also	has	long	and	short	number	data	types	for	special	cases:

int	varInt	=	2147483647;

long	varLong	=	varInt;

short	varShort	=	-32768;

float:	This	data	type	is	used	for	numbers	with	decimal	points.	These	are	also	known
as	floating-point	numbers.	float	is	one	of	the	more	widely	used	data	types	along
with	int	to	represent	numbers	in	the	Arduino	language:

float	varFloat	=	1.111;

char:	This	data	type	stores	a	character	value	and	occupies	1	byte	of	memory.	When
providing	a	value	to	char	data	types,	character	literals	are	declared	with	single
quotes:

char	myCharacater	=	'P';

array:	An	array	stores	a	collection	of	variables	that	is	accessible	by	an	index
number.	If	you	are	familiar	with	arrays	in	C/C++,	it	will	be	easier	for	you	to	get
started,	as	the	Arduino	language	uses	the	same	C/C++	arrays.	The	following	are
some	of	the	methods	to	initialize	an	array:

int	myIntArray[]	=	{1,	2,	3,	4,	5};

int	tempValues[5]	=	{	32,	55,	72,	75};

char	msgArray[10]	=	"hello!";

An	array	can	be	accessed	using	an	index	number	(where	the	index	starts	from	number

www.it-ebooks.info

http://www.it-ebooks.info/

0):

myIntArray[0]	==	1

msgArray[2]	==	'e'

www.it-ebooks.info

http://www.it-ebooks.info/

Conversions
Conversion	functions	are	used	to	convert	any	data	type	value	into	the	provided	data	types.
The	Arduino	language	implements	the	following	conversion	functions	that	can	be	utilized
during	programming:

char():	This	converts	the	value	of	any	data	type	to	the	character	data	type
byte():	This	converts	the	value	of	any	data	type	to	the	byte	data	type
int():	This	converts	the	value	of	any	data	type	to	the	integer	data	type
float():	This	converts	the	value	of	any	data	type	to	the	floating-point	number	data
type

As	a	demonstration	of	using	these	functions,	check	out	the	following	example:

int	myInt	=	10;

float	myfloat	=	float(myInt);

Implementation	of	the	preceding	code	will	create	a	floating-point	variable,	myFloat,	with
value	10.0	using	the	integer	value	initialized	by	the	myInt	variable.

www.it-ebooks.info

http://www.it-ebooks.info/

Functions	and	statements
Functions,	also	called	subroutines	or	procedures,	are	a	piece	of	code	implemented	to	do
specific	tasks.	The	Arduino	language	has	some	predefined	functions	and	the	user	can	also
write	custom	functions	to	implement	certain	program	logic.	These	custom	functions	can
then	be	called	from	any	part	of	the	sketch	to	perform	a	specific	task.	Functions	help
programmers	to	simplify	debugging,	to	reduce	chances	for	error,	and	to	organize	coding
concepts:

void	blinkLED(){

//	action	A;

//	action	B;

}

The	Arduino	language	has	a	set	of	library	functions	to	simplify	the	programming
experience.	Although	not	all	of	these	library	functions	are	required	by	an	Arduino	sketch,
setup()	and	loop()	are	mandatory	functions	and	they	are	required	to	successfully
compile	the	sketch.

The	setup()	function
When	Arduino	runs	a	sketch,	it	first	looks	for	the	setup()	function.	The	setup()	function
is	used	to	execute	important	programming	subroutines	before	the	rest	of	the	program,	such
as	declaring	constants,	setting	up	pins,	initializing	serial	communication,	or	initializing
external	libraries.	When	Arduino	runs	the	program,	it	executes	the	setup()	functions	only
once.	If	you	check	out	the	Blink	sketch	that	we	used	in	the	previous	section,	you	can	see
the	initialization	of	the	setup()	function,	as	displayed	in	the	following	code	snippet:

void	setup()	{

		//	initialize	the	digital	pin	as	an	output.

		pinMode(led,	OUTPUT);

}

As	you	can	see	in	our	example,	we	used	the	pinMode()	function	to	assign	the	role	of	the
LED	pin	in	the	setup()	function.

The	loop()	function
Once	Arduino	has	executed	the	setup()	function,	it	starts	iterating	the	loop()	function
continuously.	While	setup()	contains	the	initialization	parameters,	loop()	contains	the
logical	parameters	of	your	program:

void	loop()	{

		digitalWrite(led,	HIGH);

		delay(1000);

		digitalWrite(led,	LOW);

		delay(1000);

}

As	you	can	see	in	the	preceding	code	snippet	from	the	Blink	sketch,	the	loop()	function
executes	the	main	code	that	blinks	the	LED	and	repeats	the	process	iteratively.

www.it-ebooks.info

http://www.it-ebooks.info/

The	pinMode()	function
The	pinMode()	function	is	used	to	set	the	behavior	of	Arduino.	As	we	saw	in	the	setup()
function	of	the	Blink	sketch,	the	pinMode()	function	configures	the	LED	pin	for	OUTPUT:

pinMode(led,	OUTPUT)

Here,	the	led	variable	is	assigned	to	digital	pin	13,	whose	mode	will	be	changed	by	the
pinMode()	function.

Working	with	pins
Once	you	are	done	configuring	the	pins	that	will	be	used	by	your	program,	you	also	need
help	in	reading	the	input	from	these	pins	or	for	sending	signals	to	them.	Arduino	provides
a	few	specific	functions	to	handle	these	scenarios:

digitalWrite():	This	was	developed	for	digital	I/O	pins.	This	function	sets	the	pin
to	HIGH	(5V)	or	LOW	(0V),	which	are	already	configured	as	OUTPUT	using	pinMode().
For	example,	the	following	line	of	code	sets	digital	pin	13	to	HIGH:

digitalWrite(13,	HIGH);

digitalRead():	Similar	to	digitalWrite(),	this	function	helps	you	to	read	the	state
of	a	digital	pin	that	is	configured	as	INPUT:

value	=	digitalRead(13);

analogRead():	This	function	reads	the	value	from	a	specific	analog	pin.	The	value	is
linearly	mapped	between	the	integer	value	of	0	and	1023	to	represent	the	voltage
from	0V	to	5V:

value	=	analogRead(0);

analogWrite():	This	function	is	used	to	provide	analog	output	results	at	a	digital	pin.
The	technique	is	called	PWM,	and	this	will	be	explained	in	Chapter	4,	Diving	into
Python-Arduino	Prototyping.	It	is	still	important	to	note	that	this	function	is	not
designed	for	all	digital	pins,	but	it	is	only	for	pins	that	are	designated	as	PWM	pins.

Statements
If	you	are	familiar	with	any	other	object-oriented	programming	language,	you	must	have
used	statements	extensively	for	your	programs.	The	Arduino	language	uses	traditional
C/C++	statements	such	as	if/else,	while,	switch/case,	and	for	to	control	the	flow	of
your	program.	Instead	of	diving	deep	into	these	statements	right	now,	they	are	described
later	in	the	book	with	practical	examples.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Summary
Alright!	You	have	successfully	completed	the	comparatively	mundane	tasks	of	installing
and	configuring	Python	and	the	Arduino	IDE.	Your	system,	whether	it	is	a	Mac	OS	X,
Linux,	or	Windows	system,	is	now	ready	for	the	upcoming	chapters.	In	this	chapter,	we
went	through	the	history	and	building	blocks	of	Arduino.	We	also	learned	the	basics	of
Python	programming	and	the	Arduino	language.	Now,	you	are	ready	to	get	your	hands	on
real	hardware	and	start	exploring	computer	to	hardware	interfacing.	In	the	next	chapter,
we	will	go	through	the	first	step	of	interfacing,	that	is,	connecting	Arduino	to	the	computer
using	a	serial	interface.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter	2.	Working	with	the	Firmata
Protocol	and	the	pySerial	Library
In	the	previous	chapter,	you	learned	the	fundamentals	of	the	Python	programming
language	and	the	Arduino	hardware	platform	so	that	you	could	get	started.	If	you	are
reading	this	chapter	directly	without	going	through	the	previous	chapter,	it	is	assumed	that
you	have	some	level	of	expertise	or	working	experience	with	these	technologies.	This
chapter	describes	two	important	components	that	are	required	to	bridge	Arduino	with
Python:

The	Arduino	Firmata	protocol
Python’s	serial	library	called	pySerial

Although	the	Firmata	protocol	is	useful	to	interface	Arduino	with	Python,	it	can	also	be
used	as	an	independent	tool	to	develop	a	large	variety	of	applications.

It	is	time	to	take	your	Arduino	hardware	out	and	start	getting	your	hands	dirty.	During	the
course	of	this	chapter,	you	will	require	an	LED,	a	breadboard,	and	a	1	kilo-ohm	resistor	as
well	as	the	components	that	you	already	used	in	the	previous	chapter,	that	is,	Arduino	Uno
and	a	USB	cable.

Note
If	you	are	using	any	other	variant	of	Arduino,	you	can	obtain	further	information	about	it
from	http://arduino.cc/en/Guide/HomePage	or	the	community-supported	Arduino	forum
that	is	located	at	http://forum.arduino.cc/.

www.it-ebooks.info

http://arduino.cc/en/Guide/HomePage
http://forum.arduino.cc/
http://www.it-ebooks.info/

Connecting	the	Arduino	board
As	mentioned	in	the	previous	chapter,	this	book	supports	all	major	operating	systems,	and
this	section	will	provide	you	with	steps	to	connect	and	configure	the	Arduino	board	for
these	operating	systems.	In	the	previous	chapter,	we	utilized	example	code	to	get	started
with	the	Arduino	IDE.	If	you	were	unable	to	successfully	communicate	with	Arduino	by
following	the	information	given	in	the	previous	chapter,	follow	the	instructions	provided
in	this	section	to	establish	a	connection	between	your	computer	and	your	Arduino.	First,
connect	your	Arduino	board	to	your	computer’s	USB	port	using	a	USB	cable	and	follow
the	steps	according	to	your	operating	system.

www.it-ebooks.info

http://www.it-ebooks.info/

Linux
If	you	are	using	the	latest	version	of	Ubuntu	Linux,	once	you	connect	the	Arduino	board
and	open	the	Arduino	IDE,	you	will	be	asked	to	add	your	username	to	the	dailout	group,
as	displayed	in	the	following	screenshot.	Click	on	the	Add	button	and	log	out	from	the
system.	You	don’t	need	to	restart	the	computer	for	the	changes	to	take	effect.	Log	in	with
the	same	username	and	open	the	Arduino	IDE.

If	you	don’t	see	this	dialog	box,	check	whether	you	can	see	the	Serial	Port	option	in	the
Tools	menu	of	the	Arduino	IDE.	It	is	possible	that	the	installation	of	other	programs	might
have	added	your	username	to	the	dailout	group	already.	If	you	don’t	get	the	dialog	box	and
don’t	have	any	options	to	select	in	Serial	Port,	execute	the	following	script	in	the
terminal,	where	<username>	is	your	Linux	username:

$	sudo	usermod	-a	-G	dialout	<username>

This	script	will	add	your	username	to	the	dialout	group,	and	it	should	also	work	for	other
Linux	versions.	In	Linux,	the	Arduino	board	mostly	gets	connected	as	/dev/ttyACMx,
where	x	is	the	integer	value	and	depends	on	your	physical	port	address.	If	you	are	using
any	other	distribution	of	Linux	other	than	Ubuntu,	you	might	want	to	check	out	the	proper
groups	associated	with	the	Arduino	serial	port	from	the	Linux	installation	page
(http://playground.arduino.cc/Learning/Linux)	of	the	Arduino	website.

Note
For	the	Fedora	Linux	distribution,	add	the	uucp	and	lock	groups	with	the	dialout	group
to	control	the	serial	port:

$	sudo	usermod	-a	-G	uucp,dialout,lock	<username>

www.it-ebooks.info

http://playground.arduino.cc/Learning/Linux
http://www.it-ebooks.info/

Mac	OS	X
In	Mac	OS	X,	when	you	connect	your	Arduino	through	a	serial	port,	the	OS	configures	it
as	a	network	interface.	In	OS	X	Mavericks,	once	the	Arduino	board	is	connected,	open
Network	from	System	Preferences.	A	dialog	box	should	appear	that	states	that	a	new
network	interface	has	been	detected.	Click	on	OK	for	Thunderbolt	Bridge	and	then	click
on	Apply.	The	following	screenshot	displays	the	dialog	box	to	add	a	new	network
interface:

For	OS	X	Lion	or	later	versions,	on	connecting	the	Arduino	board,	a	dialog	box	will
appear	that	will	ask	you	to	add	a	new	network	interface.	In	this	case,	you	will	not	have	to
navigate	to	your	network	preferences.	If	you	see	the	network	interface	with	the	status	Not
connected	and	highlighted	in	red,	don’t	worry	about	it	as	it	should	work	just	fine.

Open	the	Arduino	IDE	and	navigate	to	Serial	Port	from	the	Tools	menu.	You	should	be
able	to	see	options	similar	to	those	displayed	in	the	following	screenshot.	The	serial	port
on	which	the	Arduino	board	is	connected	might	vary	according	to	your	OS	X	version	and
the	physical	port	to	which	it	is	connected.	Make	sure	that	you	select	a	tty	interface	for	a
USB	modem.	As	displayed	in	the	following	screenshot,	the	Arduino	board	is	connected	to
the	serial	port	/dev/tty.usbmodemfd121:

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Windows
The	configuration	of	the	Arduino	serial	port	is	very	straightforward	if	you	are	using
Windows.	When	you	connect	your	Arduino	board	the	very	first	time,	the	operating	system
will	automatically	install	the	necessary	drivers	by	itself.	Once	this	process	is	complete,
select	an	appropriate	COM	port	from	the	Serial	Port	option	in	the	menu	bar.	From	the
main	menu,	navigate	to	Tools	|	Serial	Port	and	select	the	COM	port.

www.it-ebooks.info

http://www.it-ebooks.info/

Troubleshooting
Even	after	following	the	steps	mentioned	earlier,	if	you	still	don’t	see	the	highlighted
Serial	Port	option	as	displayed	in	the	following	screenshot,	then	you	have	got	a	problem.
There	can	be	two	main	reasons	for	this:	the	serial	port	is	being	used	by	another	program	or
the	Arduino	USB	drivers	are	not	installed	properly.

If	any	program	other	than	the	Arduino	IDE	is	using	the	specific	serial	port,	terminate	that
program	and	restart	the	Arduino	IDE.	Sometimes	in	Linux,	the	brltty	library	conflicts
with	the	Arduino	serial	interface.	Remove	this	library,	log	out,	and	log	back	in:

$	sudo	apt-get	remove	brltty

In	Windows,	reinstalling	the	Arduino	IDE	also	works,	as	this	process	installs	and
configures	the	Arduino	USB	driver	again.

Tip
The	Arduino	board	can	be	used	by	only	one	program	at	a	time.	It	is	very	import	to	make
sure	that	any	previously	used	program	or	other	services	are	not	using	the	serial	port	or
Arduino	when	you	try	to	use	the	Arduino	IDE.	This	check	will	become	very	important
when	we	start	using	multiple	programs	to	control	Arduino	in	the	next	section.

Assuming	that	you	can	now	select	the	serial	port	in	the	Arduino	IDE,	we	can	go	ahead
with	compiling	and	uploading	sketches	to	your	Arduino	board.	The	Arduino	IDE	ships
with	preinstalled	example	sketches	with	which	you	can	play	around.	However,	before	we
go	ahead	and	start	playing	with	complex	examples,	let’s	go	through	the	next	section,
which	explains	the	Firmata	protocol	and	also	guides	you	through	step-by-step	instructions
to	compile	and	upload	a	sketch.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Introducing	the	Firmata	protocol
Before	Arduino,	the	domain	of	microcontroller-based	applications	was	limited	to
hardware	programmers.	Arduino	made	it	simple	for	developers	that	came	from	other
software	fields	and	even	for	the	non-coding	community	to	develop	microcontroller-based
hardware	applications.	Arduino	consists	of	a	simple	hardware	design	with	a
microcontroller	and	I/O	pins	to	interface	external	devices.	If	one	can	write	an	Arduino
sketch	that	can	transfer	the	control	of	the	microcontroller	and	these	pins	to	an	external
software	mechanism,	then	it	will	reduce	one’s	efforts	to	upload	Arduino	sketches	for	every
modification.	This	process	can	be	performed	by	developing	such	an	Arduino	program	that
can	then	be	controlled	using	a	serial	port.	There	exists	a	protocol	called	Firmata,	which
does	exactly	that.

www.it-ebooks.info

http://www.it-ebooks.info/

What	is	Firmata?
Firmata	is	a	generic	protocol	that	allows	communication	between	the	microcontroller	and
the	software	that	is	hosted	on	a	computer.	Any	software	from	any	computer	host	that	is
capable	of	serial	communication	can	communicate	with	the	microcontroller	using	Firmata.
Firmata	gives	complete	access	of	Arduino	directly	to	the	software	and	eliminates	the
processes	of	modifying	and	uploading	Arduino	sketches.

To	utilize	the	Firmata	protocol,	a	developer	can	upload	a	sketch	that	supports	the	protocol
to	the	Arduino	client	as	a	onetime	process.	Afterwards,	the	developer	can	write	custom
software	on	the	host	computer	and	perform	complex	tasks.	This	software	will	provide
commands	via	a	serial	port	to	the	Arduino	board	that	is	equipped	with	Firmata.	He	or	she
can	keep	altering	the	logic	on	the	host	computer	without	interrupting	the	Arduino
hardware.

The	practice	of	writing	custom	Arduino	sketches	is	still	valid	for	standalone	applications
where	the	Arduino	board	has	to	perform	a	task	locally.	We	will	explore	both	these	options
in	the	upcoming	chapters.

Note
You	can	learn	more	about	the	Firmata	protocol	and	its	latest	version	from	the	official
website	at	http://www.firmata.org.

www.it-ebooks.info

http://www.firmata.org
http://www.it-ebooks.info/

Uploading	a	Firmata	sketch	to	the	Arduino	board
The	best	way	to	start	testing	the	Firmata	protocol	is	to	upload	a	standard	Firmata	program
to	the	Arduino	board	and	use	the	testing	software	from	the	host.	In	this	section,	we	are
going	to	demonstrate	a	method	to	upload	an	Arduino	sketch,	which	has	this	standard
Firmata	program,	to	the	board.	This	is	going	to	be	the	default	method	to	upload	any	sketch
in	the	future.

Implementation	of	the	Firmata	protocol	requires	the	latest	version	of	the	Firmata	firmware
and	you	don’t	have	to	worry	about	writing	it.	The	latest	Arduino	IDE	ships	with	a	standard
version	of	the	Firmata	firmware,	and	we	recommend	that	you	use	the	latest	IDE	to	avoid
any	conflict.	Now,	follow	the	following	steps	to	upload	the	program	to	your	Arduino
board:

1.	 As	shown	in	the	following	screenshot,	open	the	StandardFirmata	sketch	by
navigating	to	File	|	Examples	|	Firmata	|	StandardFirmata	in	the	Arduino	IDE:

2.	 This	action	will	open	another	sketchbook	in	a	new	window	with	the
StandardFirmata	sketch	loaded	in	the	editor.	Do	not	modify	anything	in	the	sketch
and	go	ahead	with	the	compiling	process	that	is	described	in	the	next	step.	It	is
important	not	to	modify	anything	in	the	code	as	the	test	software	that	we	are	going	to
use	complies	with	the	latest	unchanged	firmware.

3.	 Once	the	StandardFirmata	sketch	is	opened,	the	next	step	is	to	compile	it	for	your
Arduino	board.	In	the	previous	section,	we	already	connected	the	Arduino	board	to
the	computer	and	selected	the	proper	serial	port.	However,	if	the	new	sketchbook	has

www.it-ebooks.info

http://www.it-ebooks.info/

a	different	configuration	than	that,	follow	the	steps	from	the	previous	section,	that	is,
select	the	appropriate	serial	port	and	the	Arduino	board	type.

4.	 To	compile	the	current	sketch,	click	on	the	Verify	icon	from	the	toolbar	as	displayed
in	the	following	screenshot.	You	can	also	compile	it	by	navigating	to	Sketch	|	Verify
/	Compile	or	clicking	on	Ctrl	+	R	(command	+	R	if	you	are	using	Mac	OS	X):

The	compilation	process	should	complete	without	any	errors	as	we	are	using	default
example	code	from	the	IDE	itself.	Now	it’s	time	to	upload	the	sketch	to	the	board.
Make	sure	that	you	have	connected	the	board.

5.	 Press	the	upload	icon	in	the	toolbar	as	displayed	in	the	following	screenshot.	This
action	will	upload	the	compiled	code	to	your	Arduino	board:

On	completion,	you	should	see	the	Done	uploading.	text	in	the	IDE,	as	displayed	in	the
following	screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Your	Arduino	board	is	now	ready	with	the	latest	Firmata	firmware	and	is	waiting	for	a
request	from	your	computer.	Let’s	move	on	to	the	next	section	and	start	testing	the	Firmata
protocol.

www.it-ebooks.info

http://www.it-ebooks.info/

Testing	the	Firmata	protocol
In	the	previous	chapter,	we	used	an	on-board	LED	at	pin	13	to	test	the	Blink	program.
This	time,	we	are	going	to	use	an	external	LED	to	get	you	started	with	the	assembly	of
hardware	components	using	your	Arduino	board.	As	all	the	upcoming	exercises	and
projects	will	require	you	to	interface	hardware	components	such	as	sensors	and	actuators
to	your	Arduino	board	using	a	breadboard,	we	want	you	to	start	getting	hands-on
experience	with	wiring	these	components.

Now	is	the	time	to	use	the	LED	that	we	asked	you	to	get	at	the	beginning	of	the	chapter.
Before	we	start	wiring	the	LED,	let’s	first	understand	the	physics	of	it.	The	LED	that	you
obtained	should	have	two	legs:	a	short	one	and	a	long	one.	The	short	leg	is	connected	to
the	cathode	of	the	LED	and	it	needs	to	be	connected	to	the	ground	via	a	resistor.	As	you
can	see	in	the	following	figure,	we	are	using	a	1	k-ohm	resistor	to	ground	the	cathode	of
the	LED.	The	long	leg,	which	is	connected	to	the	anode,	needs	to	connect	to	one	of	the
digital	pins	of	the	Arduino	board.

As	shown	in	the	following	figure,	we	have	connected	the	anode	to	the	digital	pin	number
13.	Look	at	the	figure	and	wire	the	connection	as	displayed.	Make	sure	that	you
disconnect	the	Arduino	board	from	the	host	computer	to	avoid	any	kind	of	damage	from
static	electricity.

In	this	example,	we	are	going	to	use	an	LED	to	test	some	basic	functionalities	of	the
Firmata	protocol.	We	have	already	uploaded	the	Firmata	code	to	the	Arduino	board	and
we	are	ready	to	control	the	LED	from	the	host	computer.

Note
The	preceding	wiring	figure	was	created	using	an	open	source	tool	called	Fritzing.	We	are
going	to	cover	the	Fritzing	tool	comprehensively	in	the	next	chapter,	as	it	will	be	our

www.it-ebooks.info

http://www.it-ebooks.info/

standard	software	to	create	the	wiring	diagram	before	we	perform	the	actual	physical
wiring.

There	are	multiple	ways	to	communicate	with	the	Arduino	board	from	the	host	computer
using	Firmata,	such	as	writing	your	own	program	in	Python	using	the	supported	library	or
using	the	prebuilt	testing	software.	Starting	from	the	next	section,	we	are	going	to	write
our	own	programs	to	use	Firmata,	but	at	this	stage,	let’s	use	a	freely	available	tool	for
testing	purposes.	The	official	Firmata	website,	http://www.firmata.org,	also	provides	test
tools	that	you	can	download	from	the	Firmata	Test	Program	section	on	the	main	page.
The	website	includes	a	different	variant	of	the	tool	called	firmata_test	for	different
operating	systems.	Using	the	following	steps,	you	can	test	the	implementation	of	the
Firmata	protocol:

1.	 Download	the	appropriate	version	of	the	firmata_test	program	to	your	computer.
2.	 Now,	connect	your	Arduino	board	with	the	LED	to	the	host	computer	using	the	USB

cable	and	run	the	downloaded	firmata_test	program.	You	will	be	able	to	see	an
empty	window	on	the	successful	execution	of	the	program.

3.	 As	displayed	in	the	following	screenshot,	select	the	appropriate	port	from	the	drop-
down	menu.	Make	sure	to	select	the	same	port	that	you	used	to	upload	the	Arduino
sketch.

Tip
At	this	point,	make	sure	that	your	Arduino	IDE	is	not	connected	to	the	board	using
the	same	port	number.	As	we	mentioned	earlier,	the	serial	interface	grants	exclusive
access	to	only	one	application	at	a	time.

4.	 Once	you	select	the	Arduino	serial	port,	the	program	will	load	multiple	drop-down
boxes	and	buttons	with	labels	that	contain	the	pin	number.	You	can	see	in	the
following	screenshot	that	the	program	is	loaded	with	12	digital	pins	(from	pin	2	to
pin	13)	and	six	analog	pins	(from	pin	14	to	pin	19).	As	we	are	using	the	Arduino	Uno
board	for	our	applications,	the	test	program	only	loads	pins	that	are	part	of	Arduino
Uno.	If	you	are	using	Arduino	Mega	or	any	other	board,	the	number	of	pins	displayed
in	the	program	will	be	according	to	the	pins	supported	by	that	particular	variant	of	the

www.it-ebooks.info

http://www.firmata.org
http://www.it-ebooks.info/

Arduino	board.

Tip
Working	with	the	firmata_test	program	on	Linux

On	a	Linux	platform,	you	might	have	to	modify	the	property	of	the	downloaded	file
and	make	it	executable.	From	the	same	directory,	run	the	following	command	in	the
terminal	to	make	it	executable:

$	chmod	+x	firmata_test

Once	you	have	changed	the	permissions,	use	the	following	command	to	run	the
program	from	the	terminal:

$./firmata_test

5.	 As	you	can	see	in	the	program	window,	you	have	two	other	columns	as	well	as	the
column	containing	the	labels.	The	second	column	in	the	program	lets	you	select	the
role	for	the	appropriate	pins.	You	can	specify	the	role	of	digital	pins	(in	the	case	of
Arduino	Uno,	from	2	to	13)	as	input	or	output.	As	displayed	in	the	following
screenshot,	you	will	see	Low	in	the	third	column	as	soon	as	you	select	the	role	of

www.it-ebooks.info

http://www.it-ebooks.info/

pins	2	and	3	as	input	pins.	This	is	correct,	as	we	don’t	have	any	input	connected	to
these	pins.	You	can	play	with	the	program	by	changing	the	roles	and	values	of
multiple	pins.

As	we	have	connected	the	LED	to	digital	pin	13,	we	are	not	expecting	any	physical
changes	on	the	board	while	you	are	playing	around	with	the	other	pins.

6.	 Now,	select	pin	13	as	an	output	pin	and	press	the	Low	button.	This	will	change	the
button’s	label	to	High	and	you	will	see	that	the	LED	is	turned	on.	By	performing	this
action,	we	have	changed	the	logic	of	the	digital	pin	13	to	1,	that	is,	High,	which
translates	to	+5	volts	at	the	pin.	This	potential	will	be	sufficient	to	light	the	LED.	You
can	change	the	level	of	pin	13	back	to	0	by	clicking	on	the	button	again	and	turning	it
to	Low.	This	will	change	the	potential	back	to	0	volts.

The	program	that	we	used	here	is	perfect	to	test	the	fundamentals,	but	it	cannot	be	used	to
write	complex	applications	using	the	Firmata	protocol.	In	real-world	applications,	we
really	need	to	execute	the	Firmata	methods	using	custom	code,	which	in	addition	to
switching	the	LED	status	also	includes	the	implementation	of	smart	logic	and	algorithms,
interfacing	other	components,	and	so	on.	We	are	going	to	use	Python	for	these
applications,	starting	from	the	next	section.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Getting	started	with	pySerial
You	learned	about	the	Firmata	protocol	in	the	previous	section.	This	is	an	easy	and	quick
way	to	start	working	with	Arduino.	Although	the	Firmata	protocol	helps	you	to	develop
complex	applications	from	your	computer	without	modifying	the	Arduino	sketch,	we	are
not	ready	to	start	coding	these	applications.

The	first	step	towards	writing	these	complex	applications	is	to	provide	an	interface
between	your	programming	environment	and	the	Arduino	via	a	serial	port.	In	this	book,
you	will	be	required	to	establish	a	connection	between	the	Python	interpreter	and	Arduino
for	every	project	that	we	develop.

Writing	your	own	library,	which	includes	implementation	of	functions	and	specifications
to	enable	communication	on	a	serial	protocol,	is	an	inconvenient	and	time	consuming
process.	We	are	going	to	avoid	that	by	using	an	open	source,	well	maintained	Python
library	called	pySerial.

The	pySerial	library	enables	communication	with	Arduino	by	encapsulating	the	access
for	the	serial	port.	This	module	provides	access	to	the	serial	port	settings	through	Python
properties	and	allows	you	to	configure	the	serial	port	directly	through	the	interpreter.
pySerial	will	be	the	bridge	for	any	future	communication	between	the	Python	and
Arduino.	Let’s	start	by	installing	pySerial.

www.it-ebooks.info

http://www.it-ebooks.info/

Installing	pySerial
We	installed	the	package	manager	Setuptools	in	Chapter	1,	Getting	Started	with	Python
and	Arduino.	If	you	have	skipped	that	chapter	and	are	not	sure	about	it,	then	please	go
through	that	section.	If	you	already	know	how	to	install	and	configure	Python	library
packages,	skip	these	installation	steps.

From	this	stage,	we	are	going	to	use	only	pip-based	installation	commands	due	to	their
obvious	advantages	that	were	described	in	Chapter	1,	Getting	Started	with	Python	and
Arduino:

1.	 Open	a	terminal	or	command	prompt	and	execute	the	following	command:

>	pip	install	pyserial

The	Windows	operating	system	does	not	require	administrator-level	user	access	to
execute	the	command,	but	you	should	have	root	privileges	to	install	Python	packages
in	Unix-based	operating	systems,	as	follows:

$	sudo	pip	install	pyserial

If	you	want	to	install	the	pySerial	library	from	source,	download	the	archive	from
http://pypi.python.org/pypi/pyserial,	unpack	it,	and	from	the	pySerial	directory,	run
the	following	command:

$	sudo	python	setup.py	install

2.	 If	Python	and	Setuptools	are	installed	properly,	you	should	see	the	following	output
at	the	command	line	after	the	installation	is	complete:

.

.

Processing	dependencies	for	pyserial

Finished	processing	dependencies	for	pyserial

This	means	that	you	have	successfully	installed	the	pySerial	library	and	you	are
good	to	go	to	the	next	section.

3.	 Now,	to	check	whether	or	not	pySerial	is	successfully	installed,	start	your	Python
interpreter	and	import	the	pySerial	library	using	the	following	command:

>>>	import	serial

www.it-ebooks.info

http://pypi.python.org/pypi/pyserial
http://www.it-ebooks.info/

Playing	with	a	pySerial	example
Your	Arduino	board	has	the	Firmata	sketch	StandardFirmata	from	the	previous	example.
To	play	with	pySerial,	we	are	not	going	to	use	the	Firmata	protocol	anymore.	Instead,	we
are	going	to	use	another	simple	Arduino	sketch	that	implements	serial	communication	that
can	be	captured	on	the	Python	interpreter.

Sticking	with	the	promise	of	not	performing	any	coding	for	the	Arduino	sketch,	let’s	select
an	example	sketch	from	the	Arduino	IDE:

1.	 As	displayed	in	the	following	screenshot,	navigate	to	File	|	Examples	|	01.	Basics	|
DigitalReadSerial.

2.	 Compile	and	upload	the	program	to	the	Arduino	board	using	the	same	method	that
was	described	earlier.	Select	the	appropriate	serial	port	on	which	your	Arduino	is
connected	and	make	a	note	of	it.	As	you	can	see	in	the	sketch,	this	simple	Arduino
code	transmits	the	status	of	digital	pin	2	that	is	on	the	serial	port	with	a	baud	rate	of
9600	bps.

3.	 Without	disconnecting	the	Arduino	board	from	your	computer,	open	the	Python
interpreter.	Then,	execute	the	following	commands	on	the	Python	interpreter.	Make
sure	that	you	replace	/dev/ttyACM0	with	the	port	name	that	you	noted	down	earlier:

>>>	import	serial

>>>	s	=	serial.Serial('/dev/ttyACM0',9600)

>>>	while	True:

				print	s.readline()

4.	 On	execution,	you	should	get	repeated	0	values	in	the	Python	interpreter.	Press	Ctrl	+
C	to	terminate	this	code.	As	you	can	see,	the	Arduino	code	will	keep	sending
messages	due	to	the	loop	function	that	was	used	in	the	sketch.	We	don’t	have
anything	connected	to	pin	2,	and	because	of	this,	we	are	getting	the	status	0,	that	is,

www.it-ebooks.info

http://www.it-ebooks.info/

Low.
5.	 If	you	know	what	you	are	doing,	you	can	connect	any	digital	sensor	to	pin	2	and	run

the	script	again	to	see	the	changed	status.

In	the	preceding	Python	script,	the	serial.Serial	method	interfaces	and	opens	the
specified	serial	port,	while	the	readline()	method	reads	each	line	from	this	interface,
terminated	with	\n,	that	is,	the	newline	character.

Note
The	newline	character	is	a	special	character	that	signifies	the	end	of	a	line	of	text.	It	is	also
known	as	End	of	Line	(EOL)	or	Line	feed	+	Carriage	Return	(LF	+	CR).	Learn	more
about	the	newline	character	at	http://en.wikipedia.org/wiki/Newline.

www.it-ebooks.info

http://en.wikipedia.org/wiki/Newline
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Bridging	pySerial	and	Firmata
In	the	Firmata	section,	we	already	learned	how	useful	it	is	to	use	the	Firmata	protocol
instead	of	constantly	modifying	the	Arduino	sketch	and	uploading	it	for	simple	programs.
pySerial	is	a	simple	library	that	provides	a	bridge	between	Arduino	and	Python	via	a
serial	port,	but	it	lacks	any	support	for	the	Firmata	protocol.	As	mentioned	earlier,	the
biggest	benefit	of	Python	can	be	described	in	one	sentence,	“There	is	a	library	for	that.”
So,	there	exists	a	Python	library	called	pyFirmata	that	is	built	on	pySerial	to	support	the
Firmata	protocol.	There	are	a	few	other	Python	libraries	that	also	support	Firmata,	but	we
will	only	be	focusing	on	pyFirmata	in	this	chapter.	We	will	be	extensively	using	this
library	for	various	upcoming	projects	as	well:

1.	 Let’s	start	by	installing	pyFirmata	just	like	any	other	Python	package	by	using
Setuptools:

$	sudo	pin	install	pyfirmata

In	the	previous	section,	while	testing	pySerial,	we	uploaded	the	DigitalSerialRead
sketch	to	the	Arduino	board.

2.	 To	communicate	using	the	Firmata	protocol,	you	need	to	upload	the
StandardFirmata	sketch	again,	just	as	we	did	in	the	Uploading	a	Firmata	sketch	to
the	Arduino	board	section.

3.	 Once	you	have	uploaded	this	sketch,	open	the	Python	interpreter	and	execute	the
following	script.	This	script	imports	the	pyfirmata	library	to	the	interpreter.	It	also
defines	the	pin	number	and	the	port.

>>>	import	pyfirmata

>>>	pin=	13

>>>	port	=	'/dev/ttyACM0'

4.	 After	this,	we	need	to	associate	the	port	with	the	microcontroller	board	type:

>>>	board	=	pyfirmata.Arduino(port)

While	executing	the	previous	script,	two	LEDs	on	the	Arduino	will	flicker	as	the
communication	link	between	the	Python	interpreter	and	the	board	gets	established.	In
the	Testing	the	Firmata	protocol	section,	we	used	a	prebuilt	program	to	turn	an	LED
on	and	off.	Once	the	Arduino	board	is	associated	to	the	Python	interpreter,	these
functions	can	be	performed	directly	from	the	prompt.

5.	 You	can	now	start	playing	with	Arduino	pins.	Turn	on	the	LED	by	executing	the
following	command:

>>>	board.digital[pin].write(1)

6.	 You	can	turn	off	the	LED	by	executing	the	following	command.	Here,	in	both
commands,	we	set	the	state	of	digital	pin	13	by	passing	values	1	(High)	or	0	(Low):

>>>	board.digital[pin].write(0)

7.	 Similarly,	you	can	also	read	the	status	of	a	pin	from	the	prompt:

www.it-ebooks.info

http://www.it-ebooks.info/

>>>	board.digital[pin].read()

If	we	combined	this	script	in	an	executable	file	with	a	.py	extension,	we	can	have	a
Python	program	that	can	be	run	directly	to	control	the	LED	rather	than	running	these
individual	scripts	on	a	terminal.	Later,	this	program	can	be	extended	to	perform	complex
functions	without	writing	or	changing	the	Arduino	sketch.

Note
Although	we	are	running	individual	scripts	at	the	Python	prompt,	we	will	be	going
through	the	process	of	creating	Python	executable	files	in	the	next	chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Summary
By	introducing	the	Firmata	library,	we	avoided	writing	any	custom	Arduino	sketches	in
this	chapter.	We	will	continue	this	practice	during	the	remaining	part	of	this	book	and	will
only	use	or	make	custom	sketches	when	required.	In	this	chapter,	you	interacted	with	the
Arduino	board	by	making	the	LED	blink,	which	is	the	easiest	way	to	get	started	on	a
hardware	project.	Now	it’s	time	for	your	first	project,	where	we	are	also	going	to	make
some	more	LEDs	blink.	One	might	ask	the	question	that	if	we	have	already	done	it,	then
why	do	we	need	another	project	to	make	LEDs	blink?	Let’s	find	out.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter	3.	The	First	Project	–	Motion-
triggered	LEDs
In	the	preceding	chapter,	you	learned	the	basics	of	Python-Arduino	interfacing.	We	went
through	some	exercises	to	provide	hands-on	experience	with	a	useful	Arduino	protocol,
Firmata,	and	the	Python	library.	Now,	it’s	time	for	your	first	‘Python	+	Arduino’	project.

We	will	start	this	chapter	by	discussing	the	project	goals	and	the	required	components	to
design	the	software	flow	and	the	hardware	layout	for	the	project.	Just	like	any	other
microcontroller-based	hardware	project,	you	can	use	code	and	implement	the	entire	logic
of	your	project	on	Arduino	itself.	However,	the	goal	of	this	book	is	to	help	you	to	utilize
Python	in	such	a	way	that	you	can	simplify	and	extend	your	hardware	projects.	Although
we	will	be	using	a	hybrid	approach	with	a	Python	program	assisted	by	an	Arduino	sketch
in	the	upcoming	chapters,	we	would	like	you	to	get	familiar	with	both	ways	of
programming.	As	this	is	your	first	experience	of	building	a	hardware	project,	the	chapter
provides	you	with	two	different	programming	methods	for	the	project:	just	using	an
Arduino	sketch	and	using	a	Python	program	with	the	Firmata	protocol	on	Arduino.	The
method	with	the	Arduino	sketch	is	included	so	that	you	get	the	complete	experience	with
the	Arduino	components	such	as	I/O	pins	and	serial	communication.

www.it-ebooks.info

http://www.it-ebooks.info/

Motion-triggered	LEDs	–	the	project
description
When	you	start	learning	any	programming	language,	in	most	cases,	you	will	be	writing
code	to	print	‘Hello	World!’.	Meanwhile,	in	hardware	projects,	the	majority	of	tutorials
begin	by	helping	a	user	to	write	the	code	to	blink	an	LED.	These	exercises	or	projects	are
useful	for	developers	to	get	started	with	the	language,	but	mostly,	they	do	not	carry	any
importance	towards	real-world	applications.	However,	we	don’t	want	to	overwhelm	you
with	a	complex	and	sophisticated	project	that	might	require	you	to	have	a	good	amount	of
domain	knowledge.

While	working	with	the	Firmata	protocol	in	the	previous	chapter,	we	already	blinked	an
LED	on	the	Arduino	board.	To	keep	the	tradition	alive	(of	having	a	blinking	LED	as	a	first
major	project)	and	also	build	excitement	towards	the	project,	let’s	put	a	twist	in	the
blinking	LED	project.	In	this	project,	we	will	blink	two	different	LEDs,	but	instead	of
performing	these	actions	in	a	random	manner,	we	will	do	it	for	events	that	are	measured
using	a	motion	sensor.	Although	the	difficultly	level	of	the	project	is	simple	since	it	is
your	first	project,	it	carries	real-world	application	value	and	can	be	used	as	a	simple
application	in	your	day-to-day	life.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

The	project	goal
The	project	goal	can	be	described	in	one	sentence	as	follows:	“Generate	an	alert	using	a
red	LED	for	any	detected	motion	and	display	the	normal	condition	using	a	green	LED.”	In
comprehensive	list	of	goals,	you	will	have	to	perform	the	following	tasks	to	satisfy	the
mentioned	project	goal:

Detect	any	motion	in	the	environment	as	an	event	using	a	passive	infrared	(PIR)
sensor
Perform	a	blink	action	using	a	red	LED	for	this	event
Otherwise,	perform	a	blink	action	using	a	green	LED
Keep	the	system	in	loop	after	the	action	has	been	performed	and	wait	for	the	next
event

The	project	can	be	implemented	as	a	DIY	application	or	as	part	of	other	projects	with
minor	modifications.	The	following	are	some	examples	where	the	concepts	from	this
project	can	be	utilized:

As	a	DIY	security	system,	to	monitor	movement	in	a	room
(http://www.instructables.com/id/PIR-Sensor-Security/)
In	smart	home	applications,	it	can	be	used	to	automatically	turn	off	lights	if	no	one	is
present	(http://www.instructables.com/id/Arduino-Home-Monitor-System/)
It	can	be	used	in	automatic	garage	door	opener	applications	with	the	support	of
additional	hardware	components	and	appropriate	code
In	DIY	wildlife	recording	projects,	it	can	be	used	to	trigger	a	camera	instead	of	an
LED	when	any	motion	is	detected	(http://www.instructables.com/id/Motion-
triggered-camera/)

www.it-ebooks.info

http://www.instructables.com/id/PIR-Sensor-Security/
http://www.instructables.com/id/Arduino-Home-Monitor-System/
http://www.instructables.com/id/Motion-triggered-camera/
http://www.it-ebooks.info/

The	list	of	components
In	the	previous	chapter,	we	only	used	an	LED	for	programming	using	Arduino,	an
Arduino	USB	cable,	and	a	computer.	The	major	hardware	component	required	for	this
project	is	a	PIR	motion	sensor.	You	will	also	need	an	additional	LED.	We	recommend	that
you	have	a	different	colored	LED	than	the	one	that	you	already	have.	The	description	of
the	necessary	components	is	as	follows:

PIR	sensors:	These	are	widely	used	as	motion	detection	sensors	for	DIY	projects.
They	are	small,	inexpensive,	consume	less	power,	and	are	compatible	with	hardware
platforms	such	as	Arduino.	A	PIR	sensor	uses	a	pair	of	pyroelectric	sensors	that
detect	infrared	radiation.	If	there	is	no	motion,	the	output	of	these	sensors	cancels
each	other	out.	Any	movement	in	the	environment	will	produce	different	levels	of
infrared	radiation	by	these	pyroelectric	sensors	and	the	difference	will	trigger	an
output	that	is	HIGH	(+5	volts).	We	will	be	using	the	PIR	sensor	that	is	sold	by
SparkFun,	and	you	can	obtain	it	from	https://www.sparkfun.com/products/8630.	The
PIR	sensor	comes	equipped	with	the	required	printed	circuit	board	(PCB).	It	has
range	of	up	to	20	feet	(6	meters),	which	is	sufficient	for	the	project.	The	following
image	displays	the	PIR	sensor	available	on	the	SparkFun	website:

Source:	Sparkfun	Inc.

LEDs:	We	recommend	that	you	use	green	and	red	LEDs	for	the	project.	If	they	are
unavailable,	you	can	use	any	two	LEDs	with	different	colors.
Wires,	resistors,	and	the	breadboard:	You	will	require	a	bunch	of	wires	and	a
breadboard	to	complete	the	connections.	As	a	best	practice,	have	at	least	three
different	colors	of	wire	connectors	to	represent	power,	ground,	and	signal.	You	will
also	need	two	220	ohm	and	one	10	kilo-ohm	pull	resistors.

www.it-ebooks.info

https://www.sparkfun.com/products/8630
http://www.it-ebooks.info/

The	Arduino	board:	The	Arduino	Uno	board	is	sufficient	for	the	project
requirements.	You	can	also	use	Arduino	Mega	or	any	other	Arduino	board	for	this
project.	The	project	requires	only	three	I/O	pins	and	any	available	Arduino	board	is
equipped	with	more	than	three	I/O	pins.
A	USB	cable:	You	will	need	a	USB	cable	to	upload	the	Arduino	code	and	perform
serial	communication	with	the	Arduino	board.
A	computer:	We	have	already	configured	a	computer	with	Python	and	the	Arduino
IDE	for	your	favorite	operating	system	in	the	previous	chapters.	You	will	need	this
computer	for	the	project.	Make	sure	that	you	have	all	the	software	components	that
we	installed	and	configured	in	the	previous	chapters.

www.it-ebooks.info

http://www.it-ebooks.info/

The	software	flow	design
The	first	step,	before	jumping	to	work	on	any	hardware	system,	is	to	design	the	project
flow	using	logic.	We	recommend	that	you	have	your	project	sketched	as	a	flowchart	to
better	understand	the	layout	of	the	components	and	the	flow	of	the	code.	The	following
diagram	shows	the	flow	of	the	project	where	you	can	see	that	the	project	runs	in	loops
once	motion	is	detected	and	the	appropriate	LED	actions	are	performed:

As	you	can	see,	the	program	logic	starts	by	detecting	the	state	of	the	PIR	sensor	and
performs	the	appropriate	actions	accordingly.	With	a	single	Arduino	instruction,	you	can
only	turn	the	LED	on	or	off.	To	perform	the	blinking	operation,	we	will	need	to	repeatedly
perform	the	turning-on	and	turning-off	actions	with	a	time	delay	between	the	actions.	We
will	also	insert	a	delay	between	the	execution	of	each	successive	loop	so	that	the	PIR
sensor	output	can	settle	down.	Note	that	we	will	use	the	same	flow	when	writing	the	code
for	both	the	programming	methods.

www.it-ebooks.info

http://www.it-ebooks.info/

The	hardware	system	design
Designing	a	diagram	for	your	software	flow	helps	you	to	write	the	program	and	also
assists	you	in	identifying	actions	and	events	for	the	project.	The	process	of	hardware
system	design	includes	circuit	connections,	schematic	design,	simulation,	verification,	and
testing.	This	design	process	provides	a	detailed	understanding	of	the	project	and	the
hardware	components.	It	also	helps	in	preliminary	verification	and	testing	of	the	project
architecture.	Before	we	jump	to	the	hardware	design	process	of	this	project,	let’s	get
ourselves	familiar	with	the	helpful	tools.

Introducing	Fritzing	–	a	hardware	prototyping	software
You	are	not	required	to	design	the	hardware	system	for	this	project.	By	and	large,	in	this
book,	the	hardware	system	designs	will	be	provided,	as	the	primary	focus	of	the	book	is
on	programming	rather	than	hardware	design.

If	you	are	interested	in	system	design	or	rapid	prototyping	of	the	hardware	components,
the	open	source	software	tool	used	for	this	purpose	is	called	Fritzing.	The	schematics	for
your	projects	can	be	designed	using	Fritzing	and	it	can	be	obtained	from
http://fritzing.org/download/.

Fritzing	is	a	community-supported	electronic	design	automation	software	initiative	for
designers,	artists,	and	hobbyists.	It	lets	you	convert	your	hardware	sketch	from	paper	to
software	as	a	circuit	diagram.	Fritzing	also	provides	you	with	a	tool	to	create	PCB	layouts
from	your	designs.	Fritzing	extensively	supports	Arduino	and	other	popular	open	source
DIY	hardware	platforms.	You	can	explore	Fritzing	via	built-in	example	projects.

Install	and	run	Fritzing.	The	following	screenshot	shows	one	of	the	default	projects	that
are	displayed	after	opening	Fritzing:

www.it-ebooks.info

http://fritzing.org/download/
http://www.it-ebooks.info/

As	you	can	see,	a	toolbox	containing	virtual	hardware	components	is	located	to	the	right
of	the	opened	window.	The	main	editing	space,	located	in	the	center,	lets	the	user	drag	and
drop	components	from	the	toolbox	and	also	allows	the	user	to	complete	connections
between	these	components.	You	can	learn	more	about	the	features	provided	by	Fritzing
and	go	through	some	hands-on	tutorials	at	http://fritzing.org/learning/.

Working	with	the	breadboard
Once	you	are	familiar	with	Fritzing,	you	have	the	flexibility	to	create	your	own	circuits,	or
you	can	always	use	the	Fritzing	files	provided	with	the	book.	However,	there	is	another
challenge,	that	is,	porting	your	virtual	circuit	to	a	physical	one.	One	of	the	fundamental
components	used	by	electronics	projects	that	let	you	implement	connections	and	build	the
physical	circuit	is	the	breadboard.

The	breadboard	contains	intelligently	organized	metal	rows	hidden	under	an	assembly
containing	plastic	holes.	This	assembly	helps	the	user	to	connect	wires	without	going
through	any	soldering	work.	It	is	really	easy	to	insert	and	remove	wires	or	electronics
components	through	the	holes.	The	following	figure	shows	a	small	breadboard	with	a
couple	of	components	and	a	few	wire	connections:

www.it-ebooks.info

http://fritzing.org/learning/
http://www.it-ebooks.info/

Note
Find	out	more	about	breadboards	and	the	tutorials	to	use	them	at
http://learn.sparkfun.com/tutorials/how-to-use-a-breadboard.

A	breadboard	mostly	has	two	types	of	connection	strips:	terminal	strips	and	power	rails.
As	displayed	in	the	preceding	figure,	terminal	strips	are	vertical	columns	with	electrically
shorted	holes.	In	simple	words,	once	you	connect	any	component	to	one	of	the	terminal
strips,	the	component	will	be	electrically	connected	to	each	hole	in	the	column.	The
columns	of	terminal	strips	are	separated	by	the	Dual	in-line	Package	(DIP)	support	gap.
(DIP	is	a	common	housing	for	electronics	components.)	In	the	same	column,	terminal
strips	above	and	below	the	DIP	support	gap	are	electrically	independent.	Meanwhile,	the
power	rails	are	shorted	horizontally	throughout	the	entire	row	of	the	breadboard.	The
power	rails	are	mostly	used	to	connect	positive	and	ground	connections	from	the	power
supply,	so	it	can	be	distributed	easily	to	all	components.

Note
History	of	breadboards

In	the	early	years	of	electronics,	people	used	actual	breadboards	(that	were	used	to	cut
bread)	to	connect	their	large	components	with	just	nails	and	wires.	Once	electronics
components	started	getting	smaller,	the	board	to	assemble	circuits	also	became	better.	The
term	stuck	through	this	evolution,	and	we	still	call	the	modern	boards	breadboards.	If	you
are	interested,	you	can	check	out	http://www.instructables.com/id/Use-a-real-Bread-
Board-for-prototyping-your-circui/,	which	provides	instructions	to	assemble	a	circuit
using	the	original	breadboards.

Designing	the	hardware	prototype

www.it-ebooks.info

http://learn.sparkfun.com/tutorials/how-to-use-a-breadboard
http://www.instructables.com/id/Use-a-real-Bread-Board-for-prototyping-your-circui/
http://www.it-ebooks.info/

It’s	time	to	collect	the	hardware	components	mentioned	earlier	and	start	building	the
system.	The	next	figure	shows	the	circuit	for	the	project	that	has	been	developed	using
Fritzing.	If	you	have	prior	experience	of	working	with	circuit	assembly,	go	ahead	and
connect	the	components	as	displayed	in	the	figure:

If	this	is	your	first	experience	of	working	with	sensors	and	the	breadboard,	use	the
following	steps	to	complete	the	circuit	assembly:

1.	 Connect	VCC	(+5V)	and	ground	from	the	Arduino	to	the	breadboard.
2.	 Connect	the	anode	(long	lead)	of	the	red	LED	to	digital	pin	12	of	the	Arduino	board.

Connect	the	cathode	(short	lead)	of	the	red	LED	to	ground	with	220	ohm	resistors.
3.	 Connect	the	anode	(long	lead)	of	the	green	LED	to	digital	pin	13	of	the	Arduino

board.	Connect	the	cathode	(short	lead)	of	the	green	LED	to	ground	with	220	ohm
resistors.

4.	 Connect	VDD	of	the	PIR	sensor	to	VCC	on	the	breadboard.	Use	the	same	wire	color
to	represent	the	same	category	of	connections.	This	will	greatly	help	in
troubleshooting	the	circuit.

5.	 Connect	the	signal	(middle	pin)	of	the	PIR	sensor	to	Arduino	digital	pin	7	with	a	10
kilo-ohm	pull-up	resistor.

The	majority	of	experts	prefer	a	schematic	diagram	instead	of	the	prototype	diagram	that
we	used	previously.	Schematic	diagrams	are	useful	when	you	are	using	compatible
components	instead	of	the	exact	components	from	the	prototype	diagram.	The	following	is
a	schematic	diagram	of	the	electronics	circuit	that	we	designed	earlier.	This	diagram	is

www.it-ebooks.info

http://www.it-ebooks.info/

also	obtained	using	Fritzing:

Your	system	is	now	ready	to	run	the	Arduino	program.	As	we	will	be	using	the	same
hardware	for	both	the	programming	methods,	you	are	almost	done	working	with
electronics	unless	you	encounter	a	problem.	Just	to	make	sure	that	everything	is	connected
perfectly,	let’s	check	out	these	connections	in	the	next	section.

Note
Note	that	pull-up	resistors	are	used	to	make	sure	that	the	output	signal	from	a	PIR	sensor
settles	at	the	expected	logic	level.

www.it-ebooks.info

http://www.it-ebooks.info/

Testing	hardware	connections
Once	the	circuit	connections	are	complete,	you	can	go	directly	to	the	programming
sections.	As	a	best	practice,	we	recommend	that	you	verify	the	circuit	connections	and
check	the	sensor’s	status.	We	are	assuming	that	your	Arduino	board	is	already	equipped
with	the	StandardFirmata	sketch	that	we	discussed	in	the	previous	chapter.	Otherwise,
refer	to	the	previous	chapter	and	upload	the	StandardFirmata	sketch	to	your	Arduino
board.

The	best	way	to	verify	our	circuit	implementation	is	to	use	the	Firmata	test	program	that
we	used	in	the	previous	chapter.	According	to	the	project	setup,	the	PIR	sensor	provides
event	inputs	to	Arduino	pin	7.	In	the	test	program,	change	the	type	of	pin	7	to	Input	and
wave	your	hand	over	the	sensor,	and	you	should	be	able	to	see	the	status	of	the	pin	as
High,	as	displayed	in	the	following	screenshot:

Check	the	LED	connections	by	setting	up	pins	12	and	13	as	output	pins	and	toggling	the

www.it-ebooks.info

http://www.it-ebooks.info/

buttons	to	set	the	status	of	the	pins.	If	you	see	the	LEDs	blinking	while	you	are	toggling
the	button,	then	your	connections	are	working	perfectly.

If	you	cannot	successfully	perform	these	checks,	verify	and	repeat	the	design	steps.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Method	1	–	using	a	standalone	Arduino
sketch
As	we	discussed	in	the	previous	chapters,	a	project	can	be	implemented	by	creating
project-specific	native	Arduino	code	or	by	using	a	Python-Arduino	hybrid	approach.

The	native	Arduino	sketches	are	useful	in	applications	where	negligible	or	no
communication	with	a	computer	system	is	required.	Although	this	type	of	standalone
project	enables	continuous	operation	in	the	absence	of	serial	connectivity,	it	is	difficult	to
keep	updating	and	uploading	an	Arduino	sketch	for	minor	modifications.

If	you	look	at	the	various	applications	of	this	project,	you	will	notice	that	only	a	few	of
them	require	the	project	to	be	implemented	as	a	standalone	system	that	just	detects	motion
and	blinks	LEDs.	This	type	of	system	can	be	easily	implemented	by	a	simple	Arduino
sketch.

www.it-ebooks.info

http://www.it-ebooks.info/

The	project	setup
Before	we	go	ahead	with	the	project,	make	sure	that	you	have	the	following	things	in
place:

The	hardware	components	are	set	up	and	are	functioning	correctly
Your	Arduino	is	connected	to	the	computer	using	a	USB	cable
Your	computer	has	the	Arduino	IDE	and	you	can	access	the	connected	Arduino	board
through	the	IDE

www.it-ebooks.info

http://www.it-ebooks.info/

The	Arduino	sketch
This	section	describes	the	Arduino	code	for	the	project.	Before	we	get	into	a	step-by-step
description	of	the	code,	let’s	first	follow	these	steps	to	run	the	project:

1.	 Open	the	Arduino	IDE.
2.	 From	the	File	menu,	open	a	new	sketchbook.
3.	 Copy	the	following	Arduino	code	to	the	sketch	and	save	it:

int	pirPin	=	7;	//Pin	number	for	PIR	sensor

int	redLedPin	=	12;	//Pin	number	for	Red	LED

int	greenLedPin	=	13;	//Pin	number	for	Green	LED

void	setup(){

	Serial.begin(9600);	

	pinMode(pirPin,	INPUT);

	pinMode(redLedPin,	OUTPUT);

	pinMode(greenLedPin,	OUTPUT);

}

void	loop(){

		int	pirVal	=	digitalRead(pirPin);

		if(pirVal	==	LOW){	//was	motion	detected

				blinkLED(greenLedPin,	"No	motion	detected.");

		}	else	{

				blinkLED(redLedPin,	"Motion	detected.");

		}

}

//	Function	which	blinks	LED	at	specified	pin	number

void	blinkLED(int	pin,	String	message){

		digitalWrite(pin,HIGH);

		Serial.println(message);	

		delay(1000);

		digitalWrite(pin,LOW);

		delay(2000);

}

4.	 Compile	and	upload	the	sketch	to	the	Arduino	board.

Now,	you	have	completed	your	project	with	the	first	programming	method	and
successfully	deployed	it	to	your	hardware.	It	should	be	running	the	designed	algorithm	to
detect	motion	events	and	perform	the	blink	action.

As	your	project	is	functioning	properly,	it’s	time	to	understand	the	code.	Like	any	other
Arduino	program,	the	code	has	two	mandatory	functions:	setup()	and	loop().	It	also	has
a	custom	function,	blinkLED(),	for	a	specific	action	that	will	be	explained	later.

The	setup()	function
As	you	can	see	in	the	preceding	code	snippet,	we	assigned	variables	to	the	Arduino	pin	at
the	beginning	of	the	program.	In	the	setup()	function,	we	configured	these	variables	to	be
defined	as	input	or	output	pins:

pinMode(pirPin,	INPUT);

www.it-ebooks.info

http://www.it-ebooks.info/

pinMode(redLedPin,	OUTPUT);

pinMode(greenLedPin,	OUTPUT);

Here,	pirPin,	redLedPin,	and	greenLedPin	are	digital	pins	7,	12,	and	13	respectively.	In
the	same	function,	we	also	configured	the	Arduino	board	to	provide	serial	connectively	at
the	baud	rate	of	9600	bps:

Serial.begin(9600);

The	loop()	function
In	the	loop()	function,	we	are	repeatedly	monitoring	the	input	from	the	pirPin	digital	pin
to	detect	motion.	The	output	of	this	pin	is	HIGH	when	motion	is	detected	and	LOW
otherwise.	This	logic	is	implemented	using	a	simple	if-else	statement.	When	this
condition	is	satisfied,	the	function	calls	a	user-defined	function,	blinkLED(),	to	perform
the	appropriate	action	on	the	LEDs.

User-defined	functions	are	a	very	important	aspect	of	any	programming	language.	Let’s
spend	some	time	learning	how	you	can	create	your	own	Arduino	functions	to	perform
various	actions.

www.it-ebooks.info

http://www.it-ebooks.info/

Working	with	custom	Arduino	functions
Functions	are	used	when	a	segment	of	code	is	repeatedly	executed	to	perform	the	same
action.	A	user	can	create	a	custom	function	to	organize	the	code	or	perform	reoccurring
actions.	To	successfully	utilize	a	custom	function,	a	user	needs	to	call	them	from
mandatory	Arduino	functions	such	as	loop(),	setup(),	or	any	other	function	that	leads	to
these	mandatory	functions:

return-type	function_name	(parameters){

		#	Action	to	be	performed

		Action_1;

		Action_2;

		Return	expression;

}

In	the	preceding	Arduino	function	framework,	return-type	can	be	any	Arduino	data	type
such	as	int,	float,	string,	and	so	on,	or	void	if	the	code	is	not	returning	anything.	The
following	is	the	custom	function	that	we	used	in	our	project	code:

void	blinkLED(int	pin,	String	message){

		digitalWrite(pin,HIGH);

		Serial.println(message);	

		delay(1000);

		digitalWrite(pin,LOW);

		delay(2000);

}

In	our	project,	the	blinkLED()	function	is	not	retuning	any	value	when	it	is	called	from
the	loop()	function.	Hence,	return-type	is	void.	When	calling	the	function,	we	pass	the
pin	number	and	a	message	as	parameters:

blinkLED(greenLedPin,	"No	motion	detected.");

These	parameters	are	then	utilized	in	the	performed	action	(writing	a	message	on	a	serial
port	and	setting	up	the	LED	status)	by	the	blinkLED()	function.	This	function	also
introduces	a	delay	to	perform	the	blink	action	by	using	the	delay()	function.

www.it-ebooks.info

http://www.it-ebooks.info/

Testing
We	verified	the	designed	system	in	the	Testing	hardware	connection	section	using	manual
inputs	via	the	Firmata	test	program.	As	we	have	now	implemented	the	software	design,	we
need	to	verify	that	the	project	is	performing	objective	tasks	autonomously	and	repeatedly.

With	the	USB	port	connected	to	the	computer,	open	the	serial	monitoring	tool	from	the
Arduino	IDE	by	navigating	to	Tools	|	Serial	Monitor	or	by	pressing	Ctrl	+	Shift	+	M.	You
should	start	seeing	a	message	similar	to	the	one	displayed	in	the	following	screenshot	on
the	Serial	Monitor	window:

While	writing	the	blinkLED()	function	to	perform	actions,	we	included	an	action	to	write
a	string	via	a	serial	port.	Move	your	hand	over	the	PIR	sensor	in	such	a	way	that	the	PIR
sensor	can	detect	motion.	This	event	should	trigger	the	system	to	blink	the	red	LED	and
display	a	string,	Motion	detected,	on	the	serial	monitor.	Once	you	stay	steady	and	avoid
any	motion	for	a	while,	you	will	be	able	to	see	the	green	LED	blinking	until	the	next
movement	gets	detected	via	the	PIR	sensor.

www.it-ebooks.info

http://www.it-ebooks.info/

Troubleshooting
Troubleshooting	is	an	important	process	if	anything	goes	awry.	These	are	a	few	example
problems	and	the	troubleshooting	steps	for	them:

Serial	output	is	correct,	but	there	are	no	blinking	LEDs:

Check	the	LED	connections	on	the	breadboard

The	LED	blinks,	but	there	is	no	serial	output:

Check	the	port	on	which	the	serial	monitor	is	configured
Check	whether	the	baud	rate	in	the	serial	monitor	is	correct	(9600	bps)

There	is	no	serial	output	and	no	blinking	LEDs:

Check	the	PIR	sensor	connection	and	make	sure	that	you	are	getting	signal	from
the	PIR	sensor
Check	your	Arduino	code
Check	power	and	ground	connections

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Method	2	–	using	Python	and	Firmata
In	the	previous	chapter,	we	discussed	the	benefits	of	using	Python	programming	that	is
assisted	by	Firmata	over	using	native	Arduino	sketches.	The	Python-based	programming
approach	provides	tangible	experience	when	performing	any	algorithmic	or	parametric
changes.	In	this	section,	we	are	going	to	explore	these	benefits	and	also	learn	important
Python	programming	paradigms.

www.it-ebooks.info

http://www.it-ebooks.info/

The	project	setup
Let’s	make	sure	that	you	have	done	the	following	before	we	go	ahead	with	Python
programming:

Made	sure	that	the	hardware	components	are	set	up,	as	described	in	the	system	design
Connected	the	Arduino	to	your	computer	using	a	USB	cable
Uploaded	the	StandardFirmata	sketch	back	to	Arduino
Made	sure	that	you	have	Python	and	the	Python	packages	(pySerial	and	pyFirmata)
installed	on	your	computer
Obtained	a	text	editor	to	write	Python	codes

www.it-ebooks.info

http://www.it-ebooks.info/

Working	with	Python	executable	files
In	the	previous	chapters,	we	explored	Python	programming	using	the	interactive	Python
interpreter.	However,	when	working	with	large	projects,	it	is	very	difficult	to	keep	using
the	Python	interactive	interpreter	for	repetitive	tasks.	Like	other	programming	languages,
the	preferred	method	is	to	create	Python	executable	files	and	run	them	from	the	terminal.

Python	executable	files	carry	the	.py	extension	and	are	formatted	as	plain	text.	Any	text
editor	can	be	used	to	create	these	files.	The	popular	editors	used	to	create	and	edit	Python
files	are	Notepad++,	nano,	vi,	and	so	on.	This	list	also	includes	the	default	editor	that	is
shipped	with	the	Python	setup	files	called	IDLE.	You	can	use	the	editor	of	your	choice,
but	make	sure	that	you	save	the	files	with	the	.py	extension.	Let’s	copy	the	following	lines
of	code	in	a	new	file	and	save	it	as	test.py:

#!/usr/bin/python

a	=	"Python"

b	=	"Programming"

print	a	+	"	"+	b

To	run	this	file,	execute	the	following	command	on	the	terminal	where	the	test.py	file	is
saved:

$	python	test.py

You	should	be	able	to	see	the	text	Python	Programming	printed	on	the	terminal.	As	you
can	see,	the	file	starts	with	#!/usr/bin/python,	which	is	the	default	Python	installation
location.	By	adding	this	line	in	your	Python	code,	you	can	directly	execute	a	Python	file
from	the	terminal.	In	Unix-based	operating	systems,	you	need	to	make	the	test.py	file
executable	through	the	following	command:

$	chmod	+x	test.py

Now,	as	your	file	is	executable,	you	can	directly	run	the	file	using	the	following
command:

$./test.py

Note
For	Unix-based	operating	systems,	an	alternative	way	to	provide	the	Python	interpreter
location	is	to	use	the	following	line	of	code	instead	of	the	one	that	we	used:

#!/usr/bin/env	python

In	Windows	operating	systems,	Python	files	automatically	become	executable	because	of
the	.py	extension.	You	can	just	run	the	program	files	by	double-clicking	and	opening
them.

www.it-ebooks.info

http://www.it-ebooks.info/

The	Python	code
As	you	now	know	how	to	create	and	run	Python	code,	let’s	create	a	new	Python	file	with
the	following	code	snippet	and	run	it.	Make	sure	to	change	the	value	of	the	port	variable
according	to	your	operating	system,	as	described	in	the	previous	chapter:

#!/usr/bin/python

#	Import	required	libraries

import	pyfirmata

from	time	import	sleep

#	Define	custom	function	to	perform	Blink	action

def	blinkLED(pin,	message):

				print	message

				board.digital[pin].write(1)

				sleep(1)

				board.digital[pin].write(0)

				sleep(1)

#	Associate	port	and	board	with	pyFirmata

port	=	'/dev/ttyACM0'

board	=	pyfirmata.Arduino(port)

#	Use	iterator	thread	to	avoid	buffer	overflow

it	=	pyfirmata.util.Iterator(board)

it.start()

#	Define	pins	

pirPin	=	board.get_pin('d:7:i')

redPin	=	12

greenPin	=	13

#	Check	for	PIR	sensor	input

while	True:

				#	Ignore	case	when	receiving	None	value	from	pin

				value	=	pirPin.read()

				while	value	is	None:

								pass

				

				if	value	is	True:

								#	Perform	Blink	using	custom	function

								blinkLED(redPin,	"Motion	Detected")

								

				else:

								#	Perform	Blink	using	custom	function

								blinkLED(greenPin,	"No	motion	Detected")

#	Release	the	board

board.exit()

You	have	successfully	created	and	executed	your	first	Arduino	project	using	Python.
There	are	two	main	programming	components	in	this	code:	pyFirmata	methods	and	the
Python	function	to	perform	the	blinking	action.	The	program	repeatedly	detects	the	motion

www.it-ebooks.info

http://www.it-ebooks.info/

events	and	performs	the	blinking	action.	In	the	previous	section,	this	problem	was	solved
by	using	the	default	Arduino	function	loop().	In	this	method,	we	have	implemented	the
while	statement	to	keep	the	program	in	loop	until	the	code	is	manually	terminated	by	the
user.	You	can	terminate	the	code	using	the	keyboard	combination	Ctrl	+	C.

www.it-ebooks.info

http://www.it-ebooks.info/

Working	with	pyFirmata	methods
As	part	of	working	with	the	Arduino	board	and	the	Firmata	protocol,	you	have	to	start	by
initializing	the	Arduino	board	as	a	variable.	The	pyFirmata	method	that	lets	a	user	assign
the	board	to	a	Python	variable	is	as	follows:

board	=	pyfirmata.Arduino(port)

Once	the	value	of	the	variable	is	assigned,	you	can	perform	various	actions	such	as
reading	a	pin	or	sending	a	signal	to	the	pin	using	that	variable.	To	assign	a	role	to	a	pin,
the	get_pin()	method	is	used.	In	the	following	line	of	code,	d	represents	the	digital	pin,	7
is	the	pin	number,	and	i	represents	that	the	type	of	pin	is	an	input	pin:

pirPin	=	board.get_pin('d:7:i')

Once	a	pin	and	its	role	are	assigned	to	a	variable,	that	variable	can	be	used	to	read	or	write
values	on	the	pin:

Value	=	pirPin.read()

One	can	directly	write	data	to	a	specific	pin,	as	described	in	following	code:

board.digital[pin].write(1)

Here,	the	write(1)	method	sends	a	HIGH	signal	to	the	pin.	We	will	be	learning	additional
pyFirmata	methods	in	the	upcoming	chapters.

www.it-ebooks.info

http://www.it-ebooks.info/

Working	with	Python	functions
A	Python	function	begins	with	the	def	keyword	followed	by	the	function	name	and	the
input	parameters	or	arguments.	The	function	definition	ends	with	a	colon	(:)	and	it	is
indented	afterwards.	The	return	statement	terminates	the	function.	It	also	passes	the
expression	to	the	place	where	the	function	is	called.	If	the	return	statement	is	kept
without	an	expression,	it	is	considered	to	pass	the	return	value	None:

def	function_name(parameters):

		action_1

		action_2

		return	[expression]

The	preceding	framework	can	be	used	to	create	custom	functions	to	perform	recurring
tasks.	In	our	project,	we	have	the	blinkLED(pin,	message)	function	to	perform	the
blinking	LED	action.	This	function	sends	1	(HIGH)	and	0	(LOW)	value	to	the	specified
digital	pin	while	also	printing	message	on	the	terminal.	It	also	introduces	delay	to	simulate
the	blinking	action:

def	blinkLED(pin,	message):

				print	message

				board.digital[pin].write(1)

				sleep(1)

				board.digital[pin].write(0)

				sleep(1)

www.it-ebooks.info

http://www.it-ebooks.info/

Testing
You	can	start	testing	the	project	as	soon	as	you	run	the	Python	code	on	the	terminal.	If
everything	goes	according	to	design,	you	should	be	able	to	see	the	following	output	in	the
terminal:

You	should	be	able	to	see	the	Motion	Detected	string	on	the	terminal	when	any	motion	is
detected	by	the	PIR	sensor.	If	you	find	any	abnormal	behavior	in	the	output,	then	please
check	the	Python	code.

A	benefit	of	using	Python	is	that	minor	modifications	such	as	changing	the	blinking	speed
or	swapping	roles	of	the	LEDs	can	be	performed	by	just	changing	the	Python	code,
without	dealing	with	the	Arduino	or	the	electrical	circuit.

www.it-ebooks.info

http://www.it-ebooks.info/

Troubleshooting
When	you	run	the	project,	you	might	require	troubleshooting	for	the	following	probable
problems:

Serial	output	is	correct,	but	there	are	no	blinking	LEDs:

Check	the	LED	connections	on	the	breadboard

The	LED	blinks,	but	there	is	no	serial	output:

Check	whether	you	have	successfully	installed	the	standard	Firmata	sketch	to
the	board

There	is	no	serial	output	and	no	blinking	LEDs:

Check	whether	any	program	other	than	Python	is	using	the	serial	port.	Close	any
program	that	might	be	using	that	serial	port,	including	the	Arduino	IDE.
Verify	all	the	circuit	connections.
Make	sure	that	the	port	name	specified	in	the	Python	code	is	correct.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Summary
Between	the	two	programming	methods	that	you	learned	in	this	chapter,	the	method	that
uses	just	an	Arduino	sketch	represents	the	traditional	paradigm	of	programming	a
microcontroller.	While	this	method	is	simple	to	implement,	it	lacks	the	extensiveness	that
is	achieved	by	Python-Arduino	interfacing.	Although	we	will	use	extensive	Arduino
coding	in	all	the	projects	beginning	from	now,	exercises	and	projects	will	have	Python-
Arduino	interfacing	as	the	primary	way	of	programming.

Starting	from	the	next	chapter,	we	are	going	to	explore	the	additional	aspects	of	Python
programming	that	can	extend	the	usability	of	an	Arduino-based	hardware	project	while
keeping	the	programming	difficulty	levels	to	a	minimum.	We	will	begin	with	Python-
Arduino	prototyping	and	then	create	graphical	interfaces	for	user	interaction,	before
stopping	for	the	second	project	that	utilizes	these	concepts.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter	4.	Diving	into	Python-Arduino
Prototyping
On	the	completion	of	the	first	project,	you	successfully	started	Python-Arduino
interfacing.	We	also	interfaced	multiple	hardware	components,	that	is,	motion	sensor	and
LEDs	with	Arduino	via	digital	pins.	During	the	project,	you	learned	more	about	the
Firmata	protocol	while	utilizing	simple	Python	methods	that	helped	you	to	establish	a
connection	between	your	Arduino	board	and	the	Python	program.	When	you	are	working
on	complex	projects,	you	need	more	than	basic	methods	to	implement	the	different
features	that	are	required	by	the	projects	and	their	associated	electronics	components.	This
chapter	is	designed	to	give	you	a	comprehensive	experience	of	interfacing	so	that	you	can
start	working	on	hard	problems	from	the	next	chapter	onwards.	We	have	described	various
interfacing	protocols	at	the	Python-Arduino	and	Arduino-to-components	levels.	This
chapter	also	includes	practical	examples	for	these	protocols	with	appropriate	code	and
circuit	diagrams.	In	this	chapter,	we	are	going	to	cover	the	following	main	topics:

Introduction	to	Prototyping
Detailed	description	of	various	pyFirmata	methods	to	port	Arduino	functionalities
into	Python
Python-Arduino	interfacing	examples	using	Firmata	for	basic	electronic	components
such	as	the	potentiometer,	the	buzzer,	the	DC	motor,	and	the	servomotor
Introduction	to	the	inter-integrated	circuit	(I2C)	protocol	and	prototyping	examples
for	the	I2C	components	such	as	the	temperature	sensor	(TMP102)	and	the	light
sensor	(BH1750)

www.it-ebooks.info

http://www.it-ebooks.info/

Prototyping
Just	for	a	moment,	let’s	step	back	and	look	at	the	project	that	we	built	in	the	previous
chapter.	The	project	had	a	very	simple	goal	and	we	were	able	to	develop	it	quite
comfortably.	However,	the	project	is	certainly	not	ready	to	be	a	consumer	product	since	it
doesn’t	have	significant	functionalities	and	most	importantly,	it	is	not	a	robust	product	that
can	be	repeatedly	produced	as	it	is.	What	you	can	tell	about	your	current	project	is	that	it
is	a	DIY	project	for	personal	use	or	just	a	model	that	can	be	developed	further	to	be	a	great
product.

Now,	if	you	are	looking	to	develop	a	commercial	product	or	just	a	DIY	project	that	is
really	robust	and	scalable,	you	must	consider	starting	it	by	making	a	model	first.	At	this
stage,	you	need	to	envision	the	product	with	the	required	features	that	need	to	be
developed	and	the	number	of	components	that	are	required	to	deploy	these	features.
Prototyping	is	basically	a	rapid	way	to	create	a	working	model	of	your	envisioned	idea
before	developing	it	into	a	fully	functional	project	or	product.	The	proof	of	concept
prototype	that	is	developed	during	this	prototyping	process	lets	you	to	identify	the
feasibility	of	your	idea,	and	in	some	cases,	it	helps	you	to	explore	the	potential	of	your
project.	The	prototyping	or	functional	model-making	process	is	essential	for	any	industry
and	not	just	for	electronics.

In	the	electronics	domain,	prototyping	can	be	used	at	the	very	first	stage	of	interfacing
components	to	a	computer,	instead	of	directly	spending	a	significant	amount	of	resources
for	the	schematic	design,	PCB	manufacturing,	and	developing	the	complete	code	base.
This	stage	helps	you	to	identify	major	flaws	in	your	circuit	design	and	check	the	mutual
compatibility	of	the	selected	components.

Fortunately,	Arduino	and	the	existing	software	support	around	Arduino	have	really
simplified	electronics’	prototyping.	In	the	upcoming	sections,	we	will	go	through	various
helper	functions	and	interfacing	exercises	to	help	you	proceed	with	your	own	projects.
These	examples	or	templates	are	designed	in	such	a	fashion	that	they	can	be	used	as	a
blueprint	for	larger	projects.

Before	diving	into	these	prototyping	examples,	let’s	understand	two	different	abstractions
of	interfacing	that	we	are	going	to	explore	in	this	chapter:

Interfacing	Arduino	with	Python:	We	have	learned	the	easiest	method	of	Python-
Arduino	interfacing	using	the	Firmata	protocol.	On	the	Arduino	board,	the	Firmata
protocol	is	implemented	using	the	StandardFirmata	firmware,	while	on	the	Python
end,	we	used	the	Firmata	libraries,	pyFirmata	or	pyMata,	for	Python.	Another
Python-Arduino	interfacing	method	includes	the	use	of	simple	but	nonstandard	serial
commands	using	the	custom	Arduino	sketch	and	the	pySerial	library	in	the	Python
program.	It	is	also	possible	to	use	a	computer	network	to	establish	communication
between	Python	and	Arduino,	which	is	covered	later	in	the	book.
Interfacing	electronic	components	with	Arduino:	The	second	interfacing
abstraction	is	associated	with	Arduino	and	the	physical	components.	As	we	already
did,	various	electronics	components	can	be	simply	interfaced	with	the	Arduino	board

www.it-ebooks.info

http://www.it-ebooks.info/

using	digital	or	analog	pins.	These	components	deal	with	either	digital	or	analog
signals.	A	few	digital	pins	on	the	Arduino	board	support	PWM	communication	for
specific	hardware	devices.	The	other	alternative	interfacing	methods	include	I2C	and
serial	peripheral	interface	(SPI)	communication.	The	I2C	method	is
comprehensively	explained	in	the	final	section	of	this	chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Working	with	pyFirmata	methods
The	pyFirmata	package	provides	useful	methods	to	bridge	the	gap	between	Python	and
Arduino’s	Firmata	protocol.	Although	these	methods	are	described	with	specific
examples,	you	can	use	them	in	various	different	ways.	This	section	also	provides	a
detailed	description	of	a	few	additional	methods	that	were	not	used	in	the	previous	project
and	lists	the	missing	features.

www.it-ebooks.info

http://www.it-ebooks.info/

Setting	up	the	Arduino	board
To	set	up	your	Arduino	board	in	a	Python	program	using	pyFirmata,	you	need	to
specifically	follow	the	steps	that	we	have	covered.	We	have	distributed	the	entire	code	that
is	required	for	the	setup	process	into	small	code	snippets	in	each	step.	While	writing	your
code,	you	will	have	to	carefully	use	the	code	snippets	that	are	appropriate	for	your
application.	You	can	always	refer	to	the	example	Python	files	containing	the	complete
code.	Before	we	go	ahead,	let’s	first	make	sure	that	your	Arduino	board	is	equipped	with
the	latest	version	of	the	StandardFirmata	program	and	is	connected	to	your	computer:

1.	 Depending	upon	the	Arduino	board	that	is	being	utilized,	start	by	importing	the
appropriate	pyFirmata	classes	to	the	Python	code.	Currently,	the	inbuilt	pyFirmata
classes	only	support	the	Arduino	Uno	and	Arduino	Mega	boards:

from	pyfirmata	import	Arduino

In	the	case	of	Arduino	Mega,	use	the	following	line	of	code:

from	pyfirmata	import	ArduinoMega

2.	 Before	we	start	executing	any	methods	that	are	associated	with	handling	pins,	you
need	to	properly	set	up	the	Arduino	board.	To	perform	this	task,	we	have	to	first
identify	the	USB	port	to	which	the	Arduino	board	is	connected	and	assign	this
location	to	a	variable	in	the	form	of	a	string	object.	For	Mac	OS	X,	the	port	string
should	approximately	look	like	this:

port	=	'/dev/cu.usbmodemfa1331'

For	Windows,	use	the	following	string	structure:

port	=	'COM3'

In	the	case	of	the	Linux	operating	system,	use	the	following	line	of	code:

port	=	'/dev/ttyACM0'

The	port’s	location	might	be	different	according	to	your	computer	configuration.	You
can	identify	the	correct	location	of	your	Arduino	USB	port	by	using	the	Arduino
IDE,	as	described	in	Chapter	2,	Working	with	the	Firmata	Protocol	and	the	pySerial
Library.

3.	 Once	you	have	imported	the	Arduino	class	and	assigned	the	port	to	a	variable	object,
it’s	time	to	engage	Arduino	with	pyFirmata	and	associate	this	relationship	to	another
variable:

board	=	Arduino(port)

Similarly,	for	Arduino	Mega,	use	this:

board	=	ArduinoMega(port)

4.	 The	synchronization	between	the	Arduino	board	and	pyFirmata	requires	some	time.
Adding	sleep	time	between	the	preceding	assignment	and	the	next	set	of	instructions

www.it-ebooks.info

http://www.it-ebooks.info/

can	help	to	avoid	any	issues	that	are	related	to	serial	port	buffering.	The	easiest	way
to	add	sleep	time	is	to	use	the	inbuilt	Python	method,	sleep(time):

from	time	import	sleep

sleep(1)

The	sleep()	method	takes	seconds	as	the	parameter	and	a	floating-point	number	can
be	used	to	provide	the	specific	sleep	time.	For	example,	for	200	milliseconds,	it	will
be	sleep(0.2).

At	this	point,	you	have	successfully	synchronized	your	Arduino	Uno	or	Arduino	Mega
board	to	the	computer	using	pyFirmata.	What	if	you	want	to	use	a	different	variant	(other
than	Arduino	Uno	or	ArduinoMega)	of	the	Arduino	board?

Any	board	layout	in	pyFirmata	is	defined	as	a	dictionary	object.	The	following	is	a
sample	of	the	dictionary	object	for	the	Arduino	board:

arduino	=	{

				'digital'	:	tuple(x	for	x	in	range(14)),

				'analog'	:	tuple(x	for	x	in	range(6)),

				'pwm'	:	(3,	5,	6,	9,	10,	11),

				'use_ports'	:	True,

				'disabled'	:	(0,	1)	#	Rx,	Tx,	Crystal

}

For	your	variant	of	the	Arduino	board,	you	have	to	first	create	a	custom	dictionary
object.	To	create	this	object,	you	need	to	know	the	hardware	layout	of	your	board.
For	example,	an	Arduino	Nano	board	has	a	layout	similar	to	a	regular	Arduino	board,
but	it	has	eight	instead	of	six	analog	ports.	Therefore,	the	preceding	dictionary	object
can	be	customized	as	follows:

nano	=	{

				'digital'	:	tuple(x	for	x	in	range(14)),

				'analog'	:	tuple(x	for	x	in	range(8)),

				'pwm'	:	(3,	5,	6,	9,	10,	11),

				'use_ports'	:	True,

				'disabled'	:	(0,	1)	#	Rx,	Tx,	Crystal

}

As	you	have	already	synchronized	the	Arduino	board	earlier,	modify	the	layout	of	the
board	using	the	setup_layout(layout)	method:

board.setup_layout(nano)

This	command	will	modify	the	default	layout	of	the	synchronized	Arduino	board	to
the	Arduino	Nano	layout	or	any	other	variant	for	which	you	have	customized	the
dictionary	object.

www.it-ebooks.info

http://www.it-ebooks.info/

Configuring	Arduino	pins
Once	your	Arduino	board	is	synchronized,	it	is	time	to	configure	the	digital	and	analog
pins	that	are	going	to	be	used	as	part	of	your	program.	Arduino	board	has	digital	I/O	pins
and	analog	input	pins	that	can	be	utilized	to	perform	various	operations.	As	we	already
know,	some	of	these	digital	pins	are	also	capable	of	PWM.

The	direct	method
Now	before	we	start	writing	or	reading	any	data	to	these	pins,	we	have	to	first	assign
modes	to	these	pins.	In	the	Arduino	sketch-based	approach	that	we	used	in	the	previous
chapter,	we	used	the	pinMode	function,	that	is,	pinMode(11,	INPUT)	for	this	operation.
Similarly,	in	pyFirmata,	this	assignment	operation	is	performed	using	the	mode	method	on
the	board	object	as	shown	in	the	following	code	snippet:

from	pyfirmata	import	Arduino

from	pyfirmata	import	INPUT,	OUTPUT,	PWM

#	Setting	up	Arduino	board

port	=	'/dev/cu.usbmodemfa1331'

board	=	Arduino(port)

#	Assigning	modes	to	digital	pins

board.digital[13].mode	=	OUTPUT

board.analog[0].mode	=	INPUT

The	pyFirmata	library	includes	classes	for	the	INPUT	and	OUTPUT	modes,	which	are
required	to	be	imported	before	you	utilized	them.	The	preceding	example	shows	the
delegation	of	digital	pin	13	as	an	output	and	the	analog	pin	0	as	an	input.	The	mode
method	is	performed	on	the	variable	assigned	to	the	configured	Arduino	board	using	the
digital[]	and	analog[]	array	index	assignment.

The	pyFirmata	library	also	supports	additional	modes	such	as	PWM	and	SERVO.	The	PWM
mode	is	used	to	get	analog	results	from	digital	pins,	while	the	SERVO	mode	helps	a	digital
pin	to	set	the	angle	of	the	shaft	between	0	to	180	degrees.	The	PWM	and	SERVO	modes	are
explained	with	detailed	examples	later	in	this	chapter.	If	you	are	using	any	of	these	modes,
import	their	appropriate	classes	from	the	pyFirmata	library.	Once	these	classes	are
imported	from	the	pyFirmata	package,	the	modes	for	the	appropriate	pins	can	be	assigned
using	the	following	lines	of	code:

board.digital[3].mode	=	PWM

board.digital[10].mode	=	SERVO

Note
In	electronics,	PWM	is	a	signal	modulation	technique	that	is	greatly	used	to	provide
controlled	amount	of	power	to	components.	While	dealing	with	digital	signals,	the	PWM
technique	is	used	to	obtain	analog	results	by	utilizing	square	waves	and	controlling	the
width	of	the	signal.

As	we	already	know,	the	digital	pins	of	the	Arduino	board	can	only	have	two	states,	5V

www.it-ebooks.info

http://www.it-ebooks.info/

(HIGH)	and	0V	(LOW).	One	can	generate	square	pulses	by	controlling	the	switching
pattern	between	HIGH	and	LOW	and	thus	generate	the	pulse.	By	changing	the	width	of
these	pulses,	you	can	simulate	any	voltage	between	0V	and	5V.	As	you	can	see	in	the
following	diagram,	we	have	a	square	wave	with	25	percent	width	of	the	duty	cycle.	It
means	that	we	are	simulating	0.25	*	5V	=	1.25V	for	the	period	of	that	duty	cycle:

The	Arduino	language	supports	PWM	using	the	analogWrite()	function,	where	the
voltage	range	between	0V	and	5V	is	linearly	scaled	for	values	between	0	and	255.	For
example,	50	percent	duty	cycle	(simulation	of	2.5V)	translates	to	a	value	of	127,	which
can	be	coded	in	Arduino	as	analogWrite(13,127).	Here,	the	number	13	represents	the
digital	pin	that	supports	PWM	on	the	Arduino	Uno	board.	Similarly,	a	20	percent	duty
cycle	(1V)	translates	to	analogWrite(13,64).

Assigning	pin	modes
The	direct	method	of	configuring	pins	is	mostly	used	for	a	single	line	of	execution	calls.	In
a	project	containing	a	large	code	and	complex	logic,	it	is	convenient	to	assign	a	pin	with
its	role	to	a	variable	object.	With	an	assignment	like	this,	you	can	later	utilize	the	assigned
variable	throughout	the	program	for	various	actions,	instead	of	calling	the	direct	method
every	time	you	need	to	use	that	pin.	In	pyFirmata,	this	assignment	can	be	performed	using
the	get_pin(pin_def)	method:

from	pyfirmata	import	Arduino

port	=	'/dev/cu.usbmodemfa1311'

board	=	Arduino(port)

#	pin	mode	assignment

ledPin	=	board.get_pin('d:13:o')

The	get_pin()	method	lets	you	assign	pin	modes	using	the	pin_def	string	parameter,
'd:13:o'.	The	three	components	of	pin_def	are	pin	type,	pin	number,	and	pin	mode
separated	by	a	colon	(:)	operator.	The	pin	types	(analog	and	digital)	are	denoted	with	a
and	d	respectively.	The	get_pin()	method	supports	three	modes,	i	for	input,	o	for	output,

www.it-ebooks.info

http://www.it-ebooks.info/

and	p	for	PWM.	In	the	previous	code	sample,	'd:13:o'	specifies	the	digital	pin	13	as	an
output.	In	another	example,	if	you	want	to	set	up	the	analog	pin	1	as	an	input,	the
parameter	string	will	be	'a:1:i'.

www.it-ebooks.info

http://www.it-ebooks.info/

Working	with	pins
Now	you	have	configured	your	Arduino	pins,	it’s	time	to	start	performing	actions	using
them.	Two	different	types	of	methods	are	supported	while	working	with	pins:	reporting
methods	and	I/O	operation	methods.

Reporting	data
When	pins	get	configured	in	a	program	as	analog	input	pins,	they	start	sending	input
values	to	the	serial	port.	If	the	program	does	not	utilize	this	incoming	data,	the	data	starts
getting	buffered	at	the	serial	port	and	quickly	overflows.	The	pyFirmata	library	provides
the	reporting	and	iterator	methods	to	deal	with	this	phenomenon.

The	enable_reporting()	method	is	used	to	set	the	input	pin	to	start	reporting.	This
method	needs	to	be	utilized	before	performing	a	reading	operation	on	the	pin:

board.analog[3].enable_reporting()

Once	the	reading	operation	is	complete,	the	pin	can	be	set	to	disable	reporting:

board.analog[3].disable_reporting()

In	the	preceding	example,	we	assumed	that	you	had	already	set	up	the	Arduino	board	and
configured	the	mode	of	the	analog	pin	3	as	INPUT.

The	pyFirmata	library	also	provides	the	Iterator()	class	to	read	and	handle	data	over	the
serial	port.	While	working	with	analog	pins,	we	recommend	that	you	start	an	iterator
thread	in	the	main	loop	to	update	the	pin	value	to	the	latest	one.	If	the	iterator	method	is
not	used,	the	buffered	data	might	overflow	your	serial	port.	This	class	is	defined	in	the
util	module	of	the	pyFirmata	package	and	needs	to	be	imported	before	it	is	utilized	in
the	code:

from	pyfirmata	import	Arduino,	util

#	Setting	up	the	Arduino	board

port	=	'COM3'

board	=	Arduino(port)

sleep(5)

#	Start	Iterator	to	avoid	serial	overflow

it	=	util.Iterator(board)

it.start()

Manual	operations
As	we	have	configured	the	Arduino	pins	to	suitable	modes	and	their	reporting
characteristic,	we	can	start	monitoring	them.	The	pyFirmata	library	provides	the	write()
and	read()	methods	for	the	configured	pins.

The	write()	method

The	write()	method	is	used	to	write	a	value	to	the	pin.	If	the	pin’s	mode	is	set	to	OUTPUT,
the	value	parameter	is	a	Boolean,	that	is,	0	or	1:

board.digital[pin].mode	=	OUTPUT

www.it-ebooks.info

http://www.it-ebooks.info/

board.digital[pin].write(1)

If	you	have	used	an	alternative	method	of	assigning	the	pin’s	mode,	you	can	use	the
write()	method	as	follows:

ledPin	=	board.get_pin('d:13:o')

ledPin.write(1)

In	the	case	of	the	PWM	signal,	the	Arduino	accepts	a	value	between	0	and	255	that
represents	the	length	of	the	duty	cycle	between	0	and	100	percent.	The	pyFirmata	library
provides	a	simplified	method	to	deal	with	the	PWM	values	as	instead	of	values	between	0
and	255,	you	can	just	provide	a	float	value	between	0	and	1.0.	For	example,	if	you	want	a
50	percent	duty	cycle	(2.5V	analog	value),	you	can	specify	0.5	with	the	write()	method.
The	pyFirmata	library	will	take	care	of	the	translation	and	send	the	appropriate	value,	that
is,	127,	to	the	Arduino	board	via	the	Firmata	protocol:

board.digital[pin].mode	=	PWM

board.digital[pin].write(0.5)

Similarly,	for	the	indirect	method	of	assignment,	you	can	use	some	code	similar	to	the
following	snippet:

pwmPin	=	board.get_pin('d:13:p')

pwmPin.write(0.5)

If	you	are	using	the	SERVO	mode,	you	need	to	provide	the	value	in	degrees	between	0	and
180.	Unfortunately,	the	SERVO	mode	is	only	applicable	for	direct	assignment	of	the	pins
and	will	be	available	in	future	for	indirect	assignments:

board.digital[pin].mode	=	SERVO

board.digital[pin].write(90)

The	read()	method

The	read()	method	provides	an	output	value	at	the	specified	Arduino	pin.	When	the
Iterator()	class	is	being	used,	the	value	received	using	this	method	is	the	latest	updated
value	at	the	serial	port.	When	you	read	a	digital	pin,	you	can	get	only	one	of	the	two
inputs,	HIGH	or	LOW,	which	will	translate	to	1	or	0	in	Python:

board.digital[pin].read()

The	analog	pins	of	Arduino	linearly	translate	the	input	voltages	between	0	and	+5V	to	0
and	1023.	However,	in	pyFirmata,	the	values	between	0	and	+5V	are	linearly	translated
into	the	float	values	of	0	and	1.0.	For	example,	if	the	voltage	at	the	analog	pin	is	1V,	an
Arduino	program	will	measure	a	value	somewhere	around	204,	but	you	will	receive	the
float	value	as	0.2	while	using	pyFirmata’s	read()	method	in	Python.

www.it-ebooks.info

http://www.it-ebooks.info/

Additional	functions
Besides	the	method	that	has	already	been	described,	the	pyFirmata	library	also	provides
some	utility	functions	for	additional	customization,	which	are	as	follows:

servo_config(pin,min_pulse=544,max_pulse=2400,angle=0):	This	method	helps
to	set	up	the	SERVO	mode	with	further	customization	such	as	the	minimum	pulse
value,	maximum	pulse	value,	and	starting	angle.	One	can	set	the	initial	angle	of	the
servomotor	using	the	angle	parameter.
pass_time(seconds):	This	method	provides	a	functionality	similar	to	that	found	in
the	default	Python’s	default	method	sleep()	that	is	provided	by	the	time	module.
However,	the	pass_time	function	provides	a	non-blocking	timeout	in	seconds.
get_firmata_version():	This	function	returns	a	tuple	that	contains	the	version	of
the	Firmata	protocol	from	the	Arduino	board:

board.get_firmata_version()

exit():	We	recommend	that	you	disconnect	the	Arduino	board	from	pyFirmata	once
you	have	completed	running	your	code.	This	will	free	the	serial	port,	which	can	be
then	utilized	by	other	programs:

board.exit()

www.it-ebooks.info

http://www.it-ebooks.info/

Upcoming	functions
The	pyFirmata	library	is	currently	under	development	and	it	continuously	receives
updates	to	add	and	improve	various	methods.	Although	most	of	the	native	Arduino
methods	are	available	in	the	pyFirmata	library	via	the	Firmata	protocol,	there	are	few
functions	that	are	still	missing	or	under	development	and	they	are	as	follows:

pulseIn/pulseOut:	These	native	Arduino	functions	wait	for	the	Arduino	pin	to
achieve	the	specified	value.	The	waiting	period	is	returned	in	microseconds.	This
method	is	widely	used	by	Ping	(ultrasonic	distance	measurement)	sensors.
Implementation	of	this	method	using	pyFirmata	requires	major	changes	to	the
standard	Firmata	protocol.
shiftIn/shiftOut:	These	functions	shift	a	byte	of	data	in	or	out,	one	bit	at	a	time.
The	pyFirmata	library	lacks	supports	for	these	functions	and	can	be	implemented
using	the	various	Python	programming	tricks.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Prototyping	templates	using	Firmata
The	goal	of	this	section	is	to	provide	prototyping	templates	while	also	explaining	various
Python	methods	and	programming	techniques.	It	tries	to	cover	some	of	the	most	popular
sensors	with	coding	examples	that	are	used	by	DIY	Arduino	projects.	This	section	is
designed	to	utilize	the	Firmata	protocol	to	implement	these	Python	programs.	It	also
includes	various	Python	programming	paradigms	such	as	working	with	indefinite	loops,
creating	custom	functions,	working	with	random	numbers,	acquiring	manual	inputs	from
prompt,	and	so	on.	These	prototyping	templates	are	designed	in	such	a	way	that	they	can
be	easily	included	in	large	projects	or	they	can	be	blueprints	for	a	larger	project	that	can	be
developed	around	them.	You	learned	about	the	pyFirmata	package	comprehensively	in	the
previous	section	and	we	will	only	utilize	those	pyFirmata	functions	in	the	upcoming
examples.	An	alternative	Python	library	that	supports	the	Firmata	protocol	is	covered	later
in	the	chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Potentiometer	–	continuous	observation	from	an
analog	input
A	potentiometer	is	a	variable	resistor	that	can	be	controlled	using	a	knob.	It	has	three
terminals	out	of	which	two	of	them	are	Vref	and	ground,	while	the	third	one	provides	a
variable	output.	The	output	of	the	potentiometer	varies	between	the	supplied	voltages,
according	to	the	position	of	the	knob.	In	Arduino,	you	can	connect	the	potentiometer	with
+5V	and	the	ground	pins	of	the	board	to	provide	the	supply	voltage.	When	the	variable
terminal	is	interfaced	with	the	Arduino	analog	input,	this	voltage	values	translates	between
0	and	1023	respectively.	In	the	case	of	pyFirmata,	the	value	of	the	analog	observation
translates	between	0	and	1.

This	coding	template	containing	the	potentiometer	can	be	applied	to	projects	in	which
external	manual	control	to	a	system	is	required.	The	potentiometer	output	that	translates	to
the	analog	input	of	Arduino	can	be	used	to	control	an	actuator	such	as	a	motor	or	an	LED.
In	some	cases,	the	input	can	also	be	used	to	control	the	flow	of	the	program	by	applying
its	values	to	a	variable.

Connections
Connect	the	output	of	the	potentiometer	to	analog	pin	A0	as	shown	in	the	following
diagram.	Complete	the	circuit	by	connecting	Vref	and	the	ground	terminals	of	the
potentiometers	to	+5V	and	the	ground	of	the	Arduino	board	respectively:

The	Python	code

www.it-ebooks.info

http://www.it-ebooks.info/

Assuming	that	you	already	have	the	StandardFirmata	firmware	uploaded	to	the	Arduino
board,	you	are	required	to	run	a	Python	code	on	your	computer	to	complete	its	interfacing
with	the	potentiometer.	A	Python	code	template	with	the	name	potentiometer.py	to	help
you	get	started	with	this	example	is	located	in	the	code	bundle	of	this	book,	which	can	be
downloaded	from	https://www.packtpub.com/books/content/support/1961.	Let’s	open	this
file	to	understand	the	program.	As	you	can	see,	we	are	using	the	pyFirmata	library	with
other	Python	modules	such	as	time	and	os:

from	pyfirmata	import	Arduino,	util

from	time	import	sleep

import	os

In	the	second	step	of	the	program,	we	are	initializing	the	Arduino	board	and	starting	the
Iterator()	function	over	it:

port	=	'COM3'

board	=	Arduino(port)

sleep(5)

it	=	util.Iterator(board)

it.start()

Once	the	board	has	been	initialized,	we	need	to	assign	a	role	to	the	analog	pin,	0,	as	it	is
going	to	be	used	as	an	input	pin.	We	are	using	the	get_pin()	method	to	assign	a	role	to
the	analog	pin,	0:

a0	=	board.get_pin('a:0:i')

Now,	as	part	of	the	main	program,	we	need	to	continuously	monitor	the	output	of	the
potentiometer	at	the	pin,	a0,	that	we	just	defined.	We	are	using	the	while	statement	to
create	an	indefinite	loop	for	the	script	that	will	read	and	print	the	analog	input.	The
problem	with	this	indefinite	while	loop	is	that	the	program	will	not	close	properly	when	it
is	interrupted	and	it	will	not	release	the	board	by	executing	the	board.exit()	method.	To
avoid	this,	we	will	use	another	control	statement	from	the	Python	programming	paradigm,
called	try/except:

try:

		while	True:

				p	=	a0.read()

				print	p

except	KeyboardInterrupt:

		board.exit()

		os._exit()

Using	this	statement,	the	program	will	keep	running	the	while	loop	until	the	keyboard
interruption	occurs,	which	is	Ctrl	+	C,	and	the	program	will	execute	the	script	under	the
except	statement.	This	includes	releasing	the	board	using	board.exit()	and	existing	the
program	using	the	os._exit()	method.	In	summary,	the	program	will	keep	printing	the
output	of	the	potentiometer	until	someone	presses	Ctrl	+	C	to	interrupt	the	program.

Note
The	try/except	statement	provides	a	very	efficient	way	to	capture	exceptions	in	Python.

www.it-ebooks.info

https://www.packtpub.com/books/content/support/1961
http://www.it-ebooks.info/

It	is	advisable	to	utilize	this	statement	throughout	the	development	process	to	cleverly
debug	your	programs.	You	can	learn	about	Python	errors	and	exceptions	from	the
following	links:

https://docs.python.org/2/reference/compound_stmts.html#try
https://docs.python.org/2/tutorial/errors.html

www.it-ebooks.info

https://docs.python.org/2/reference/compound_stmts.html#try
https://docs.python.org/2/tutorial/errors.html
http://www.it-ebooks.info/

Buzzer	–	generating	sound	alarm	pattern
Digital	buzzer	sensors	are	used	in	various	applications	that	require	alarm	notifications.
These	sensors	produce	sound	when	they	are	supplied	with	a	digital	HIGH	value	(that	is,
+5V),	which	can	be	provided	by	using	Arduino	digital	pins.	Similar	to	the	LED	example
in	the	previous	chapter,	they	are	very	easy	to	interface	with	Arduino.	However,	rather	than
performing	a	simple	digital	output,	we	are	implementing	Python	programming	tricks	to
generate	different	sound	patterns	and	produce	various	sound	effects.	The	same	code
template	can	be	also	used	to	produce	different	LED	blink	patterns.

Note
An	analog	digital	buzzer	can	be	found	at	http://www.amazon.com/Arduino-Compatible-
Speaker-arduino-sensors/dp/B0090X0634.

Connections
As	displayed	in	the	following	circuit	diagram,	connect	the	VCC	and	the	ground	of	the
sensor	board	to	5V	and	the	ground	pin	of	the	Arduino	board	respectively.	Connect	the
signal	pin	of	the	sensor	to	the	digital	pin	2	via	the	220-ohm	resistor.	You	can	use	any
digital	pin	to	connect	the	buzzer.	Just	make	sure	that	you	update	the	Python	code	to	reflect
the	pin	that	you	have	selected.

The	Python	code
In	the	code	example,	two	different	sound	patterns	are	generated	using	arrays	of	time
delays.	To	perform	these	actions,	we	are	going	to	implement	a	custom	Python	function
that	will	take	the	pin	number,	the	recurrence	time,	and	the	pattern	number	as	input.	Before
we	jump	to	explain	the	code,	let’s	open	the	program	file,	buzzerPattern.py,	from	the

www.it-ebooks.info

http://www.amazon.com/Arduino-Compatible-Speaker-arduino-sensors/dp/B0090X0634
http://www.it-ebooks.info/

code	folder.	In	the	beginning	of	the	code,	you	can	find	the	Python	function,
buzzerPattern()	that	will	be	called	from	the	main	program	with	appropriate	options.	As
this	function	is	the	core	of	the	entire	program,	let’s	try	to	understand	it.	The	function
contains	two	hardcoded	pattern	arrays,	pattern1	and	pattern2.	Each	contains	the	on	and
off	time	for	the	buzzer	for	a	second,	which	is	the	duty	cycle	of	the	pattern.	For	example,	in
pattern1,	0.8	represents	the	time	the	buzzer	needs	to	be	on	and	0.2	represents	the
opposite.	The	function	will	repeat	this	buzzer	pattern	for	recurrence	times	that	is
specified	by	the	function	argument.	Once	the	for	loop	with	the	value	of	recurrence	is
started,	the	function	will	check	for	the	pattern	number	from	the	function	argument	and
execute	the	pattern.	We	are	using	the	flag	variable	to	alternatively	use	elements	of	the
pattern	array	to	control	the	buzzer.	Once	the	entire	recurrence	loop	is	complete,	we	will
turn	off	the	buzzer	completely	again,	if	it	is	on,	and	safely	disengage	the	board	using	the
exit()	method:

def	buzzerPattern(pin,	recurrence,	pattern):

		pattern1	=	[0.8,	0.2]

		pattern2	=	[0.2,	0.8]

		flag	=	True

		for	i	in	range(recurrence):

				if	pattern	==	1:

						p	=	pattern1

				elif	pattern	==	2:

						p	=	pattern2

				else:

						print	"Please	enter	valid	pattern.	1	or	2."

						exit

				for	delay	in	p:

						if	flag	is	True:

								board.digital[pin].write(1)

								flag	=	False

								sleep(delay)

						else:

								board.digital[pin].write(0)

								flag	=	True

								sleep(delay)

		board.digital[pin].write(0)

		board.exit()

Tip
If	you	want	to	change	the	time	delays	or	implement	a	totally	different	pattern,	you	can
play	around	with	the	pattern	arrays.

The	remaining	part	of	the	program	is	relatively	simple	as	it	contains	code	for	importing
libraries	and	initializing	the	Arduino	board.	Once	the	board	is	initialized,	we	will	execute
the	buzzerPattern()	function	with	the	input	argument,	(2,	10,	1).	This	argument	will
ask	the	function	to	play	pattern1	10	times	on	the	pin	number	2:

from	pyfirmata	import	Arduino

from	time	import	sleep

port	=	'/dev/cu.usbmodemfa1331'

www.it-ebooks.info

http://www.it-ebooks.info/

board	=	Arduino(port)

sleep(5)

buzzerPattern(2,	10,	1)

www.it-ebooks.info

http://www.it-ebooks.info/

DC	motor	–	controlling	motor	speed	using	PWM
DC	motors	are	widely	used	in	robotics	applications.	They	are	available	in	a	wide	range	of
voltage	specifications,	depending	upon	the	application.	In	this	example,	we	are	utilizing	a
5V	DC	motor	because	we	want	to	supply	the	power	using	the	Arduino	board	itself.	As	the
Arduino	digital	pin	can	only	have	two	states,	that	is,	HIGH	(+5V)	or	LOW	(0V),	it	is
impossible	to	control	the	speed	of	the	motor	using	just	the	OUTPUT	mode.	As	a	solution,	we
are	going	to	implement	the	PWM	mode	via	digital	pins	that	are	capable	of	supporting	PWM.
While	using	pyFirmata,	pins	configured	with	the	PWM	mode	take	any	float	input	values
between	0	and	1.0,	which	represent	0V	and	5V	respectively.

Connections
Depending	upon	the	load,	DC	motors	can	sometimes	draw	large	amounts	of	current	and
harm	the	Arduino	board.	To	avoid	any	damage	to	the	Arduino	board	due	to	any	large
accidental	current	draw,	we	will	use	a	transistor	as	a	switch,	which	only	uses	a	small
amount	of	current	to	control	the	large	amount	of	current	in	the	DC	motor.	To	complete	the
circuit	connection	as	displayed	in	the	following	diagram,	you	will	need	an	NPN	transistor
(TIP120,	N2222,	or	a	similar	one),	one	diode	(1N4001	or	similar	one)	and	a	220-ohm
resistor	with	your	DC	motor.	Connect	the	base	of	the	transistor	to	the	digital	pin	3	that	also
supports	the	PWM	mode.	Connect	the	remaining	components	as	displayed	in	the	diagram:

www.it-ebooks.info

http://www.it-ebooks.info/

Note
To	find	out	more	about	transistor	terminals	(collector,	emitter,	and	base)	and	to	associate
transistor	pins	with	their	respective	terminals,	you	can	refer	to	their	datasheets	or	the
following	websites:

http://en.wikipedia.org/wiki/Transistor
http://www.onsemi.com/pub/Collateral/TIP120-D.PDF
http://www.mouser.com/ds/2/68/PN2221-2222A-11964.pdf

The	Python	code
The	Python	recipe	with	the	name	dcMotorPWM.py	for	a	DC	motor	is	located	in	the	code
bundle	of	this	book,	which	can	be	downloaded	from
https://www.packtpub.com/books/content/support/1961.	Open	the	Python	file	to	further
understand	the	usage	of	PWM	to	control	the	speed	of	the	DC	motor.	The	custom	function,
dcMotorControl(),	takes	motor	speed	and	time	duration	as	input	parameters	as	described
in	the	following	code	snippet:

def	dcMotorControl(r,	deltaT):

		pwmPin.write(r/100.00)

		sleep(deltaT)

		pwmPin.write(0)

Just	like	the	previous	examples,	we	are	using	a	similar	code	to	import	the	necessary
library	and	initialize	the	Arduino	board.	After	initialization,	we	are	assigning	the	mode	of
the	digital	pin	3	as	PWM,	which	can	be	seen	from	the	utilization	of	the	get_pin('d:3:p')
method.	This	code	reflects	the	indirect	mode	of	pin	mode	assignment	that	we	learned	in
the	previous	section:

#	Set	mode	of	pin	3	as	PWM

pwmPin	=	board.get_pin('d:3:p')

As	part	of	collecting	manual	inputs	from	the	user,	we	are	running	a	combination	of	the
try/except	statement	(to	release	the	board	on	exit)	and	the	while	statement	(to	obtain
continuous	inputs	from	the	user).	The	code	template	introduces	the	input()	method	to
obtain	custom	values	(motor	speed	and	duration	to	run	the	motor)	from	Python’s
interactive	terminal.	Once	these	values	are	obtained	from	the	user,	the	program	calls	the
dcMotorControl()	function	to	perform	the	motor	action:

try:

		while	True:

				r	=	input("Enter	value	to	set	motor	speed:	")

				if	(r	>	100)	or	(r	<=	0):

						print	"Enter	appropriate	value."

						board.exit()

						break

				t	=	input("How	long?	(seconds)")

				dcMotorControl(r,	t)

except	KeyboardInterrupt:

		board.exit()

		os._exit

www.it-ebooks.info

http://en.wikipedia.org/wiki/Transistor
http://www.onsemi.com/pub/Collateral/TIP120-D.PDF
http://www.mouser.com/ds/2/68/PN2221-2222A-11964.pdf
https://www.packtpub.com/books/content/support/1961
http://www.it-ebooks.info/

LED	–	controlling	LED	brightness	using	PWM
In	the	previous	template,	we	controlled	the	speed	of	DC	motor	using	PWM.	One	can	also
control	the	brightness	of	the	LED	using	the	same	method.	Instead	of	asking	the	user	to
input	brightness,	we	are	going	to	use	the	Python	module	random	in	this	template.	We	will
use	this	module	to	generate	a	random	number	between	1	and	100,	which	will	be	later	used
to	write	that	value	on	the	pin	and	randomly	change	the	brightness	of	the	LED.	This
randint()	function	is	a	really	useful	feature	provided	by	the	random	module	and	it	is
widely	used	in	testing	prototypes	by	rapidly	sending	random	signals.

Note
The	randint()	function	takes	the	randint(startValue,	endValue)	syntax	and	returns
the	random	integer	between	the	range	established	by	startValue	and	endValue.

Connections
Like	we	used	in	the	previous	chapter’s	project,	we	will	need	a	pull-up	resistor	to	connect
the	LED	with	the	Arduino	pin.	As	displayed	in	the	following	diagram,	simply	connect	the
anode	of	the	LED	(longer	leg)	to	the	digital	pin	11	via	one	220-ohm	resistor	and	connect
the	cathode	(shorter	leg)	to	the	ground:

It	is	important	to	note	that	the	digital	pin	11	on	Arduino	Uno	is	also	capable	of	performing
PWM	along	with	digital	pins	3,	5,	6,	9,	and	10.

The	Python	code
The	Python	code	with	the	title	ledBrightnessPWM.py	for	this	exercise	is	located	in	the
code	bundle	of	this	book,	which	can	be	downloaded	from
https://www.packtpub.com/books/content/support/1961.	Open	the	file	to	explore	the	code.
As	you	can	see	in	this	code	template,	a	float	value	between	0	and	1.0	is	randomly	selected
before	passing	it	to	the	PWM	pin.	This	method	generates	random	LED	brightness	for	a

www.it-ebooks.info

https://www.packtpub.com/books/content/support/1961
http://www.it-ebooks.info/

given	amount	of	time.	This	practice	can	be	used	to	generate	random	input	samples	for
various	other	testing	projects.

As	you	can	see,	the	first	few	lines	of	the	code	import	the	necessary	libraries	and	initialize
the	board.	Although	the	board	variable,	/dev/cu.usbmodemfa1311,	is	selected	for	Mac	OS
X,	you	can	use	your	operating	system’s	specific	variable	name	in	the	following	code
snippet.	You	can	obtain	more	information	about	choosing	this	variable	name	from	the
Setting	up	the	Arduino	board	section	at	the	beginning	of	this	chapter.

from	pyfirmata	import	Arduino,	INPUT,	PWM

from	time	import	sleep

import	random

port	=	'/dev/cu.usbmodemfa1311'

board	=	Arduino(port)

sleep(5)

In	this	example,	we	are	utilizing	the	direct	method	of	pin	mode	assignment.	As	you	can
see	in	the	following	code	snippet,	the	digital	pin	11	is	being	assigned	to	the	PWM	mode:

pin	=	11

board.digital[pin].mode	=	PWM

Once	the	pin	mode	is	assigned,	the	program	will	run	a	loop	using	the	for	statement	while
randomly	generating	an	integer	number	between	0	and	100,	and	then	send	the	appropriate
PWM	value	to	the	pin	according	to	the	generated	number.	With	the	execution	of	this,	you
will	be	able	to	see	the	LED	randomly	changing	its	brightness	for	approximately	10
seconds:

for	i	in	range(0,	99):

		r	=	random.randint(1,	100)

		board.digital[pin].write(r	/	100.00)

		sleep(0.1)

Once	you	are	done	with	the	loop,	you	need	to	safely	disengage	the	Arduino	board	after
turning	off	the	LED	one	last	time.	It	is	a	good	practice	to	turn	off	the	LED	or	any
connected	sensor	at	the	end	of	the	program	before	exiting	the	board,	to	prevent	any	sensor
from	running	accidentally:

board.digital[pin].write(0)

board.exit()

Note
If	you	want	to	homogenously	glow	the	LED	instead	of	randomly	changing	its	brightness,
replace	the	code	in	the	for	loop	with	the	following	code	snippet.	Here,	we	are	changing
the	PWM	input	to	the	incrementing	variable,	i,	instead	of	the	random	variable,	r:

for	i	in	range(0,	99):

		board.digital[pin].write(i	/	100.00)

		sleep(0.1)

www.it-ebooks.info

http://www.it-ebooks.info/

Servomotor	–	moving	the	motor	to	a	certain	angle
Servomotors	are	widely	used	electronic	components	in	applications	such	as	pan-tilt
camera	control,	robotic	arms,	mobile	robot	movements,	and	so	on	where	precise
movement	of	the	motor	shaft	is	required.	This	precise	control	of	the	motor	shaft	is
possible	because	of	the	position	sensing	decoder,	which	is	an	integral	part	of	the
servomotor	assembly.	A	standard	servomotor	allows	the	angle	of	the	shaft	to	be	set
between	0	and	180	degrees.	The	pyFirmata	library	provides	the	SERVO	mode	that	can	be
implemented	on	every	digital	pin.	This	prototyping	exercise	provides	a	template	and
guidelines	to	interface	a	servomotor	with	Python.

Connections
Typically,	a	servomotor	has	wires	that	are	color-coded	red,	black,	and	yellow	respectively
to	connect	with	the	power,	ground,	and	signal	of	the	Arduino	board.	Connect	the	power
and	the	ground	of	the	servomotor	to	5V	and	the	ground	of	the	Arduino	board.	As
displayed	in	the	following	diagram,	connect	the	yellow	signal	wire	to	the	digital	pin	13:

If	you	want	to	use	any	other	digital	pin,	make	sure	that	you	change	the	pin	number	in	the
Python	program	in	the	next	section.	Once	you	have	made	the	appropriate	connections,
let’s	move	on	to	the	Python	program.

The	Python	code
The	Python	file	consisting	of	this	code	is	named	servoCustomAngle.py	and	is	located	in
the	code	bundle	of	this	book,	which	can	be	downloaded	from
https://www.packtpub.com/books/content/support/19610.	Open	this	file	in	your	Python

www.it-ebooks.info

https://www.packtpub.com/books/content/support/19610
http://www.it-ebooks.info/

editor.	Like	other	examples,	the	starting	section	of	the	program	contains	the	code	to	import
the	libraries	and	set	up	the	Arduino	board:

from	pyfirmata	import	Arduino,	SERVO

from	time	import	sleep

#	Setting	up	the	Arduino	board

port	=	'COM5'

board	=	Arduino(port)

#	Need	to	give	some	time	to	pyFirmata	and	Arduino	to	synchronize

sleep(5)

Now	that	you	have	Python	ready	to	communicate	with	the	Arduino	board,	let’s	configure
the	digital	pin	that	is	going	to	be	used	to	connect	the	servomotor	to	the	Arduino	board.	We
will	complete	this	task	by	setting	the	mode	of	pin	13	to	SERVO:

#	Set	mode	of	the	pin	13	as	SERVO

pin	=	13

board.digital[pin].mode	=	SERVO

The	setServoAngle(pin,angle)	custom	function	takes	the	pins	on	which	the	servomotor
is	connected	and	the	custom	angle	as	input	parameters.	This	function	can	be	used	as	a	part
of	various	large	projects	that	involve	servos:

#	Custom	angle	to	set	Servo	motor	angle

def	setServoAngle(pin,	angle):

		board.digital[pin].write(angle)

		sleep(0.015)

In	the	main	logic	of	this	template,	we	want	to	incrementally	move	the	motor	shaft	in	one
direction	until	it	achieves	the	maximum	achievable	angle	(180	degrees)	and	then	move	it
back	to	the	original	position	with	the	same	incremental	speed.	In	the	while	loop,	we	will
ask	the	user	to	provide	input	to	continue	this	routine,	which	will	be	captured	using	the
raw_input()	function.	The	user	can	enter	the	character	y	to	continue	this	routine	or	enter
any	other	character	to	abort	the	loop:

#	Testing	the	function	by	rotating	motor	in	both	direction

while	True:

		for	i	in	range(0,	180):

				setServoAngle(pin,	i)

		for	i	in	range(180,	1,	-1):

				setServoAngle(pin,	i)

		#	Continue	or	break	the	testing	process

		i	=	raw_input("Enter	'y'	to	continue	or	Enter	to	quit):	")

		if	i	==	'y':

				pass

		else:

				board.exit()

				break

While	working	with	all	these	prototyping	examples,	we	used	the	direct	communication
method	by	using	digital	and	analog	pins	to	connect	the	sensors	with	Arduino.	Now,	let’s
get	familiar	with	another	widely	used	communication	method	between	Arduino	and	the

www.it-ebooks.info

http://www.it-ebooks.info/

sensors,	which	is	called	I2C	communication.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Prototyping	with	the	I2C	protocol
In	the	previous	section,	sensors	or	actuators	were	directly	communicating	with	Arduino
via	digital,	analog,	or	PWM	pins.	These	methods	are	utilized	by	a	large	number	of	basic,
low-level	sensors	and	you	will	be	widely	using	them	in	your	future	Arduino	projects.
Beside	these	methods,	there	is	a	wide	variety	of	popular	sensors	that	are	based	on
integrated	circuit	(IC),	which	require	different	ways	of	communication.	These	IC-based
advanced	sensors	utilize	I2C-	or	SPI	bus-based	methods	to	communicate	with	the
microcontroller.	As	we	are	going	to	use	I2C-based	sensors	in	the	upcoming	projects,	the
section	will	only	cover	the	I2C	protocol	and	practical	example	to	understand	the	protocol
in	a	better	way.	Once	you	understand	the	fundamentals	of	the	I2C	protocol,	you	can	learn
the	SPI	protocol	very	quickly.

Note
You	can	learn	more	about	SPI	protocol	and	the	supported	Arduino	SPI	library	from	the
following	links:

http://arduino.cc/en/Reference/SPI
http://www.instructables.com/id/Using-an-Arduino-to-Control-or-Test-an-SPI-
electro/

In	1982,	the	Philips	company	needed	to	find	out	a	simple	and	efficient	way	to	establish
communication	between	a	microcontroller	and	the	peripheral	chips	on	TV	sets,	which	led
to	the	development	of	the	I2C	communication	protocol.	The	I2C	protocol	connects	the
microcontroller	or	the	CPU	to	a	large	number	of	low-speed	peripheral	devices	using	just
two	wires.	Examples	of	such	peripheral	devices	or	sensors	include	I/O	devices,	A/D
converters,	D/A	converters,	EEPROM,	and	many	similar	devices.	I2C	uses	the	concept	of
master-slave	devices,	where	the	microcontroller	is	the	master	and	the	peripherals	are	the
slave	devices.	The	following	diagram	shows	an	example	of	the	I2C	communication	bus:

www.it-ebooks.info

http://arduino.cc/en/Reference/SPI
http://www.instructables.com/id/Using-an-Arduino-to-Control-or-Test-an-SPI-electro/
http://www.it-ebooks.info/

As	displayed	in	the	preceding	diagram,	the	master	device	contains	two	bidirectional	lines:
Serial	Data	Line	(SDA)	and	Serial	Clock	Line	(SCL).	In	the	case	of	Arduino	Uno,	the
analog	pins	4	and	5	provide	interfaces	for	SDA	and	SCL.	It	is	important	to	note	that	these
pin	configurations	will	change	with	different	variants	of	the	Arduino	board.	The	peripheral
sensors	that	are	working	as	slaves	connect	to	these	lines,	which	are	also	supported	by	the
pull	resistors.	The	master	device	is	responsible	for	generating	the	clock	signal	on	the	SCL
and	initializing	communication	with	the	slaves.	The	slave	devices	receive	the	clock	and
respond	to	the	commands	sent	by	the	master	device.

The	order	of	the	slave	devices	is	not	important	as	the	master	device	communicates	with
the	slaves	using	their	part	address.	To	initialize	the	communication,	the	master	sends	one
of	the	following	types	of	message	on	the	bus	with	the	specific	part	address:

A	single	message	in	which	data	is	written	on	the	slave
A	single	message	in	which	data	is	read	from	the	slave
Multiple	messages	in	which	first	data	is	requested	from	the	slave	and	then	the
received	data	is	read

To	support	I2C	protocol	in	Arduino	programming,	the	Arduino	IDE	comes	equipped	with
a	default	library	called	Wire.	This	library	can	be	imported	to	your	Arduino	sketch	by
adding	the	following	line	of	code	at	the	beginning	of	your	program:

#include	<Wire.h>

To	initialize	I2C	communication,	the	Wire	library	uses	a	combination	of	the	following
functions	to	write	data	on	the	slave	device:

Wire.beginTransmission(0x48);

Wire.write(0);

www.it-ebooks.info

http://www.it-ebooks.info/

Wire.endTransmission();

These	slave	devices	are	differentiated	using	unique	part	addresses.	As	you	can	see	in	the
preceding	example,	0x48	is	the	part	address	of	a	connected	slave	device.

The	Wire	library	also	provides	the	Wire.read()	and	Wire.requestFrom()	functions	to
read	and	request	data	from	the	slave	devices.	These	functions	are	explained	in	detail	in	the
next	section.

Note
You	can	learn	more	about	the	I2C	protocol	and	the	Wire	library	from	the	following	links:

http://www.instructables.com/id/I2C-between-Arduinos/
http://arduino.cc/en/reference/wire

www.it-ebooks.info

http://www.instructables.com/id/I2C-between-Arduinos/
http://arduino.cc/en/reference/wire
http://www.it-ebooks.info/

Arduino	examples	for	I2C	interfacing
In	order	to	practice	prototyping	exercises	for	the	I2C	protocol,	let’s	utilize	two	popular
I2C	sensors	that	detect	temperature	and	ambient	light	in	the	environment.	As	the	first	step
towards	understanding	I2C	messaging,	we	will	work	with	Arduino	sketches	for	I2C
interfacing,	and	later,	we	will	develop	similar	functionalities	using	Python.

Arduino	coding	for	the	TMP102	temperature	sensor
TMP102	is	one	of	the	widely	used	digital	sensors	to	measure	ambient	temperature.
TMP102	provides	better	resolution	and	accuracy	compared	to	traditional	analog
temperature	sensors	such	as	LM35	or	TMP36.	The	following	is	an	image	of	TMP102:

The	previous	image	shows	a	breakout	board	with	the	available	pins	for	the	TMP102
sensor.	Please	keep	in	mind	that	the	TMP102	sensor	that	you	obtain	might	have	a	different
pin	layout	compared	to	the	one	displayed	in	the	image.	It	is	always	advisable	to	check	the
datasheet	of	your	sensor	breakout	board	before	making	any	connections.	As	you	can	see	in
the	image,	the	TMP102	sensor	supports	the	I2C	protocol	and	is	equipped	with	SDA	and
SCL	pins.	Connect	analog	pins	4	and	5	of	your	Arduino	Uno	board	to	the	SDA	and	SCL
pins	of	the	TMP102	sensor.	Also,	connect	+5V	and	the	ground	as	displayed	in	the
following	diagram.	In	this	example,	we	are	using	the	Arduino	Uno	board	as	the	master	and
TMP102	as	the	slave	peripheral,	where	the	part	address	of	TMP102	is	0x48	in	hex:

www.it-ebooks.info

http://www.it-ebooks.info/

Note
You	can	obtain	the	TMP102	sensor	breakout	board	from	SparkFun	Electronics	at
https://www.sparkfun.com/products/11931.

The	datasheet	of	this	board	can	be	obtained	at
https://www.sparkfun.com/datasheets/Sensors/Temperature/tmp102.pdf.

Now,	connect	your	Arduino	board	to	your	computer	using	a	USB	cable	and	create	a	new
sketch	in	the	Arduino	IDE	using	the	following	code	snippet.	Once	you	have	selected	the
appropriate	serial	port	and	type	of	board	in	the	Arduino	IDE,	upload	and	run	the	code.	If
all	the	steps	are	performed	as	described,	on	execution,	you	will	be	able	to	see	the
temperature	reading	in	Celsius	and	Fahrenheit	in	the	Serial	Monitor	window:

#include	<Wire.h>

int	partAddress	=	0x48;

void	setup(){

		Serial.begin(9600);

		Wire.begin();

}

void	loop(){

		Wire.requestFrom(partAddress,2);

www.it-ebooks.info

https://www.sparkfun.com/products/11931
https://www.sparkfun.com/datasheets/Sensors/Temperature/tmp102.pdf
http://www.it-ebooks.info/

		byte	MSB	=	Wire.read();

		byte	LSB	=	Wire.read();

		int	TemperatureData	=	((MSB	<<	8)	|	LSB)	>>	4;

		float	celsius	=	TemperatureData*0.0625;

		Serial.print("Celsius:	");

		Serial.println(celsius);

		float	fahrenheit	=	(1.8	*	celsius)	+	32;

		Serial.print("Fahrenheit:	");

		Serial.println(fahrenheit);

		delay(500);

}

In	the	preceding	code	snippet,	the	Wire.requestFrom(partAddress,2)	function	requests
two	bytes	from	the	slave	TMP102.	The	slave	sends	data	bytes	to	the	master,	which	get
captured	by	the	Wire.read()	function	and	are	stored	as	two	different	bits:	most
significant	bit	(MSB)	and	least	significant	bit	(LSB).	These	bytes	are	converted	into	an
integer	value,	which	is	then	converted	into	the	actual	Celsius	reading	by	multiplying	the
incremental	fraction	of	the	TMP102	sensor	that	is	obtained	from	the	datasheet.	TMP102	is
one	of	the	easiest	I2C	sensors	to	interface	with	Arduino	as	the	sensor	values	can	be
obtained	via	a	simple	I2C	request	method.

Arduino	coding	for	the	BH1750	light	sensor
BH1750	is	a	digital	light	sensor	that	measures	the	amount	of	visible	light	in	a	given	area.
Although	various	DIY	projects	utilize	simple	photocells	as	a	cheap	alternative,	the
BH1750	sensor	is	known	for	higher	resolution	and	accuracy	in	a	wide	range	of
applications.	The	ambient	light,	also	called	luminous	flux	or	lux,	is	measured	in	unit
lumen.	The	BH1750	sensor	supports	I2C	communication	with	part	address	0x23,	with
0x5C	as	the	secondary	address	if	you	are	using	multiple	BH1750	sensors.	The	following	is
an	image	of	a	typical	breakout	board	consisting	of	BH1750:

Connect	the	SDA	and	SCL	pins	of	the	BH1750	breakout	board	to	analog	pins	4	and	5	of
the	Arduino	Uno	board,	as	displayed	in	the	following	circuit	diagram.	Also,	complete	the
+5V	and	ground	connections	as	displayed	in	the	following	diagram:

www.it-ebooks.info

http://www.it-ebooks.info/

In	the	previous	example,	we	used	functions	from	the	Wire	library	to	complete	the	I2C
communication.	Although	BH1750	is	a	simple	and	convenient	I2C	sensor,	in	the	case	of	a
sensor	with	multiple	measurement	capabilities,	it	is	not	convenient	to	code	directly	using
the	Wire	library.	In	this	situation,	you	can	use	sensor-specific	Arduino	libraries	that	are
developed	by	the	manufacturer	or	the	open	source	community.	For	BH1750,	we	will
demonstrate	the	use	of	such	a	library	to	assist	the	I2C	coding.	Before	we	can	use	this
library,	we	will	have	to	import	it	to	the	Arduino	IDE.	It	is	really	important	to	know	the
process	of	importing	libraries	to	your	Arduino	IDE	as	you	will	be	repeating	this	process	to
install	other	libraries	in	future.	Execute	the	following	steps	to	import	the	BH1750	library	to
your	Arduino	IDE:

1.	 Download	and	extract	Chapter	7,	The	Midterm	Project	–	a	Portable	DIY	Thermostat,
code	examples	in	a	folder.

2.	 Open	the	Arduino	IDE	and	navigate	to	Sketch	|	Import	Library…	|	Add
Library….

3.	 When	you	are	asked	for	a	directory,	go	to	the	BH1750	folder	in	the	downloaded	file
and	click	on	Select.

4.	 To	check	if	your	library	is	installed,	navigate	to	Sketch	|	Import	Library…	and	look
for	BH1750	in	the	drop-down	list.

5.	 Finally,	restart	the	Arduino	IDE.

Tip
If	you	are	using	an	Arduino	IDE	with	version	1.0.4	or	an	older	version,	you	might	not

www.it-ebooks.info

http://www.it-ebooks.info/

be	able	to	find	the	Import	Library…	option	from	the	menu.	In	this	case,	you	need	to
follow	the	tutorial	at	http://arduino.cc/en/Guide/Libraries.

The	BH1750	library	has	a	method	to	directly	obtain	ambient	light	values.	Let’s	test	this
library	using	a	built-in	code	example.

After	restarting	your	Arduino	IDE,	navigate	to	File	|	Examples	|	BH1750	and	open	the
BH1750test	Arduino	sketch.	This	should	open	the	following	code	snippet	in	the	Arduino
IDE.	Set	up	an	appropriate	serial	port	and	upload	the	code	to	your	Arduino	board.	Once
the	code	is	executed,	you	will	be	able	to	check	the	luminous	flux	(lux)	values	using	the
serial	monitor	of	the	Arduino	IDE.	Make	sure	that	the	serial	monitor	is	configured	to	9600
baud:

#include	<Wire.h>

#include	<BH1750.h>

BH1750	lightMeter;

void	setup(){

		Serial.begin(9600);

		lightMeter.begin();

		Serial.println("Running…");

}

void	loop()	{

		uint16_t	lux	=	lightMeter.readLightLevel();

		Serial.print("Light:	");

		Serial.print(lux);

		Serial.println("	lx");

		delay(1000);

}

As	you	can	see	from	the	preceding	code	snippet,	we	have	imported	the	BH1750	library	by
including	BH1750.h	file	with	Wire.h.	This	library	provides	the	readLightLevel()
function,	which	will	fetch	the	ambient	light	value	from	the	sensor	and	provide	it	as	an
integer.	As	the	Arduino	code	runs	in	a	loop	with	a	delay	of	1000	milliseconds,	the	lux
values	will	be	fetched	from	the	sensor	and	sent	to	the	serial	port	every	second.	You	can
observe	these	values	in	the	Serial	Monitor	window.

www.it-ebooks.info

http://arduino.cc/en/Guide/Libraries
http://www.it-ebooks.info/

PyMata	for	quick	I2C	prototyping
We	have	been	using	pyFirmata	as	our	default	Python	library	to	interface	the	Firmata
protocol.	The	pyFirmata	library	is	a	very	useful	Python	library	to	get	started	with	the
Firmata	protocol,	as	it	provides	many	simple	and	effective	methods	to	define	the	Firmata
ports	and	their	roles.	Due	to	these	reasons,	we	extensively	used	pyFirmata	for	rapid
prototyping	in	the	previous	section.	Although	pyFirmata	supports	analog,	digital,	PWM,
and	SERVO	modes	with	easy-to-use	methods,	it	provides	limited	support	to	the	I2C
protocol.

In	this	section,	we	are	going	to	use	a	different	Python	Firmata	library	called	PyMata	to	get
familiar	with	Python-based	prototyping	of	I2C	sensors.	The	PyMata	library	supports
regular	Firmata	methods	and	also	provides	full	support	for	the	I2C	messaging	protocol.

PyMata	can	be	easily	installed	using	Setuptools,	which	we	used	in	the	previous	chapters	to
install	other	Python	libraries.	We	are	assuming	that	you	already	have	Setuptools	and	pip
on	your	computer.	Let’s	start	performing	the	following	steps:

1.	 To	install	PyMata	on	a	Windows	computer,	execute	the	following	command	in	the
command	prompt:

C:\>	easy_install.exe	pymata

2.	 If	you	are	using	Linux	or	Mac	OS	X,	use	the	following	command	in	the	terminal	to
install	the	PyMata	library:

$	sudo	pip	install	pymata

3.	 If	everything	is	set	up	properly,	this	process	will	complete	without	any	error.	You	can
confirm	PyMata	by	opening	Python’s	interactive	prompt	and	importing	PyMata:

>>>	import	PyMata

4.	 If	the	execution	of	the	preceding	command	fails,	you	need	to	check	the	installation
process	for	any	error.	Resolve	the	error	and	repeat	the	installation	process.

Interfacing	TMP102	using	PyMata
In	order	to	utilize	PyMata	functionalities,	you	will	need	your	Arduino	board	to	be	equipped
with	the	standard	firmata	firmware	just	like	the	pyFirmata	library.	Before	we	proceed	to
explain	the	PyMata	functions,	let’s	first	run	the	following	code	snippet.	Connect	your
TMP102	temperature	sensor	as	explained	in	the	previous	section.	Using	the	Arduino	IDE,
navigate	to	File	|	Examples	|	Firmata	and	upload	the	standard	Firmata	sketch	from	there
to	your	Arduino	board.	Now,	create	a	Python	executable	file	using	the	following	code
snippet.	Change	the	value	of	port	(COM5),	if	needed,	to	an	appropriate	port	name	as
required	by	your	operating	system.	Finally,	run	the	program:

import	time

from	PyMata.pymata	import	PyMata

#Initialize	Arduino	using	port	name

www.it-ebooks.info

http://www.it-ebooks.info/

port	=	PyMata("COM5")

#Configure	I2C	pin

port.i2c_config(0,	port.ANALOG,	4,	5)

#	One	shot	read	asking	peripheral	to	send	2	bytes

port.i2c_read(0x48,	0,	2,	port.I2C_READ)

#	Wait	for	peripheral	to	send	the	data

time.sleep(3)

#	Read	from	the	peripheral

data	=	port.i2c_get_read_data(0x48)

#	Obtain	temperature	from	received	data

TemperatureSum	=	(data[1]	<<	8	|	data[2])	>>	4

celsius	=	TemperatureSum	*	0.0625

print	celsius

fahrenheit	=	(1.8	*	celsius)	+	32

print	fahrenheit

firmata.close()

On	the	execution	of	the	preceding	code	snippet,	you	will	be	able	to	see	the	temperature
reading	in	Fahrenheit	and	Celsius.	As	you	can	see	from	the	inline	comments	in	the	code,
the	first	step	to	utilize	Arduino	using	PyMata	is	to	initialize	the	port	using	the	PyMata
constructor.	PyMata	supports	the	configuration	of	I2C	pins	via	the	i2c_config()	function.
PyMata	also	supports	simultaneous	reading	and	writing	operations	via	the	i2c_read()	and
i2c_write()	functions.

Interfacing	BH1750	using	PyMata
In	the	case	of	BH1750,	the	previous	PyMata	code	snippet	can	be	utilized	with	minor
modifications	to	obtain	ambient	light	sensor	data.	As	the	first	change,	you	want	to	replace
the	part	address	of	TMP102	(0x48)	with	the	one	of	BH1750	(0x23)	in	the	following	code
snippet.	You	will	also	have	to	convert	the	raw	values	received	from	the	sensor	into	the	lux
value	using	the	given	formula.	After	these	modifications,	run	the	following	program	from
the	terminal:

import	time

from	PyMata.pymata	import	PyMata

port	=	PyMata("COM5")

port.i2c_config(0,	port.ANALOG,	4,	5)

#	Request	BH1750	to	send	2	bytes

port.i2c_read(0x23,	0,	2,	port.I2C_READ)

#	Wait	for	BH1750	to	send	the	data

time.sleep(3)

#	Read	data	from	BH1750

data	=	port.i2c_get_read_data(0x23)

www.it-ebooks.info

http://www.it-ebooks.info/

#	Obtain	lux	values	from	received	data

LuxSum	=	(data[1]	<<	8	|	data[2])	>>	4

lux	=	LuxSum/1.2

print	str(lux)	+	'	lux'

firmata.close()

On	running	the	preceding	code	snippet,	you	will	be	able	to	see	the	ambient	light	sensor
reading	in	lux	at	the	terminal.	This	process	can	be	used	in	a	large	number	of	I2C	devices
to	read	the	registered	information.	In	complex	I2C	devices,	you	will	have	to	follow	their
datasheet	or	examples	to	organize	the	read	and	write	commands	of	the	I2C.

www.it-ebooks.info

http://www.it-ebooks.info/

Useful	pySerial	commands
The	standard	Firmata	protocol	and	Python’s	Firmata	libraries	are	very	useful	for	testing	or
quick	prototyping	of	the	I2C	sensors.	Although	they	have	many	advantages,	Firmata-
based	projects	face	the	following	disadvantages:

Delay	in	real-time	execution:	Firmata-based	approaches	require	a	series	of	serial
communication	messages	to	receive	and	send	data,	which	adds	additional	delay	and
reduces	the	speed	of	execution.
Unwanted	space:	The	Firmata	protocol	contains	a	large	amount	of	additional	code	to
support	various	other	Arduino	functions.	In	a	well-defined	project,	you	don’t	really
need	the	complete	set	of	functions.
Limited	support:	Although	a	version	of	Firmata	includes	I2C	support,	it	is	quite
difficult	to	implement	complex	I2C	functions	without	adding	delay.

In	summary,	you	can	always	use	Firmata-based	approaches	to	quickly	prototype	your
projects,	but	when	you	are	working	on	production-level	or	advanced	projects,	you	can	use
alternative	methods.	In	these	scenarios,	you	can	use	custom	Arduino	code	that	is
supported	by	Python’s	serial	library,	pySerial,	to	enable	communication	for	very	specific
functionalities.	In	this	section,	we	are	going	to	cover	a	few	helpful	pySerial	methods	that
you	can	use	if	you	have	to	utilize	the	library	directly.

Connecting	with	the	serial	port
Once	you	have	connected	your	Arduino	to	a	USB	port	of	your	computer,	you	can	open	the
port	in	your	Python	code	using	the	Serial	class	as	displayed	in	the	following	code
example:

import	serial

port	=	serial.Serial('COM5',9600,	timeout=1)

In	addition	to	port	name	and	baud	rate,	you	can	also	specify	a	number	of	serial	port
parameters	such	as	timeout,	bytesize,	parity,	stopbits,	and	so	on	using	Serial().	It	is
necessary	to	initialize	the	serial	port	before	executing	any	other	command	from	the
pySerial	library.

Reading	a	line	from	the	port
Once	the	serial	port	is	opened,	you	can	start	reading	the	port	using	readline().	The
readline()	function	requires	the	timeout	to	be	specified	while	initializing	the	port,
otherwise	the	code	can	terminate	with	an	exception:

line	=	port.readline()

The	readline()	function	will	process	each	line	from	the	port	that	is	terminated	with	the
end	line	character	\n.

Flushing	the	port	to	avoid	buffer	overflow
While	working	with	pySerial,	it	is	necessary	to	flush	the	input	buffer	to	avoid	buffer
overflow	and	maintain	real-time	operations:

www.it-ebooks.info

http://www.it-ebooks.info/

port.flushInput()

If	the	port’s	baud	rate	is	high	and	the	processing	of	the	input	data	is	slow,	buffer	overflow
may	occur,	reducing	the	speed	of	execution	and	making	the	experience	sluggish.

Closing	the	port
It	is	a	good	coding	practice	to	close	the	serial	port	once	the	process	is	complete.	This
practice	can	eliminate	the	port-blocking	problem	once	the	Python	code	is	terminated:

port.close()

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Summary
In	this	chapter,	you	learned	important	methods	that	are	required	to	successfully	interface
the	Arduino	board	with	Python.	You	were	also	introduced	to	various	prototyping	code
templates	with	practical	applications.	These	prototyping	templates	helped	us	to	learn	new
Python	programing	paradigms	and	Firmata	methods.	Later	in	the	chapter,	we	dived	further
into	prototyping	by	learning	more	about	the	different	ways	of	establishing	communication
between	sensors	and	the	Arduino	board.	Although	we	covered	a	vast	amount	of
programming	concepts	with	these	prototyping	examples,	the	goal	of	the	chapter	was	to
make	you	familiar	with	the	interfacing	problems	and	provide	quick	recipes	for	your
projects.

We	are	assuming	that	by	now	you	are	comfortable	testing	your	sensors	or	project
prototypes	using	Python	and	Arduino.	It’s	time	to	start	working	towards	creating	your
applications	that	have	complex	Python	features	such	as	user	controls,	charts,	and	plots.	In
the	next	chapter,	we	are	going	to	develop	custom	graphical	user	interfaces	(GUIs)	for	your
Python-Arduino	projects.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter	5.	Working	with	the	Python	GUI
In	the	first	four	chapters,	we	used	the	Python	interactive	prompt	or	Arduino	serial	monitor
to	observe	the	results.	The	method	of	using	text-based	output	on	prompt	may	be	useful	for
basic	and	quick	prototyping,	but	when	it	comes	to	an	advanced	level	of	prototyping	and
demonstrating	your	prototype	or	final	product,	you	need	to	have	a	nice	looking	and	user-
friendly	interface.	GUI	helps	users	to	understand	various	components	of	your	hardware
project	and	easily	interact	with	it.	It	can	also	help	you	to	validate	the	results	from	your
project.

Python	has	a	number	of	widely	used	GUI	frameworks	such	as	Tkinter,	wxPython,	PyQt,
PySide,	and	PyGTK.	Each	of	these	frameworks	possesses	an	almost	complete	set	of	features
that	are	required	to	create	professional	applications.	Due	to	the	complexity	involved,	these
frameworks	have	different	levels	of	learning	curves	for	first-time	Python	programmers.
Now,	as	this	book	is	dedicated	to	Python	programming	for	Arduino-based	projects,	we
can’t	spend	a	large	amount	of	time	learning	the	nitty-gritty	of	a	specific	framework.
Instead,	we	will	choose	our	interface	library	based	on	the	following	criteria:

Ease	to	install	and	get	started
Ease	to	implement	with	negligible	learning	efforts
Use	of	minimum	computational	resources

The	framework	that	satisfies	all	these	requirements	is	Tkinter
(https://wiki.python.org/moin/TkInter).	Tkinter	is	also	the	default	standard	GUI	library
deployed	with	all	Python	installations.

Note
Although	Tkinter	is	the	de-facto	GUI	package	for	Python,	you	can	learn	more	about	other
GUI	frameworks	that	were	mentioned	earlier	from	their	official	websites,	which	are	as
follows:

wxPython:	http://www.wxpython.org/
PyGTK:	http://www.pygtk.org/
PySide:	http://qt-project.org/wiki/PySide
PyQt:	http://sourceforge.net/projects/pyqt/

www.it-ebooks.info

https://wiki.python.org/moin/TkInter
http://www.wxpython.org/
http://www.pygtk.org/
http://qt-project.org/wiki/PySide
http://sourceforge.net/projects/pyqt/
http://www.it-ebooks.info/

Learning	Tkinter	for	GUI	design
Tkinter,	short	for	Tk	interface,	is	a	cross-platform	Python	interface	for	the	Tk	GUI	toolkit.
Tkinter	provides	a	thin	layer	on	Python	while	Tk	provides	the	graphical	widgets.	Tkinter
is	a	cross-platform	library	and	gets	deployed	as	part	of	Python	installation	packages	for
major	operating	systems.	For	Mac	OS	X	10.9,	Tkinter	is	installed	with	the	default	Python
framework.	For	Windows,	when	you	install	Python	from	the	installation	file,	Tkinter	gets
installed	with	it.

Tkinter	is	designed	to	take	minimal	programming	efforts	for	developing	graphical
applications,	while	also	being	powerful	enough	to	provide	support	for	the	majority	of	GUI
application	features.	If	required,	Tkinter	can	also	be	extended	with	plugins.	Tkinter	via
Tk	offers	an	operating	system’s	natural	look	and	feel	after	the	release	of	Tk	Version	8.0.

To	test	your	current	version	of	the	Tk	toolkit,	use	the	following	commands	on	the	Python
prompt:

>>>	import	Tkinter

>>>	Tkinter._test()

You	will	be	prompted	with	an	image	similar	to	that	displayed	in	the	following	screenshot
that	contains	information	about	your	Tk	version:

If	you	face	any	problem	in	getting	this	window,	check	your	Python	installation	and
reinstall	it,	as	you	won’t	be	able	to	move	further	ahead	in	this	chapter	without	the	Tkinter
library	and	the	Tk	toolkit.

The	Tkinter	interface	supports	various	widgets	to	develop	GUIs.	The	following	table
describes	a	few	of	the	important	widgets	that	we	will	be	using	in	this	chapter:

Widget Description

Tk() This	is	the	root	widget	that	is	required	by	each	program

Label() This	shows	a	text	or	an	image

Button() This	is	a	simple	button	that	can	be	used	to	execute	actions

Entry() This	is	a	text	field	to	provide	inputs	to	the	program

Scale() This	provides	a	numeric	value	by	dragging	the	slider

www.it-ebooks.info

http://www.it-ebooks.info/

Checkbox() This	enables	you	to	toggle	between	two	values	by	checking	the	box

Note
A	detailed	description	of	the	Tkinter	functions	and	methods	to	implement	the	majority	of
functionalities	provided	by	the	Tk	toolkit	can	be	obtained	from
https://docs.python.org/2/library/tk.html.

www.it-ebooks.info

https://docs.python.org/2/library/tk.html
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Your	first	Python	GUI	program
As	we	discussed	in	an	earlier	chapter,	the	first	program	while	learning	any	programming
language	includes	printing	Hello	World!.	Now,	as	we	are	starting	Python	programming
for	GUI,	let’s	start	by	printing	the	same	string	in	a	GUI	window	instead	of	a	prompt.

Just	to	start	with	GUI	programming,	we	are	going	to	execute	a	Python	program	and	then
jump	into	explaining	the	structure	and	the	details	of	the	code.	Let’s	create	a	Python
executable	file	using	the	following	lines	of	code,	name	it	helloGUI.py,	and	then	run	it.
The	execution	process	should	complete	without	any	dependency	errors:

import	Tkinter

#	Initialize	main	windows	with	title	and	size

top	=	Tkinter.Tk()

top.title("Hello	GUI")

top.minsize(200,30)

#	Label	widget

helloLabel	=	Tkinter.Label(top,	text	=	"Hello	World!")

helloLabel.pack()

#	Start	and	open	the	window

top.mainloop()

You	should	be	prompted	with	the	following	window	on	the	successful	execution	of	the
preceding	code	snippet.	As	you	can	see,	the	Hello	World!	string	has	been	printed	inside
the	window	and	has	Hello	GUI	as	the	title	of	the	window:

So,	what	exactly	happened?	As	you	can	see	from	the	code	snippet,	we	instantiated	various
Tkinter	widgets	one	by	one	to	obtain	this	result.	These	widgets	are	the	building	blocks	for
any	Python	GUI	application	that	is	developed	using	Tkinter.	Let’s	start	with	the	first	and
the	most	important	widget,	Tk().

www.it-ebooks.info

http://www.it-ebooks.info/

The	root	widget	Tk()	and	the	top-level	methods
The	Tk()	widget	initializes	a	main	empty	window	with	a	title	bar.	This	is	a	root	widget
and	it	is	required	by	each	program	only	once.	The	main	window	gets	its	decoration	and
styles	from	the	operating	system’s	environment.	Therefore,	when	you	run	the	same
Tkinter	code	on	different	operating	systems,	you	will	get	the	same	window	and	title	bar
but	in	a	different	style.

Once	you	create	a	root	widget,	you	can	perform	some	top-level	methods	to	decorate,
describe,	or	resize	this	window.	In	code,	we	are	using	the	title()	method	to	set	the	title
of	the	main	window.	This	title()	method	takes	a	string	as	an	input	argument:

Top	=	Tkinter.Tk()

top.title("Hello	GUI")

Next,	we	call	the	minsize()	method	on	the	main	window	to	set	the	minimum	size	of	the
window	with	the	argument	(width,	height):

top.minsize(200,30)

Similarly,	you	can	also	use	the	maxsize()	method	to	specify	the	maximum	size	that	the
main	window	should	have.	In	the	minsize()	and	maxsize()	methods,	the	values	of	width
and	height	are	provided	in	the	number	of	pixels.

Once	the	entire	program	has	been	instantiated,	the	mainloop()	function	is	required	to	start
the	event	loop:

top.mainloop()

You	won’t	be	able	to	see	any	other	widgets,	including	the	main	window,	if	the	code	does
not	enter	in	the	main	event	loop.	The	event	loop	will	be	alive	until	the	window	is	manually
closed	or	the	quit	method	is	called.

You	might	have	various	questions	about	updating	the	window,	programmatically	closing
it,	arranging	widgets	in	the	grid,	and	so	on.	There	are	definitely	a	lot	more	top-level
methods	than	the	ones	specified	earlier.

www.it-ebooks.info

http://www.it-ebooks.info/

The	Label()	widget
The	other	widget	used	in	the	code	beside	Tk()	is	Label().	The	Tkinter	widgets	are	part
of	the	widget	hierarchy,	where	Label()	is	the	child	of	the	root	widget,	Tk().	This	widget
cannot	be	called	without	specifying	the	root	widget	or	the	main	window	on	which	the
label	needs	to	be	displayed.	The	major	use	of	this	widget	is	to	display	text	or	image	in	the
main	window.	In	the	following	line	of	code,	we	use	it	to	display	the	Hello	World!	string:

helloLabel	=	Tkinter.Label(top,	text	=	"Hello	World!")

Here,	we	created	and	initialized	a	label	object	called	helloLabel,	which	has	two	input
parameters:	the	top	variable	that	specifies	the	root	widget	and	a	text	string.	The	Label()
widget	is	highly	customizable	and	accepts	various	configuration	parameters	for	adjusting
the	width,	border,	background,	and	justification	as	options.	Examples	involving	these
customizations	are	covered	in	the	upcoming	sections.	You	can	learn	more	about	the
supported	input	arguments	at	http://effbot.org/tkinterbook/label.htm.

www.it-ebooks.info

http://effbot.org/tkinterbook/label.htm
http://www.it-ebooks.info/

The	Pack	geometry	manager
The	Pack	geometry	manager	organizes	widgets	in	rows	and	columns.	To	use	this,	Tkinter
requires	the	pack()	method	to	be	called	for	each	widget	to	make	the	widget	visible	on	the
main	window:

helloLabel.pack()

The	Pack	geometry	manager	can	be	used	by	all	Tkinter	widgets,	except	root,	to	organize
the	widget	in	the	root	window.	In	the	case	of	multiple	widgets,	if	the	positions	for	the
widgets	are	not	specified,	the	Pack	manager	arranges	them	in	the	same	root	window.	The
Pack	manager	is	simple	to	implement,	but	it	has	a	limitation	in	terms	of	its	degree	of
customization.	An	alternative	geometry	manager	that	is	helpful	to	create	a	complex	layout
is	called	Grid,	which	is	explained	in	the	upcoming	sections.

We	will	cover	additional	widgets	and	their	associated	methods	in	the	upcoming	coding
exercises.	In	these	exercises,	we	will	explain	each	individual	widget	with	practical
applications	to	give	you	a	better	understanding	of	the	use	cases.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

The	Button()	widget	–	interfacing	GUI
with	Arduino	and	LEDs
Now	that	you	have	had	your	first	hands-on	experience	in	creating	a	Python	graphical
interface,	let’s	integrate	Arduino	with	it.	Python	makes	it	easy	to	interface	various
heterogeneous	packages	within	each	other	and	that	is	what	you	are	going	to	do.	In	the	next
coding	exercise,	we	will	use	Tkinter	and	pyFirmata	to	make	the	GUI	work	with	Arduino.
In	this	exercise,	we	are	going	to	use	the	Button()	widget	to	control	the	LEDs	interfaced
with	the	Arduino	board.

Before	we	jump	to	the	exercises,	let’s	build	the	circuit	that	we	will	need	for	all	upcoming
programs.	The	following	is	a	Fritzing	diagram	of	the	circuit	where	we	use	two	different
colored	LEDs	with	pull	up	resistors.	Connect	these	LEDs	to	digital	pins	10	and	11	on	your
Arduino	Uno	board,	as	displayed	in	the	following	diagram:

Note
While	working	with	the	programs	provided	in	this	and	upcoming	sections,	you	will	have
to	replace	the	Arduino	port	that	is	used	to	define	the	board	variable	according	to	your
operating	system.	To	find	out	which	port	your	Arduino	board	is	connected	to,	follow	the
detailed	instructions	provided	in	Chapter	2,	Working	with	the	Firmata	Protocol	and	the
pySerial	Library.	Also,	make	sure	that	you	provide	the	correct	pin	number	in	the	code	if
you	are	planning	to	use	any	pins	other	than	10	and	11.	For	some	exercises,	you	will	have
to	use	the	PWM	pins,	so	make	sure	that	you	have	correct	pins.

In	the	previous	exercise,	we	asked	you	to	use	the	entire	code	snippet	as	a	Python	file	and
run	it.	This	might	not	be	possible	in	the	upcoming	exercises	due	to	the	length	of	the
program	and	the	complexity	involved.	Therefore,	we	have	assembled	these	exercises	in
the	program	files	that	can	be	accessed	from	the	code	folder	of	Chapter	4,	Diving	into

www.it-ebooks.info

http://www.it-ebooks.info/

Python-Arduino	Prototyping,	which	can	be	downloaded	from
https://www.packtpub.com/books/content/support/1961.	For	the	Button()	widget
exercise,	open	the	exampleButton.py	file	from	the	code	folder	of	Chapter	4,	Diving	into
Python-Arduino	Prototyping.	The	code	contains	three	main	components:

The	pyFirmata	library	and	Arduino	configurations
The	Tkinter	widget	definitions	for	a	button
The	LED	blink	function	that	gets	executed	when	you	press	the	button

As	you	can	see	in	the	following	code	snippet,	we	have	first	imported	libraries	and
initialized	the	Arduino	board	using	pyFirmata	methods.	For	this	exercise,	we	are	only
going	to	work	with	one	LED	and	we	have	initialized	only	the	ledPin	variable	for	it:

import	Tkinter

import	pyfirmata

from	time	import	sleep

port	=	'/dev/cu.usbmodemfa1331'

board	=	pyfirmata.Arduino(port)

sleep(5)

ledPin	=	board.get_pin('d:11:o')

Note
As	we	are	using	the	pyFirmata	library	for	all	the	exercises	in	this	chapter,	make	sure	that
you	have	uploaded	the	latest	version	of	the	standard	Firmata	sketch	on	your	Arduino
board.

In	the	second	part	of	the	code,	we	have	initialized	the	root	Tkinter	widget	as	top	and
provided	a	title	string.	We	have	also	fixed	the	size	of	this	window	using	the	minsize()
method.	In	order	to	get	more	familiar	with	the	root	widget,	you	can	play	around	with	the
minimum	and	maximum	size	of	the	window:

top	=	Tkinter.Tk()

top.title("Blink	LED	using	button")

top.minsize(300,30)

The	Button()	widget	is	a	standard	Tkinter	widget	that	is	mostly	used	to	obtain	the
manual,	external	input	stimulus	from	the	user.	Like	the	Label()	widget,	the	Button()
widget	can	be	used	to	display	text	or	images.	Unlike	the	Label()	widget,	it	can	be
associated	with	actions	or	methods	when	it	is	pressed.	When	the	button	is	pressed,
Tkinter	executes	the	methods	or	commands	specified	by	the	command	option:

startButton	=	Tkinter.Button(top,

																													text="Start",

																													command=onStartButtonPress)

startButton.pack()

In	this	initialization,	the	function	associated	with	the	button	is	onStartButtonPress	and
the	"Start"	string	is	displayed	as	the	title	of	the	button.	Similarly,	the	top	object	specifies
the	parent	or	the	root	widget.	Once	the	button	is	instantiated,	you	will	need	to	use	the
pack()	method	to	make	it	available	in	the	main	window.

In	the	preceding	lines	of	code,	the	onStartButonPress()	function	includes	the	scripts	that

www.it-ebooks.info

https://www.packtpub.com/books/content/support/1961
http://www.it-ebooks.info/

are	required	to	blink	the	LEDs	and	change	the	state	of	the	button.	A	button	state	can	have
the	state	as	NORMAL,	ACTIVE,	or	DISABLED.	If	it	is	not	specified,	the	default	state	of	any
button	is	NORMAL.	The	ACTIVE	and	DISABLED	states	are	useful	in	applications	when
repeated	pressing	of	the	button	needs	to	be	avoided.	After	turning	the	LED	on	using	the
write(1)	method,	we	will	add	a	time	delay	of	5	seconds	using	the	sleep(5)	function
before	turning	it	off	with	the	write(0)	method:

def	onStartButtonPress():

		startButton.config(state=Tkinter.DISABLED)

		ledPin.write(1)

		#	LED	is	on	for	fix	amount	of	time	specified	below

		sleep(5)

		ledPin.write(0)

		startButton.config(state=Tkinter.ACTIVE)

At	the	end	of	the	program,	we	will	execute	the	mainloop()	method	to	initiate	the	Tkinter
loop.	Until	this	function	is	executed,	the	main	window	won’t	appear.

To	run	the	code,	make	appropriate	changes	to	the	Arduino	board	variable	and	execute	the
program.	The	following	screenshot	with	a	button	and	title	bar	will	appear	as	the	output	of
the	program.	Clicking	on	the	Start	button	will	turn	on	the	LED	on	the	Arduino	board	for
the	specified	time	delay.	Meanwhile,	when	the	LED	is	on,	you	will	not	be	able	to	click	on
the	Start	button	again.	Now,	in	this	particular	program,	we	haven’t	provided	sufficient
code	to	safely	disengage	the	Arduino	board	and	it	will	be	covered	in	upcoming	exercises.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

The	Entry()	widget	–	providing	manual
user	inputs
In	the	previous	exercise,	you	used	a	button	to	blink	the	LED	on	the	Arduino	board	for	a
fixed	amount	of	time.	Let’s	say	that	you	want	to	change	this	fixed	time	delay	and	specify	a
value	according	to	your	application’s	requirement.	To	perform	this	operation,	you	will
need	a	widget	that	accepts	custom	values	that	can	then	be	converted	into	the	delay.	Just
like	any	other	GUI	framework,	Tkinter	provides	the	interface	for	a	similar	widget	called
Entry()	and	we	will	utilize	this	in	the	next	exercise.

Keep	the	same	Arduino	and	LED	configurations	that	you	used	for	the	previous	exercise
and	open	the	exampleEntry.py	file.	In	the	beginning	of	the	code,	you	will	find	the	same
configuration	for	the	Arduino	board	and	the	LED	pin	that	we	used	in	the	previous
exercise.	Moving	on	to	the	next	stage,	you	will	be	able	to	see	the	following	code	snippet
that	defines	the	root	widget.	In	this	code	snippet,	we	have	changed	the	title	of	the	main
window	to	reflect	the	premise	of	the	exercise.	The	use	of	unique	strings	for	the	title	of	the
window	will	help	you	to	differentiate	these	windows	according	to	their	properties,	when
you	are	dealing	with	multiple	windows	in	one	application:

top	=	Tkinter.Tk()

top.title("Specify	time	using	Entry")

Although	the	Entry()	widget	can	be	easily	initialized	by	specifying	the	parent	widget	as
the	only	parameter,	it	also	supports	a	large	number	of	parameters	to	customize	the	widget.
For	example,	in	our	exercise,	we	are	using	the	bd	parameter	to	specify	the	width	of	the
widget	border	and	width	to	provide	the	expected	width	of	the	widget.	You	can	learn	more
about	the	available	options	at	http://effbot.org/tkinterbook/entry.htm:

timePeriodEntry	=	Tkinter.Entry(top,

																																bd=5,

																																width=25)

timePeriodEntry.pack()

timePeriodEntry.focus_set()

startButton	=	Tkinter.Button(top,

																													text="Start",

																													command=onStartButtonPress)

startButton.pack()

In	the	preceding	lines	of	code,	we	have	initialized	two	widget	objects	in	our	main	window:
timePeriodEntry	for	the	Entry()	widget	and	startButton	that	we	used	in	the	previous
exercise	for	the	Button()	widget.	The	Pack	geometry	manager	always	sets	the	graphical
pointer	to	the	last	widget	that	has	been	added	to	the	main	window.	We	can	manually	shift
the	focus	of	the	graphical	pointer	to	the	timePeriodEntry	widget	using	the	focus_set()
method.

Contrary	to	the	onStartButtonPress()	function	in	the	previous	exercise,	this	function
doesn’t	use	the	time	delay	fix.	It,	instead,	obtains	the	value	from	the	timePeriodEntry
object.	You	can	use	the	get()	method	to	obtain	the	entered	value	from	the

www.it-ebooks.info

http://effbot.org/tkinterbook/entry.htm
http://www.it-ebooks.info/

timePeriodEntry	object	and	convert	it	into	a	floating	value	using	the	float()	function.
As	you	can	see	in	the	following	code	snippet,	we	use	this	float	value	as	the	time	delay
between	switching	the	LED	off	from	the	on	state:

def	onStartButtonPress():

		#	Value	for	delay	is	obtained	from	the	Entry	widget	input

		timePeriod	=	timePeriodEntry.get()

		timePeriod	=	float(timePeriod)

		startButton.config(state=Tkinter.DISABLED)

		ledPin.write(1)

		sleep(timePeriod)

		ledPin.write(0)

		startButton.config(state=Tkinter.ACTIVE)

Once	you	have	understood	the	process	of	initializing	the	Entry()	widget	and	the	method
to	obtain	a	custom	value	from	it,	let’s	execute	the	code.

When	you	run	this	exercise,	you	should	be	able	to	see	a	window	similar	to	the	one
displayed	in	the	following	screenshot.	Enter	a	time	delay	value	in	seconds	and	click	on
Start	to	see	the	results	on	the	LED.	Basically,	when	the	button	is	pressed,	the	program
will	call	the	onStartButtonPress()	function	and	it	will	utilize	this	value	to	produce	the
time	delay.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

The	Scale()	widget	–	adjusting	the
brightness	of	an	LED
In	this	section,	we	will	develop	some	code	to	change	an	LED’s	brightness	using	the
Python	GUI.	Previously,	we	learned	that	you	can	use	a	digital	pin	of	Arduino	to	produce
an	analog	output	using	PWM.	Although	you	can	use	the	Entry()	widget	to	provide	one
time	value	for	the	PWM	signal,	it	will	be	useful	to	have	a	widget	that	can	dynamically
provide	this	value.	As	brightness	can	be	fluctuated	between	0	and	100	percent,	it	makes
sense	to	use	a	slider	that	varies	between	0	and	100.	The	Tkinter	library	provides	this	kind
of	sliding	interface	using	the	Scale()	widget.

As	we	are	working	to	change	the	brightness	of	the	LED	and	supply	analog	input,	we	will
be	using	a	digital	pin	with	the	PWM	support.	In	the	previous	exercise,	we	used	digital	pin
11,	which	already	supports	PWM.	If	you	are	using	a	custom	version	of	the	circuit	different
to	the	one	provided	earlier,	we	recommend	that	you	change	it	to	a	pin	that	supports	PWM.
Now	it	is	time	to	open	the	program	file,	exampleScale.py,	for	this	exercise.

The	first	stage	of	the	program	that	involves	importing	the	necessary	libraries	and
initializing	the	Arduino	board	using	pyFirmata	is	almost	the	same	as	in	the	previous
exercise.	Change	the	string	that	is	used	to	specify	the	appropriate	value	for	the	port
variable	according	to	the	operating	system	and	the	port	that	you	are	using.	We	will	also
instantiate	the	root	window	with	the	unique	title	for	this	exercise,	as	we	did	in	the	previous
exercises.	This	part	of	the	program	will	often	reoccur	for	a	large	number	of	exercises	and
you	can	refer	to	the	previous	exercise	for	more	information.

In	the	next	stage,	we	will	continue	building	the	code	that	we	developed	earlier	to	provide	a
manual	time	delay	for	the	LED.	We	will	also	use	the	same	Entry()	widget	to	obtain	the
time	interval	as	an	input:

timePeriodEntry	=	Tkinter.Entry(top,

																																bd=5,

																																width=25)

timePeriodEntry.pack()

timePeriodEntry.focus_set()

The	Scale()	widget	offers	a	slider	knob	that	can	be	moved	over	a	fixed	scale	to	provide	a
numeric	value	as	an	output.	The	starting	and	the	ending	values	for	this	scale	are	provided
using	the	from_	and	to	options.	The	orientation	of	this	slider	can	also	be	configured	using
the	orient	option,	where	the	acceptable	values	for	the	orientation	are	HORIZONTAL	and
VERTICAL.	However,	you	will	have	to	import	HORIZONTAL	and	VERTICAL	constants	from	the
Tkinter	library	before	utilizing	them	here.

If	no	options	are	provided,	the	default	widget	uses	the	scale	from	0	to	100	and	the	vertical
orientation.	In	our	program,	we	have	used	the	horizontal	orientation	as	a	demonstration	of
the	orient	option.	Once	you	have	defined	the	widget	object,	brightnessScale,	you	will
have	to	add	it	to	the	Pack	geometry	manager	using	pack():

brightnessScale	=	Tkinter.Scale(top,

www.it-ebooks.info

http://www.it-ebooks.info/

																																from_=0,	to=100,

																																orient=Tkinter.HORIZONTAL)

brightnessScale.pack()

In	order	to	start	the	process	and	reuse	the	previous	code,	we	have	kept	the	instantiation	of
the	startButton	widget	and	the	onStartButtonPress	function	as	it	is.	However,	the
property	of	the	function	is	changed	to	accommodate	the	Scale()	widget:

startButton	=	Tkinter.Button(top,

																													text="Start",

																													command=onStartButtonPress)

startButton.pack()

In	this	version	of	the	onStartButtonPress()	function,	we	will	obtain	the	ledBrightness
value	by	using	the	get()	method	on	the	brightnessScale	widget	object,	where	the	get()
method	will	return	the	value	of	the	current	location	of	the	slider.	As	the	PWM	input
requires	values	between	0	and	1,	and	the	obtained	slider	value	is	between	0	and	100,	we
will	convert	the	slider	value	into	the	appropriate	PWM	input	by	dividing	it	with	100.	This
new	value	will	then	be	used	with	the	write()	method	and	this	will	ultimately	turn	on	the
LED	with	the	applied	brightness	for	the	time	period	that	is	provided	by	the
timePeriodEntry	value:

def	onStartButtonPress():

		timePeriod	=	timePeriodEntry.get()

		timePeriod	=	float(timePeriod)

		ledBrightness	=	brightnessScale.get()

		ledBrightness	=	float(ledBrightness)

		startButton.config(state=Tkinter.DISABLED)

		ledPin.write(ledBrightness/100.0)

		sleep(timePeriod)

		ledPin.write(0)

		startButton.config(state=Tkinter.ACTIVE)

For	information	about	the	Scale()	widget,	you	can	refer	to
http://effbot.org/tkinterbook/scale.htm.	Now,	run	the	exampleScale.py	file.	You	will	be
able	to	see	the	following	screenshot	with	the	Entry()	and	Scale()	widgets.	Enter	the	time
delay,	drag	the	slider	to	the	brightness	that	you	want,	and	then	click	on	the	Start	button:

You	will	be	able	to	see	the	LED	light	up	with	the	brightness	set	by	the	Scale()	widget.
Once	the	LED	is	turned	off	after	the	given	time	delay,	you	can	reset	the	slider	to	another

www.it-ebooks.info

http://effbot.org/tkinterbook/scale.htm
http://www.it-ebooks.info/

position	to	dynamically	vary	the	value	for	the	brightness.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

The	Grid	geometry	manager
In	the	previous	exercise,	we	added	three	different	widgets	to	the	root	window	using	the
Pack	geometry	manager	and	the	pack()	method.	We	didn’t	actively	organize	these
widgets	but	the	Pack	manager	automatically	arranged	them	in	the	vertical	position.	While
designing	a	meaningful	interface,	you	need	to	arrange	these	widgets	in	the	appropriate
order.	If	you	look	at	the	previous	output	window,	it	is	really	difficult	to	identify	the
function	of	each	widget	or	their	association	with	others.	In	order	to	design	an	intuitive
GUI,	you	also	need	to	describe	these	widgets	using	the	appropriate	labels.	As	a	solution,
Tkinter	provides	an	alternative	way	to	organize	your	widgets	that	is	called	Grid
geometry	manager.

The	Grid	geometry	manager	provides	a	two-dimensional	(2D)	table	interface	to	arrange
widgets.	Every	cell	that	results	from	the	row	and	column	of	the	2D	table	can	be	used	as	a
place	for	the	widgets.	You	will	learn	the	various	options	that	are	provided	by	the	grid()
class	to	organize	widgets	in	the	next	programming	exercise.	Open	the
exampleGridManager.py	file	from	the	code	folder	of	this	chapter.	In	terms	of
functionalities,	this	file	contains	the	same	program	that	we	built	in	the	previous	exercise.
However,	we	have	added	more	Label()	widgets	and	organized	them	using	the	Grid
geometry	manager	to	simplify	the	GUI	and	make	it	more	useful.

As	you	can	observe	in	the	code,	the	timePeriodEntry	object	(an	Entry()	widget)	now
uses	the	grid()	method	instead	of	the	pack()	method.	The	grid()	method	is	initialized
with	the	column	and	row	options.	The	values	supplied	for	these	options	determine	the
position	of	the	cell	where	the	timePeriodEntry	object	will	be	placed.

On	the	other	hand,	we	have	also	created	a	label	object	using	the	Label()	widget	and
placed	it	beside	the	Entry()	widget	in	the	same	row.	The	label	contains	a	description
string	that	is	specified	using	the	text	option.	After	placing	it	in	a	cell	using	the	grid()
method,	widgets	are	arranged	in	the	center	in	that	cell.	To	change	this	alignment,	you	can
use	the	sticky	option	with	one	or	more	values	from	N,	E,	S,	and	W,	that	is,	north,	east,
south,	and	west:

timePeriodEntry	=	Tkinter.Entry(top,	bd=5)

timePeriodEntry.grid(column=1,	row=1)

timePeriodEntry.focus_set()

Tkinter.Label(top,	text="Time	(seconds)").grid(column=2,	row=1)

We	have	repeated	this	practice	of	placing	the	widget	in	a	cell	and	describing	it	using	a
Label()	widget	for	the	objects	of	the	Scale()	and	Button()	widgets	as	well:

brightnessScale	=	Tkinter.Scale(top,	from_=0,	to=100,	

orient=Tkinter.HORIZONTAL)

brightnessScale.grid(column=1,	row=2)

Tkinter.Label(top,	text="Brightness	(%)").grid(column=2,	row=2)

startButton	=	Tkinter.Button(top,	text="Start",	command=onStartButtonPress)

startButton.grid(column=1,	row=3)

As	you	can	see	in	the	preceding	code	snippet,	we	are	using	different	row	values	for	the

www.it-ebooks.info

http://www.it-ebooks.info/

widgets	while	having	similar	column	values.	As	a	result,	our	widgets	will	be	organized	in
the	same	column	and	they	will	have	their	description	labels	in	the	next	column	of	the	same
row.	You	can	skip	to	the	output	window	if	you	want	to	check	this	organization	pattern.

So	far,	we	were	relying	on	the	user	to	manually	close	the	main	window.	However,	you	can
create	another	Button()	widget	and	through	that,	call	the	method	to	close	this	window.	In
this	coding	exercise,	we	have	an	additional	button	compared	to	the	previous	exercise	that
is	called	exitButton.	The	command	parameter	associated	with	this	button	is	quit,	which
ends	the	loop	started	by	the	Tkinter	method	top.mainloop()	and	closes	the	GUI:

exitButton	=	Tkinter.Button(top,

																												text="Exit",

																												command=top.quit)

exitButton.grid(column=2,	row=3)

In	this	code	sample,	the	quit	method	is	initialized	as	a	command	option	and	it	can	be	also
be	called	as	a	method:

top.quit()

Before	we	go	ahead	to	the	next	step,	perform	the	appropriate	changes	in	the	code	and	run
the	program.	You	will	be	prompted	with	a	window	similar	to	the	one	displayed	in	the
following	screenshot:

The	red	dotted	lines	are	inserted	later	to	help	you	identify	the	grid	and	they	won’t	appear
in	the	window	that	is	opened	by	running	the	program.	You	can	now	clearly	identify	the
role	of	each	widget	due	to	the	presence	of	the	description	label	beside	them.	In	the	opened
window,	play	around	with	the	time	and	brightness	values	while	using	the	Start	and	Exit
buttons	to	perform	the	associated	actions.	From	the	next	exercise,	we	will	start	using	the
grid()	method	regularly	to	arrange	the	widgets.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

The	Checkbutton()	widget	–	selecting
LEDs
While	developing	complex	projects,	you	will	encounter	scenarios	where	you	have	to
depend	on	the	user	to	select	single	or	multiple	options	from	a	given	set	of	values.	For
example,	when	you	have	multiple	numbers	of	LEDs	interfaced	with	the	Arduino	board
and	you	want	the	user	to	select	an	LED	or	LEDs	that	need	to	be	turned	on.	This	level	of
customization	makes	your	interface	more	interactive	and	useful.	The	Tkinter	library
provides	an	interface	for	a	standard	widget	called	Checkbutton()	that	enables	the	manual
selection	process	from	the	given	options.

In	this	exercise,	we	are	going	to	work	with	both	the	LEDs,	green	and	red,	that	you
connected	to	the	Arduino	board	at	the	beginning.	The	entire	Python	program	for	this
exercise	is	located	in	the	code	folder	with	the	name	exampleCheckbutton.py.	Open	the
file	with	the	same	editor	that	you	have	been	using	all	along.	This	program	implements	the
Checkbutton()	widget	for	users	to	select	the	red	and/or	green	LED	when	the	Start	button
is	clicked.

To	understand	the	entire	program	logic,	let’s	start	from	the	initialization	and	importing	of
the	libraries.	As	you	can	see,	now	we	have	two	pin	assignments	for	digital	pins	10	and	11
as	redPin	and	greenPin	respectively.	The	code	for	the	initialization	of	the	Arduino	board
is	unchanged:

port	=	'/dev/cu.usbmodemfa1331'

board	=	pyfirmata.Arduino(port)

sleep(5)

redPin	=	board.get_pin('d:10:o')

greenPin	=	board.get_pin('d:11:o')

In	our	utilization	of	the	Checkbutton()	widget,	we	are	using	a	very	useful	Tkinter
variable	class	that	is	called	IntVar().The	Tkinter	variable	can	tell	the	system	when	the
value	of	the	variable	is	changed.	To	better	understand	the	Tkinter	variable	class	and	its
specific	utilization	in	our	exercise,	take	a	look	at	the	following	code	snippet	from	the
program:

redVar	=	Tkinter.IntVar()

redCheckBox	=	Tkinter.Checkbutton(top,

																																		text="Red	LED",

																																		variable=redVar)

redCheckBox.grid(column=1,	row=1)

The	Checkbutton()	widget	lets	a	user	select	between	two	different	values.	These	values
are	usually	1	(on)	or	0	(off),	making	the	Checkbutton()	widget	a	switch.	To	capture	this
selection,	the	variable	option	is	required	in	the	widget	definition.	A	variable	can	be
initialized	using	one	of	the	Tkinter	variable	class,	IntVar().

As	you	can	see,	the	redVar	variable	object	that	is	instantiated	using	the	IntVar()	class	is
used	for	the	variable	option	while	defining	the	Checkbutton()	widget,	redCheckButton.

www.it-ebooks.info

http://www.it-ebooks.info/

Therefore,	any	operation	on	the	redCheckButton	object	will	be	translated	to	the	redVar
variable	object.	As	IntVar()	is	a	Tkinter	class,	it	automatically	takes	care	of	any	changes
in	the	variable	values	through	the	Checkbutton()	widget.	Therefore,	it	is	advisable	to	use
the	Tkinter	variable	class	for	the	Checkbutton()	widget	instead	of	the	default	Python
variables.	After	defining	the	Checkbutton()	widget	for	the	red	LED,	we	have	repeated
this	process	for	the	green	LED,	as	shown	in	the	following	code	snippet:

greenVar	=	Tkinter.IntVar()

greenCheckBox	=	Tkinter.Checkbutton(top,

																																				text="Green	LED",

																																				variable=greenVar)

greenCheckBox.grid(column=2,	row=1)

This	program	also	contains	the	Start	and	Exit	buttons	and	their	respective	association
with	the	onStartButtonPress	and	top.quit()	functions,	similar	to	how	we	used	them	in
the	previous	exercise.	When	called,	the	onStartButtonPress	function	will	obtain	the
values	of	the	IntVar()	variables,	redVar	and	greenVar,	using	the	get()	method.	In	this
case,	the	variable	value	of	the	Checkbutton()	widget	will	be	1	when	it	is	checked	and	0
otherwise.	This	will	enable	the	program	to	send	the	value	1	or	0	to	the	Arduino	pin	using
the	write()	method	by	checking	or	unchecking	the	widget	and	ultimately,	turn	the	LED
on	or	off:

def	onStartButtonPress():

		redPin.write(redVar.get())

		greenPin.write(greenVar.get())

As	you	can	see,	the	code	also	implements	an	additional	Stop	button	to	turn	off	the	LEDs
that	were	turned	on	using	the	Start	button:

stopButton	=	Tkinter.Button(top,

																												text="Stop",

																												command=onStopButtonPress)

stopButton.grid(column=2,	row=2)

The	onStopButtonPrerss()	function	associated	with	this	button	turns	off	both	the	LEDs
by	using	write(0)	on	both	the	pins:

def	onStopButtonPress():

		redPin.write(0)

		greenPin.write(0)

Since	you	have	now	learned	about	the	Tkinter	variables	and	the	Checkbutton()	widget,
let’s	run	the	Python	program,	exampleCheckbutton.py.	As	you	can	see	in	the	next
screenshot,	the	GUI	has	two	Checkbutton()	widgets	each	for	the	red	and	green	LEDs.	As
there	is	a	separate	initialization	of	the	Checkbutton()	widgets,	a	user	can	check	both	the
red	and	green	LEDs.	Tkinter	also	provides	similar	widgets	such	as	Radiobutton()	and
Listbox()	for	cases	where	you	want	to	select	only	a	single	value	from	the	given	options.

www.it-ebooks.info

http://www.it-ebooks.info/

Note
You	can	learn	more	about	the	Radiobutton()	and	Listbox()	widgets	from	the	following
web	pages:

http://effbot.org/tkinterbook/radiobutton.htm
http://effbot.org/tkinterbook/listbox.htm

www.it-ebooks.info

http://effbot.org/tkinterbook/radiobutton.htm
http://effbot.org/tkinterbook/listbox.htm
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

The	Label()	widget	–	monitoring	I/O	pins
Arduino	projects	often	deal	with	real-time	systems	and	are	required	to	continuously
monitor	input	values	from	digital	and	analog	pins.	Therefore,	if	these	values	are	being
displayed	on	a	graphical	interface,	they	need	to	be	updated	periodically	or	when	the	state
of	a	pin	changes.

If	you	observe	the	previous	GUI	exercises,	you	will	notice	that	we	initialized	the	root
window	using	mainloop()	at	the	end	of	the	code,	which	started	the	Tkinter	loop	and
initialized	all	the	widgets	with	the	updated	values.	Once	the	mainloop()	was	initialized,
we	did	not	use	any	other	Tkinter	class	or	method	to	periodically	update	the	widgets	with
the	latest	values.

In	this	exercise,	we	will	use	a	potentiometer	to	provide	variable	input	to	the	analog	pin	0,
which	will	be	reflected	by	Tkinter’s	Label()	widget.	To	update	the	label	and	display	the
values	of	the	analog	input,	we	are	going	to	implement	a	few	Python	and	Tkinter	tricks.
As	we	are	using	a	potentiometer	to	provide	input,	you	will	need	to	change	the	circuit	as
displayed	in	the	following	diagram,	before	jumping	to	the	Python	program:

The	Python	file	for	this	exercise	is	located	in	the	code	folder	as	the
workingWithLabels.py	file.	For	this	exercise,	let’s	run	the	code	first	to	understand	the
premise	of	the	exercise.	Make	sure	that	you	have	the	appropriate	string	for	the	Arduino
board	when	you	define	the	port	variable.	On	successful	execution,	the	program	will
display	the	following	screenshot	and	you	can	click	on	the	Start	button	to	initiate	the

www.it-ebooks.info

http://www.it-ebooks.info/

continuous	update	of	the	potentiometer’s	input	value:

So,	how	did	we	do	this?	This	code	contains	complex	logic	and	a	different	program	flow
compared	to	what	we	have	done	so	far.	As	you	can	see	from	the	code,	we	are	using	a
variable	called	flag	to	track	the	state	of	the	Exit	button	while	continuously	running	the
while	loop	that	monitors	and	updates	the	value.	To	understand	the	program	properly,	let’s
first	get	familiar	with	the	following	new	Tkinter	classes	and	methods:

BooleanVar():	Just	like	the	IntVar()	variable	class	that	we	used	to	track	the	integer
values,	BooleanVar()	is	a	Tkinter	variable	class	that	tracks	changes	in	Boolean:

flag	=	Tkinter.BooleanVar(top)

flag.set(True)

In	the	preceding	code	snippet,	we	have	created	a	variable	object,	flag,	using	the
BooleanVar()	class	and	set	the	value	of	the	object	as	True.	Being	a	Boolean	object,
flag	can	only	have	two	values,	True	or	False.	Tkinter	also	provides	classes	for
string	and	double	type	with	the	StringVar()	and	DoubleVar()	classes	respectively.

Due	to	this,	when	the	Start	button	is	clicked,	the	system	starts	updating	the	analog
read	value.	The	Exit	button	sets	the	flag	variable	to	false,	breaks	the	while	loop,
and	stops	the	monitoring	process.

update_idletasks:	While	using	the	Tkinter	library	in	Python,	you	can	link	a
Python	code	to	any	changes	that	happen	in	a	Tk()	widget.	This	linked	Python	code	is
called	a	callback.	The	update_idletasks	method	calls	all	idle	tasks	without
processing	any	callbacks.	This	method	also	redraws	the	geometry	widgets,	if
required:

AnalogReadLabel.update_idletasks()

In	our	exercise,	this	method	can	be	used	to	continuously	update	the	label	with	the
latest	potentiometer	value.

update:	This	top-level	method	processes	all	the	pending	events	and	callbacks	and
also	redraws	any	widget,	if	it	is	necessary:

top.update()

We	are	using	this	method	with	the	root	window	so	that	it	can	perform	the	callback	for
the	Start	button.

Now	let’s	go	back	to	the	opened	Python	program.	As	you	can	see,	besides	assigning	an
analog	pin	through	the	get_pin()	method	and	initializing	the	Iterator()	class	over	the
Arduino	board,	the	code	contains	similar	programming	patterns	that	we	used	in	the
exercises	for	the	other	Tkinter	widgets.	In	this	code,	we	are	performing	the	read	operation

www.it-ebooks.info

http://www.it-ebooks.info/

for	the	analog	pin	inside	the	onStartButtonPress()	function	This	function	checks	the
status	of	the	flag	variable	while	performing	the	read()	operation	on	the	pin	and
subsequently	updates	the	value	of	the	analogReadLabel()	widget	if	the	value	of	the	flag
variable	is	True.	If	the	value	of	the	flag	variable	is	found	to	be	False,	the	function	will
exit	after	disengaging	the	Arduino	board	and	closing	the	root	window.	Due	to	the	use	of
the	while	statement,	this	process	will	continuously	check	the	flag	value	until	it	is	broken
by	the	onExitButtonPress()	function	by	changing	the	flag	value	to	False:

def	onStartButtonPress():

		while	True:

				if	flag.get():

						analogReadLabel.config(text=str(a0.read()))

						analogReadLabel.update_idletasks()

						top.update()

				else:

						break

		board.exit()

		top.destroy()

The	onExitButtonPress()	function	is	called	from	the	Exit	button	and	it	simply	resets	the
flag	variable	to	False	using	the	set()	method:

def	onExitButtonPress():

		flag.set(False)

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Remaking	your	first	Python-Arduino
project	with	a	GUI
Just	to	refresh	your	memory,	I	would	like	to	remind	you	that	we	created	a	motion
detection	system	that	generated	alerts	by	blinking	the	red	LED	when	a	motion	was
detected.	While	working	with	the	project,	we	were	printing	the	state	of	the	proximity
sensor	onto	the	Python	prompt.	In	this	exercise,	we	are	going	to	use	the	concepts	that	you
learned	in	the	previous	exercises	and	we	will	create	an	interface	for	our	project.

As	part	of	this	exercise,	you	have	to	connect	the	same	circuit	that	we	used	in	Chapter	3,
The	First	Project	–	Motion-triggered	LEDs.	Make	sure	you	have	the	exact	same	circuit
with	the	PIR	sensor	and	the	LEDs	before	you	move	ahead.	Once	you	are	ready	with	your
hardware,	open	the	firstProjectWithGUI.py	file	from	the	code	folder	of	this	chapter.	In
the	code,	change	the	appropriate	port	values	and	run	the	GUI	for	the	project.

As	you	can	see	in	the	pin	assignments,	we	now	have	three	digital	pins—two	of	them	as
outputs	and	one	as	an	input.	The	output	pins	are	assigned	to	the	red	and	green	LEDs	while
the	input	pin	is	assigned	to	the	PIR	motion	sensor.	If	the	PIR	sensor	is	in	idle	mode,	we
will	perform	a	onetime	read()	operation	to	wake	up	the	sensor:

pirPin	=	board.get_pin('d:8:i')

redPin	=	board.get_pin('d:10:o')

greenPin	=	board.get_pin('d:11:o')

pirPin.read()

One	of	the	important	functions	that	is	implemented	by	the	code	is	blinkLED().	This
function	updates	the	Label()	widget	that	is	assigned	to	describe	the	status	of	the	motion
sensor.	It	also	blinks	the	physical	LEDs	using	the	write()	method	and	the	inserted	time
delay.	As	input	parameters,	the	blinkLED()	function	accepts	the	pin	object	and	a	message
string	from	the	function	call,	where	the	pin	objects,	that	is,	redPin	or	greenPin,	should	be
one	of	the	pin	assignment	for	the	LEDs:

def	blinkLED(pin,	message):

		MotionLabel.config(text=message)

		MotionLabel.update_idletasks()

		top.update()

		pin.write(1)

		sleep(1)

		pin.write(0)

		sleep(1)

The	other	two	Tkinter	related	functions,	onStartButtonPress()	and
onExitButtonPress(),	are	basically	derived	from	the	previous	exercise.	In	this	version	of
onStartButtonPress(),	we	call	the	blinkLED()	function	if	the	flag	variable	is	True	and
the	motion	is	detected	using	pinPir.read():

def	onStartButtonPress():

		while	True:

				if	flag.get():

www.it-ebooks.info

http://www.it-ebooks.info/

						if	pirPin.read()	is	True:

								blinkLED(redPin,	"Motion	Detected")

						else:

								blinkLED(greenPin,	"No	motion	Detected")

				else:

						break

		board.exit()

		top.destroy()

The	program	also	instantiates	two	buttons,	Start	and	Exit,	and	one	label	using	the
methods	similar	to	those	we	used	in	the	previous	exercises.

As	you	can	observe	from	the	code,	the	logic	behind	the	motion	detection	system	is	still	the
same.	We	are	only	adding	a	layer	of	graphical	interface	to	display	the	state	of	the	detected
motion	continuously	using	a	Label()	widget.	We	have	also	added	the	Start	and	Exit
buttons	to	control	the	project	execution	cycle.	Once	you	run	the	code,	you	will	be	able	to
see	a	window	similar	to	the	one	displayed	in	the	following	screenshot.	Click	on	the	Start
button	and	wave	in	front	of	the	motion	sensor.	If	the	sensor	detects	the	motion,	the	label
will	change	from	No	motion	detected	to	Motion	detected.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Summary
Now	you	have	hands-on	experience	of	building	a	basic	GUI	to	handle	Arduino	projects.
With	minor	modifications	to	the	included	exercises,	you	can	use	them	to	create	a	GUI	for
a	large	variety	of	Arduino	prototyping	projects.	In	the	previous	two	exercises,	we
displayed	the	sensor	outputs	as	strings	in	label	widgets.	It	will	be	more	meaningful	if	these
numerical	values	are	plotted	as	a	graph	and	stored	for	further	analysis.	This	is	what	you
are	going	to	perform	in	the	next	chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter	6.	Storing	and	Plotting	Arduino
Data
Sensors	that	are	connected	to	Arduino	produce	lots	of	analog	and	digital	data.	Analog
sensors	produce	data	points	as	numerical	information	while	digital	sensors	produce
Boolean	values,	that	is,	1	(on)	or	0	(off).	Until	now,	we	printed	this	data	as	a	string	on	the
command	prompt	or	displayed	it	in	a	GUI.	The	data	was	being	printed	in	real	time	and	it
was	not	being	saved	for	any	further	analysis.	Instead	of	using	the	string	format,	if	the	data
is	printed	as	a	plot	or	graph,	it	will	provide	useful	information	for	us	to	rapidly	understand
it	and	derive	conclusions.	Plots	are	even	more	useful	for	real-time	applications	as	they	can
provide	information	regarding	the	system’s	behavior	for	better	understanding	of	the	data.

This	chapter	is	organized	around	two	major	sections:	storing	the	Arduino	sensor	data	and
plotting	this	data.	We	will	start	by	creating	and	manipulating	files	using	Python.	After	that,
we	will	work	with	methods	for	storing	Arduino	data	in	the	CSV	file	format.	In	the	second
section,	you	will	be	introduced	to	the	Python	plotting	library,	matplotlib.	Then,	we	will
work	with	examples	that	deal	with	plotting	data	from	a	saved	file	and	also	from	real-time
sensor	readings.	In	the	end,	we	will	try	to	integrate	the	matplotlib	plots	with	the	Tkinter
window	that	we	created	in	the	previous	chapter.

In	terms	of	hardware	components,	we	will	be	working	with	familiar	sensors	such	as	a
potentiometer	and	the	PIR	motion	sensor,	which	we	used	in	the	previous	chapters,	so,	you
will	not	have	to	learn	or	buy	any	additional	sensors	for	this	chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Working	with	files	in	Python
Python	provides	built-in	methods	to	create	and	modify	files.	File-related	Python
operations	are	useful	in	a	large	number	of	programming	exercises.	These	methods	are
provided	by	standard	Python	modules	and	do	not	require	installation	of	additional
packages.

www.it-ebooks.info

http://www.it-ebooks.info/

The	open()	method
The	open()	method	is	a	default	method	that	is	available	in	Python	and	it	is	one	of	the	most
widely	used	functions	to	manipulate	files.	Now,	the	first	step	of	dealing	with	a	file	is	to
open	it:

>>>	f	=	open('test.txt',	'w')

This	command	will	create	a	test.txt	file	in	the	same	folder	in	which	you	started	the
Python	interpreter	or	the	location	from	where	the	code	is	being	executed.	The	preceding
command	uses	the	w	mode	that	opens	a	file	for	writing	or	creates	a	new	one	if	it	doesn’t
exist.	The	other	modes	that	can	be	used	with	the	open()	function	are	displayed	in	the
following	table:

Mode Description

w This	opens	or	creates	a	file	for	writing	only.	It	overwrites	an	existing	file.

w+ This	opens	or	creates	a	file	for	writing	and	reading.	It	overwrites	an	existing	file.

r This	opens	a	file	for	reading	only.

r+ This	opens	a	file	for	reading	and	writing.

a This	opens	a	file	for	appending.	It	starts	appending	from	the	end	of	the	document.

a+ This	opens	a	file	for	appending	and	reading.	It	starts	appending	from	the	end	of	the	document.

Note
Make	sure	that	you	have	the	proper	read	and	write	permissions	for	the	files	if	you	are
utilizing	these	modes	in	a	Unix	or	Linux	environment.

www.it-ebooks.info

http://www.it-ebooks.info/

The	write()	method
Once	the	file	is	open	in	one	of	the	writing	or	appending	modes,	you	can	start	writing	to	the
file	object	using	this	method.	The	write()	method	only	takes	a	string	as	an	input
argument.	Any	other	data	format	needs	to	be	converted	into	a	string	before	it	is	written:

>>>	f.write("Hello	World!\n")

In	this	example,	we	are	writing	the	Hello	World!	string	that	ends	with	a	new	line
character,	\n.	This	new	line	character	has	been	explained	in	the	previous	chapter	and	you
can	obtain	more	information	about	it	at	http://en.wikipedia.org/wiki/Newline.

You	can	also	use	the	writelines()	method	if	you	want	to	write	a	sequence	of	strings	to
the	file:

>>>	sq	=	["Python	programming	for	Arduino\n",	"Bye\n"]

>>>	f.writelines(sq)

www.it-ebooks.info

http://en.wikipedia.org/wiki/Newline
http://www.it-ebooks.info/

The	close()	method
The	close()	method	closes	the	file	and	free	system	resources	that	are	occupied	by	the	file.
Once	they	are	closed,	you	can’t	use	the	file	object	as	it	has	been	flushed	already.	It	is	a
good	practice	to	close	the	file	once	you	are	done	working	with	a	file:

>>>	f.close()

www.it-ebooks.info

http://www.it-ebooks.info/

The	read()	method
This	read()	method	reads	the	content	of	an	opened	file	from	the	beginning	to	the	end.	To
use	this	method,	you	need	to	open	the	file	with	one	of	the	reading	compatible	modes	such
as	w+,	r,	r+,	or	a+:

>>>	f	=	open('test.txt',	'r')

>>>	f.read()

'Hello	World!\nPython	programming	for	Arduino\nBye\n'

>>>	f.close()

As	the	read()	method	grabs	the	entire	contents	of	the	file	into	memory,	you	can	use	it
with	the	optional	size	parameter	to	avoid	any	memory	congestion	while	working	with
large	files.	As	an	alternative	method,	you	can	use	the	readlines()	method	to	read	the
content	of	an	opened	file	line	by	line:

>>>	f	=	open('test.txt',	'r')

>>>	l	=	f.readlines()

>>>	print	l

['Hello	World!\n',	'Python	programming	for	Arduino\n',	'Bye\n']

>>>	f.close()

As	you	can	see	in	the	preceding	example,	each	string	is	printed	as	an	element	of	a	list	that
you	can	access	individually.	You	can	play	around	with	these	methods	to	get	familiar	with
creating	and	modifying	files.	These	exercises	will	be	handy	for	the	upcoming	coding
exercises.

www.it-ebooks.info

http://www.it-ebooks.info/

The	with	statement	–	Python	context	manager
Although	the	with	statement	can	be	used	to	cover	the	execution	of	a	code	block	that	is
defined	by	a	context	manager,	it	is	widely	used	in	Python	to	deal	with	files.	Execute	the
following	command	on	the	Python	interactive	prompt,	assuming	that	you	have	already
executed	the	previous	commands	and	have	the	test.txt	file	with	some	data:

>>>	with	open('test.txt',	'r')	as	f:

		lines	=	f.readlines()

		for	l	in	lines:

				print	l

On	execution,	you	will	be	able	to	see	each	line	of	the	file	printed	on	the	command	prompt.
The	with	statement	while	used	with	the	open()	method	creates	a	context	manager,	which
executes	the	wrapped	code	while	automatically	taking	care	of	closing	the	file.	This	is	the
recommended	method	to	work	with	files	in	Python	and	we	will	be	utilizing	it	in	all	of	our
exercises.	You	can	learn	more	about	the	Python	context	manager	on	the	following
websites:

https://docs.python.org/2/reference/compound_stmts.html#with
http://preshing.com/20110920/the-python-with-statement-by-example/

www.it-ebooks.info

https://docs.python.org/2/reference/compound_stmts.html#with
http://preshing.com/20110920/the-python-with-statement-by-example/
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Using	CSV	files	to	store	data
Now	you	know	methods	to	open,	manipulate,	and	close	files	using	Python.	In	the	previous
examples,	we	used	the	Python	interpreter	and	string	data	to	get	familiar	with	these
methods.	But	when	it	comes	to	saving	a	large	number	of	numerical	values	from	sensor
data,	the	comma	separated	values	(CSV)	file	format	is	one	of	the	most	widely	used	file
formats	other	than	text.	As	the	name	states,	values	are	separated	and	stored	using	commas
or	other	delimiters	such	as	a	space	or	tab.	Python	has	a	built-in	module	to	deal	with	CSV
files.

To	begin	with,	use	the	following	code	snippet	to	create	a	Python	file	and	run	your	first
CSV	program:

import	csv

data	=	[[1,	2,	3],	['a',	'b',	'c'],	['Python',	'Arduino',	'Programming']]

with	open('example.csv',	'w')	as	f:

		w	=	csv.writer(f)

		for	row	in	data:

				w.writerow(row)

You	can	also	open	the	csvWriter.py	file	from	this	chapter’s	code	folder,	which	contains
the	same	code.	After	executing	the	code,	you	will	be	able	to	find	a	file	named
example.csv	in	the	same	location	as	this	file,	which	will	contain	the	data	separated	with
commas.

As	you	can	see	in	the	code,	the	CSV	module	offers	the	writer()	function	on	the	opened
file	that	initializes	a	writer	object.	The	writer	object	takes	a	sequence	or	array	of	data
(integer,	float,	string,	and	so	on)	as	input	and	joins	the	values	of	this	array	using	the
delimiter	character:

w	=	csv.writer(f)

In	the	preceding	example,	since	we	are	not	using	a	delimiter	option,	the	program	will	take
the	default	character	comma	as	the	delimiter.	If	you	want	to	use	space	as	the	delimiter
character,	you	can	use	the	following	writer()	option:

w	=	csv.writer(f,	delimiter='	')

To	write	each	element	of	a	list	to	a	new	line	of	this	writer	object,	we	use	the	writerow()
method.

Similarly,	Python	CSV	module	also	provides	the	reader()	function	to	read	a	CSV	file.
Check	out	the	following	example	to	learn	more	about	this	function,	or	you	can	open	the
csvReader.py	file	from	the	next	chapter’s	code	folder:

import	csv

with	open('example.csv',	'r')	as	file:

				r	=	csv.reader(file)

				for	row	in	r:

								print	row

www.it-ebooks.info

http://www.it-ebooks.info/

The	reader()	function	creates	a	reader	object	to	iterate	over	lines	in	the	opened	CSV	file.
The	reader	object	retrieves	each	element	of	a	row	by	splitting	it	using	the	delimiter.	You
can	access	each	line	of	the	file	by	iterating	over	the	object	using	the	for	loop	as	displayed
in	the	preceding	code	snippet,	or	use	the	next()	method	every	time	you	want	to	access	the
next	line.	On	execution	of	the	previous	code,	you	will	be	able	to	see	three	separate	array
lists	that	are	printed	with	three	individual	elements.

Tip
To	open	the	CSV	files	externally,	you	can	use	a	spreadsheet	program	such	as	Microsoft
Excel,	OpenOffice	Calc,	or	Apple	Numbers.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Storing	Arduino	data	in	a	CSV	file
In	the	previous	two	sections,	you	learned	methods	to	store	values	in	a	CSV	file.	Although
the	data	required	for	the	file	was	already	initialized	in	the	code,	the	same	code	could	be
modified	to	store	Arduino	input	data.

To	begin	with	storing	Arduino	data,	let’s	create	a	circuit	that	produces	these	values	for	us.
We	used	a	motion	sensor	in	the	project	of	Chapter	3,	The	First	Project	–	Motion-triggered
LEDs,	and	a	potentiometer	in	the	exercise	of	Chapter	4,	Diving	into	Python-Arduino
Prototyping.	We	will	be	using	these	two	sensors	to	provide	us	with	digital	and	analog
input	values	respectively.	To	develop	the	circuit	required	for	this	exercise,	connect	the
potentiometer	to	the	analog	pin	0	and	the	PIR	motion	sensor	to	digital	pin	11,	as	displayed
in	the	following	diagram:

www.it-ebooks.info

http://www.it-ebooks.info/

Connect	other	Arduino	pins	such	as	5V	and	the	ground,	as	shown	in	the	preceding	Fritzing
diagram.	As	we	are	going	to	use	pyFirmata	to	interface	Python	with	the	Arduino	board,
you	will	have	to	upload	the	StandardFirmata	sketch	to	the	Arduino	board	using	the
method	described	in	Chapter	3,	The	First	Project	–	Motion-triggered	LEDs.

Note
When	you	are	working	with	prototyping,	you	really	don’t	need	large,	powerful,	and
computation-intensive	databases	to	deal	with	information.	The	easiest	and	quickest	way	to
work	with	sensor	data	in	this	phase	is	by	using	CSV	files.

Once	you	have	your	Arduino	board	ready	with	the	appropriate	connections,	use	the
following	code	snippet	to	create	a	Python	file	and	run	it.	You	can	also	open	the

www.it-ebooks.info

http://www.it-ebooks.info/

csvArduinoStore.py	file	from	this	chapter’s	code	folder:

import	csv

import	pyfirmata

from	time	import	sleep

port	=	'/dev/cu.usbmodemfa1331'

board	=	pyfirmata.Arduino(port)

it	=	pyfirmata.util.Iterator(board)

it.start()

pirPin	=	board.get_pin('d:11:i')

a0	=	board.get_pin('a:0:i')

with	open('SensorDataStore.csv',	'w')	as	f:

				w	=	csv.writer(f)

				w.writerow(["Number",	"Potentiometer",	"Motion	sensor"])

				i	=	0

				pirData	=	pirPin.read()

				potData	=	a0.read()

				while	i	<	25:

								sleep(1)

								if	pirData	is	not	None:

												i	+=	1

												row	=	[i,	potData,	pirData]

												w.writerow(row)

				print	"Done.	CSV	file	is	ready!"

board.exit()

While	the	code	is	running,	rotate	the	knob	of	the	potentiometer	and	wave	your	hand	in
front	of	the	motion	sensors.	This	action	will	help	you	to	generate	and	measure	distinct
values	from	these	sensors.	Meanwhile,	the	program	will	log	this	data	in	the
SensorDataStore.csv	file.	When	complete,	open	the	SensorDataStore.csv	file	using
any	text	viewer	or	spreadsheet	program	and	you	will	be	able	to	see	these	sensor	values
stored	in	the	file.	Now,	let’s	try	to	understand	the	program.

As	you	can	observe	from	the	code,	we	are	not	utilizing	a	new	module	to	interface	the
Arduino	board	or	store	sensor	values	to	the	file.	Instead,	we	have	utilized	the	same
methods	that	we	used	in	the	previous	exercises.	The	code	has	two	distinct	components:
Python-Arduino	interfacing	and	storing	data	to	a	CSV	file.	By	skipping	the	explanation	of
pyFirmata	methods	to	interface	the	Arduino	board,	let’s	focus	on	the	code	that	is
associated	with	storing	the	sensor	data.	The	first	line	that	we	will	write	to	the	CSV	file
using	writerow()	is	the	header	line	that	explains	the	content	of	the	columns:

w.writerow(["Number",	"Potentiometer",	"Motion	sensor"])

Later,	we	will	obtain	the	readings	from	the	sensors	and	write	them	to	the	CSV	file,	as
shown	in	the	following	code	snippet.	We	will	repeat	this	process	25	times	as	defined	by
the	variable,	i.	You	can	change	the	value	of	i	according	to	your	requirements.

while	i	<	25:

www.it-ebooks.info

http://www.it-ebooks.info/

				sleep(1)

				if	pirData	is	not	None:

								i	+=	1

								row	=	[i,	potData,	pirData]

								w.writerow(row)

The	next	question	is	how	can	you	utilize	this	coding	exercise	in	your	custom	projects?	The
program	has	three	main	sections	that	can	be	customized	to	accomplish	your	project
requirements,	which	are	as	follows:

Arduino	pins:	You	can	change	the	Arduino	pin	numbers	and	the	number	of	pins	to
be	utilized.	You	can	do	this	by	adding	additional	sensor	values	to	the	row	object.
The	CSV	file:	The	name	of	the	file	and	its	location	can	be	changed	from
SensorDataStore.csv	to	the	one	that	is	specific	to	your	application.
The	number	of	data	points:	We	have	collected	25	different	pairs	of	data	points
while	running	the	while	loop	for	25	iterations.	You	can	change	this	value.	You	can
also	change	the	time	delay	between	each	successive	point	from	one	second,	as	used
in	the	program,	to	the	value	that	you	need.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Getting	started	with	matplotlib
The	matplotlib	library	is	one	of	the	most	popular	and	widely	supported	Python	plotting
libraries.	Although	matplotlib	is	inspired	by	MATLAB,	it	is	independent	of	MATLAB.
Similar	to	other	Python	libraries	that	we	have	been	using,	it	is	an	open	source	Python
library.	The	matplotlib	library	assists	in	creating	2D	plots	from	simple	lines	of	code	from
easy	to	use	built-in	functions	and	methods.	The	matplotlib	library	is	extensively	used	in
Python-based	applications	for	data	visualization	and	analysis.	It	utilizes	NumPy	(the	short
form	of	numerical	Python)	and	SciPy	(short	form	of	scientific	Python)	packages	for
mathematical	calculations	for	the	analysis.	These	packages	are	major	dependencies	for
matplotlib	including	freetype	and	pyparsing.	Make	sure	that	you	have	these	packages
preinstalled	on	your	system	if	you	are	using	any	other	installation	methods	besides	the
ones	mentioned	in	the	next	section.	You	can	obtain	more	information	about	the
matplotlib	library	from	its	official	website	(http://matplotlib.org/).

www.it-ebooks.info

http://matplotlib.org/
http://www.it-ebooks.info/

Configuring	matplotlib	on	Windows
Before	we	install	matplotlib	on	Windows,	make	sure	that	you	have	your	Windows
operating	system	with	the	latest	version	of	Python	2.x	distribution.	In	Chapter	1,	Getting
Started	with	Python	and	Arduino,	we	installed	Setuptools	to	download	and	install
additional	Python	packages.	Make	sure	that	you	have	Setuptools	installed	and	configured
properly.	Before	we	advance	further,	we	will	have	to	install	dependencies	for	matplotlib.
Open	the	command	prompt	and	use	the	following	command	to	install	the	dateutil	and
pyparsing	packages:

>	easy_install.exe	python_dateutil

>	easy_install.exe	pyparsing

Once	you	have	successfully	installed	these	packages,	download	and	install	the
precompiled	NumPy	package	from	http://sourceforge.net/projects/numpy/.	Make	sure	that
you	choose	the	appropriate	installation	files	for	Python	2.7	and	the	type	of	your	Windows
operating	system.

Now,	your	computer	should	have	satisfied	all	the	prerequisites	for	matplotlib.	Download
and	install	the	precompiled	matplotlib	package	from
http://matplotlib.org/downloads.html.

In	this	installation	process,	we	have	avoided	the	usage	of	Setuptools	for	NumPy	and
matplotlib	because	of	some	known	issues	related	to	matplotlib	in	the	Windows
operating	system.	If	you	can	figure	out	ways	to	install	these	packages	using	Setuptools,
then	you	can	skip	the	preceding	manual	steps.

www.it-ebooks.info

http://sourceforge.net/projects/numpy/
http://matplotlib.org/downloads.html
http://www.it-ebooks.info/

Configuring	matplotlib	on	Mac	OS	X
Installation	of	matplotlib	on	Mac	OS	X	can	be	difficult	depending	upon	the	version	of
Mac	OS	X	and	the	availability	of	dependencies.	Make	sure	that	you	have	Setuptools
installed	as	described	in	Chapter	1,	Getting	Started	with	Python	and	Arduino.	Assuming
that	you	already	have	Setuptools	and	pip,	run	the	following	command	on	the	terminal:

$	sudo	pip	install	matplotlib

Executing	this	command	will	lead	to	one	of	the	following	three	possibilities:

Successful	installation	of	the	latest	matplotlib	version
Notification	that	the	requirements	are	already	satisfied	but	the	installed	version	is
older	than	the	current	version,	which	is	1.3	at	the	moment
Error	while	installing	the	matplotlib	package

If	you	encounter	the	first	possibility,	then	you	can	advance	to	the	next	section;	otherwise
follow	the	troubleshooting	instructions.	You	can	check	your	matplotlib	version	using	the
following	commands	on	the	Python	interactive	prompt:

>>>	import	matplotlib

>>>	matplotlib.__version__

Upgrading	matplotlib
If	you	encounter	the	second	possibility,	which	states	that	the	existing	version	of	the
matplotlib	is	older	than	the	current	version,	use	the	following	command	to	upgrade	the
matplotlib	package:

$	sudo	pip	install	–-upgrade	matplotlib

Go	through	the	next	section	in	case	you	end	up	with	errors	during	this	upgrade.

Troubleshooting	installation	errors
If	you	encounter	any	errors	during	the	matplotlib	installation	via	pip,	it	is	most	likely
that	you	are	missing	some	dependency	packages.	Follow	these	steps	one	by	one	to
troubleshoot	the	errors.

Tip
After	every	step,	use	one	of	the	following	commands	to	check	whether	the	error	is
resolved:

$	sudo	pip	install	matplotlib

$	sudo	pip	install	–-upgrade	matplotlib

1.	 Install	Xcode	from	Apple’s	App	Store.	Open	Xcode	and	navigate	to	the	Download
tab	in	Preferences….	Download	and	install	Command	Line	Tools	from
Preferences….	This	step	should	solve	any	compilation-related	errors.

2.	 Install	homebrew	using	the	following	command	in	the	terminal:

$	ruby	-e	"$("$(curl	-fsSL	

www.it-ebooks.info

http://www.it-ebooks.info/

https://raw.github.com/Homebrew/homebrew/go/install)")"

3.	 Install	the	following	packages	using	homebrew:

$	brew	install	freetype

$	brew	install	pkg-config

If	you	still	receive	an	error	with	the	freetype	package,	try	to	create	a	link	for
freetype	using	the	following	command:

$	brew	link	freetype

$	ln	-s	/usr/local/opt/freetype/include/freetype2	

/usr/local/include/freetype

If	you	receive	any	further	errors	after	performing	the	preceding	steps,	go	to	the
matplotlib	forums	at	http://matplotlib.1069221.n5.nabble.com/	for	those	specific
errors.

Note
If	you	use	matplotlib	in	Mac	OS	X,	you	need	to	set	up	the	appropriate	drawing
backend	as	shown	in	the	following	code	snippet:

import	matplotlib

matplotlib.use('TkAgg''')

You	can	learn	more	about	drawing	backends	for	matplotlib	at
http://matplotlib.org/faq/usage_faq.html#what-is-a-backend.

www.it-ebooks.info

http://matplotlib.1069221.n5.nabble.com/
http://matplotlib.org/faq/usage_faq.html#what-is-a-backend
http://www.it-ebooks.info/

Setting	up	matplotlib	on	Ubuntu
The	installation	of	matplotlib	and	the	required	dependencies	is	a	very	straightforward
process	on	Ubuntu.	We	can	perform	this	operation	without	using	Setuptools	and	with	the
help	of	the	Ubuntu	package	manager.	The	following	simple	command	should	do	the	trick
for	you:

$	sudo	apt-get	install	python-matplotlib

When	prompted	to	select	dependencies,	click	on	Yes	to	install	them	all.	You	should	be
able	to	find	the	matplotlib	package	in	other	popular	Linux	distributions	too.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Plotting	random	numbers	using
matplotlib
The	matplotlib	library	provides	a	collection	of	basic	plotting-related	functions	and
methods	via	the	pyplot	framework.	The	pyplot	framework	contains	functions	for	creating
figures,	drawing	plots,	setting	up	titles,	setting	up	axes,	and	many	additional	plotting
methods.	One	of	the	import	functions	provided	by	pyplot	is	figure().	This	initializes	an
empty	figure	canvas	that	can	be	selected	for	your	plot	or	a	set	of	plots:

fig1	=	pyplot.figure(1)

You	can	similarly	create	multiple	figures	by	specifying	a	number	as	the	parameter,	that	is,
figure(2).	If	a	figure	with	this	number	already	exists,	the	method	activates	the	existing
figure	that	can	then	be	further	used	for	plotting.

The	matplotlib	library	provides	the	plot()	method	to	create	line	charts.	The	plot()
method	takes	a	list	or	an	array	data	structure	that	is	made	up	of	integer	or	floating	point
numbers	as	input.	If	two	arrays	are	used	as	inputs,	plot()	utilizes	them	as	values	for	the	x
axis	and	the	y	axis.	If	only	one	list	or	array	is	provided,	plot()	assumes	it	to	be	the
sequence	values	for	the	y	axis	and	uses	auto-generated	incremental	values	for	the	x	axis:

pyplot.plot(x,	y)

The	third	optional	parameter	that	is	supported	by	the	plot()	method	is	for	the	format
string.	These	parameters	help	users	to	change	the	style	of	line	and	markers	with	different
colors.	In	our	example,	we	are	using	the	solid	line	style.	So,	the	plot()	function	for	our
plot	looks	like	this:

pyplot.plot(x,	y,	'-')

The	plot()	function	provides	a	selection	from	a	large	collection	of	styles	and	colors.	To
find	more	information	about	these	parameters,	use	Python’s	help()	function	on	the
plot()	function	of	matplotlib:

>>>	import	matplotlib

>>>	help(matplotlib.pyplot.plot)

This	help()	function	will	provide	the	necessary	information	to	create	plotting	styles	with
different	markers,	line	styles,	and	colors.	You	can	exit	this	help	menu	by	typing	q	at	the
prompt.

Now,	as	we	have	explored	plotting	sufficiently,	let’s	create	your	first	Python	plot	using	the
following	code	snippet.	The	program	containing	this	code	is	also	located	in	this	chapter’s
code	folder	with	the	name	plotBasic.py:

from	matplotlib	import	pyplot

import	random

x	=	range(0,25)

y	=	[random.randint(0,100)	for	r	in	range(0,25)]

www.it-ebooks.info

http://www.it-ebooks.info/

fig1	=	pyplot.figure()

pyplot.plot(x,	y,	'-')

pyplot.title('First	Plot	-	Random	integers')

pyplot.xlabel('X	Axis')

pyplot.ylabel('Y	Axis')

pyplot.show()

In	the	previous	exercise,	we	randomly	generated	a	dataset	for	the	y	axis	using	the
randint()	method.	You	can	see	a	plot	depicting	this	data	with	the	solid	line	style	in	an
opened	window	after	running	the	program.	As	you	can	see	in	the	code	snippet,	we	used
the	additional	pyplot	methods	such	as	title(),	xlabel(),	ylabel(),	and	plot().	These
methods	are	self-explanatory	and	they	are	largely	used	to	make	your	plots	more
informative	and	meaningful.

At	end	of	the	example,	we	used	one	of	the	most	important	pyplot	methods	called	show().
The	show()	method	displays	the	generated	plots	in	a	figure.	This	method	is	not	mandatory
to	display	figures	when	running	from	Python’s	interactive	prompt.	The	following
screenshot	illustrates	the	plot	of	randomly	generated	values	using	matplotlib:

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Plotting	data	from	a	CSV	file
At	the	beginning	of	the	chapter,	we	created	a	CSV	file	from	Arduino	data.	We	will	be
using	that	SensorDataStore.csv	file	for	this	section.	If	you	recall,	we	used	two	different
sensors	to	log	the	data.	Hence,	we	have	two	arrays	of	values,	one	from	a	digital	sensor	and
another	from	the	analog	one.	Now,	in	the	previous	example,	we	just	plotted	one	set	of
values	for	the	y	axis.	So,	how	are	we	going	to	plot	two	arrays	separately	and	in	a
meaningful	way?

Let’s	start	by	creating	a	new	Python	program	using	the	following	lines	of	code	or	by
opening	the	plotCSV.py	file	from	this	chapter’s	code	folder:

import	csv

from	matplotlib	import	pyplot

i	=	[]

mValues	=	[]

pValues	=	[]

with	open('SensorDataStore.csv',	'r')	as	f:

				reader	=	csv.reader(f)

				header	=	next(reader,	None)

				for	row	in	reader:

								i.append(int(row[0]))

								pValues.append(float(row[1]))

								if	row[2]	==	'True':

												mValues.append(1)

								else:

												mValues.append(0)

pyplot.subplot(2,	1,	1)

pyplot.plot(i,	pValues,	'-')

pyplot.title('Line	plot	-	'	+	header[1])

pyplot.xlim([1,	25])

pyplot.xlabel('X	Axis')

pyplot.ylabel('Y	Axis')

pyplot.subplot(2,	1,	2)

pyplot.bar(i,	mValues)

pyplot.title('Bar	chart	-	'	+	header[2])

pyplot.xlim([1,	25])

pyplot.xlabel('X	Axis')

pyplot.ylabel('Y	Axis')

pyplot.tight_layout()

pyplot.show()

In	this	program,	we	have	created	two	arrays	of	sensor	values—pValues	and	mValues—by
reading	the	SensorDataStore.csv	file	row	by	row.	Here,	pValues	and	mValues	represent
the	sensor	data	for	the	potentiometer	and	the	motion	sensor	respectively.	Once	we	had
these	two	lists,	we	plotted	them	using	the	matplotlib	methods.

www.it-ebooks.info

http://www.it-ebooks.info/

The	matplotlib	library	provides	various	ways	to	plot	different	arrays	of	values.	You	can
individually	plot	them	in	two	different	figures	using	figure(),	that	is,	figure(1)	and
figure(2),	or	plot	both	in	a	single	plot	in	which	they	overlay	each	other.	The	pyplot
method	also	offers	a	third	meaningful	alternative	by	allowing	multiple	plots	in	a	single
figure	via	the	subplot()	method:

pyplot.subplot(2,1,1)

This	method	is	structured	as	subplot(nrows,	ncols,	plot_number),	which	creates	grids
on	the	figure	canvas	using	row	and	column	numbers,	that	is,	nrows	and	ncols
respectively.	This	method	places	the	plot	on	the	specific	cell	that	is	provided	by	the
plot_number	parameter.	For	example,	through	subplot(2,	1,	1),	we	created	a	table	of
two	rows	and	one	column	and	placed	the	first	subplot	in	the	first	cell	of	the	table.
Similarly,	the	next	set	of	values	was	used	for	the	second	subplot	and	was	placed	in	the
second	cell,	that	is,	row	2	and	column	1:

pyplot.subplot(2,	1,	2)

In	the	first	subplot,	we	have	used	the	plot()	method	to	create	a	plot	using	the	analog
value	from	the	potentiometer,	that	is,	pValues.	While	in	the	second	subplot,	we	created	a
bar	chart	instead	of	a	line	chart	to	display	the	digital	values	from	the	motion	sensor.	The
bar	chart	functionality	was	provided	by	the	bar()	method.

As	you	can	see	in	the	code	snippet,	we	have	utilized	an	additional	pyplot()	method	called
xlim().	The	xlim([x_minimum,	x_maximum])	or	ylim([y_minimum,	y_maximum])
methods	are	used	to	confine	the	plot	between	the	given	maximum	and	minimum	values	of
the	particular	axes.

Before	we	displayed	these	subplots	in	the	figure	using	the	show()	method,	we	used	the
tight_layout()	function	to	organize	the	title	and	label	texts	in	the	figure.	The
tight_layout()	function	is	a	very	important	matplotlib	module	that	nicely	fit	the
subplot	parameters	in	one	figure.	You	can	check	the	effects	of	this	module	by	commenting
that	line	and	running	the	code	again.	The	following	screenshot	shows	these	subplots	with
labels	and	a	title	in	one	figure	object:

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Plotting	real-time	Arduino	data
In	the	previous	chapter,	while	dealing	with	GUI	and	Arduino	data,	you	must	have	noticed
that	the	code	was	updating	the	interface	with	every	new	value	that	was	obtained	from	the
Arduino	sensors.	Similarly,	in	this	exercise,	we	will	be	redrawing	the	plot	every	time	we
receive	new	values	from	Arduino.	Basically,	we	will	be	plotting	and	updating	a	real-time
chart	instead	of	plotting	the	entire	set	of	sensor	values	as	we	did	in	the	previous	exercise.

We	will	be	using	the	same	Arduino	circuit	that	you	built	in	the	previous	exercises.	Here,
we	will	utilize	only	the	potentiometer	section	of	the	circuit	to	obtain	the	analog	sensor
values.	Now,	before	we	explain	the	new	methods	used	in	this	exercise,	let’s	first	open	the
program	file	for	this	exercise.	You	can	find	the	program	file	from	this	chapter’s	folder;	it	is
named	plotLive.py.	In	the	code,	change	the	appropriate	parameters	for	the	Arduino
board	and	execute	the	code.	While	the	code	is	running,	rotate	the	knob	of	the
potentiometer	to	observe	the	real-time	changes	in	the	plot.

On	running	the	program,	you	will	get	a	screen	similar	to	the	following	screenshot	that
shows	a	plot	from	real-time	Arduino	data.

One	can	make	various	conclusions	about	the	potentiometer’s	knob	rotation	or	some	other
sensor	behavior	by	just	looking	at	the	plot.	These	types	of	plots	are	widely	used	in	the
graphical	dashboard	for	real-time	monitoring	applications.	Now,	let’s	try	to	understand	the
methods	that	are	used	in	the	following	code	snippet	to	make	this	possible.

www.it-ebooks.info

http://www.it-ebooks.info/

import	sys,	csv

from	matplotlib	import	pyplot

import	pyfirmata

from	time	import	sleep

import	numpy	as	np

#	Associate	port	and	board	with	pyFirmata

port	=	'/dev/cu.usbmodemfa1321''

board	=	pyfirmata.Arduino(port)

#	Using	iterator	thread	to	avoid	buffer	overflow

it	=	pyfirmata.util.Iterator(board)

it.start()

#	Assign	a	role	and	variable	to	analog	pin	0

a0	=	board.get_pin(''a:0:i'')

#	Initialize	interactive	mode

pyplot.ion()

pData	=	[0]	*	25

fig	=	pyplot.figure()

pyplot.title(''Real-time	Potentiometer	reading'')

ax1	=	pyplot.axes()

l1,	=	pyplot.plot(pData)

pyplot.ylim([0,1])

#	real-time	plotting	loop

while	True:

				try:

								sleep(1)

								pData.append(float(a0.read()))

								pyplot.ylim([0,	1])

								del	pData[0]

								l1.set_xdata([i	for	i	in	xrange(25)])

								l1.set_ydata(pData)		#	update	the	data

								pyplot.draw()		#	update	the	plot

				except	KeyboardInterrupt:

								board.exit()

								break

The	real-time	plotting	in	this	exercise	is	achieved	by	using	a	combination	of	the	pyplot
functions	ion(),	draw(),	set_xdata(),	and	set_data().	The	ion()	method	initializes	the
interactive	mode	of	pyplot.	The	interactive	mode	helps	to	dynamically	change	the	x	and	y
values	of	the	plots	in	the	figure:

pyplot.ion()

Once	the	interactive	mode	is	set	to	True,	the	plot	will	only	be	drawn	when	the	draw()
method	is	called.

Just	like	the	previous	Arduino	interfacing	exercises,	at	the	beginning	of	the	code,	we
initialized	the	Arduino	board	using	pyFirmata	and	the	setup	pins	to	obtain	the	sensor
values.	As	you	can	see	in	the	following	line	of	code,	after	setting	up	the	Arduino	board
and	pyplot	interactive	mode,	we	initialized	the	plot	with	a	set	of	blank	data,	0	in	our	case:

www.it-ebooks.info

http://www.it-ebooks.info/

pData	=	[0]	*	25

This	array	for	y	values,	pData,	is	then	used	to	append	values	from	the	sensor	in	the	while
loop.	The	while	loop	keeps	appending	the	newest	values	to	this	data	array	and	redraws	the
plot	with	these	updated	arrays	for	the	x	and	y	values.	In	this	example,	we	are	appending
new	sensor	values	at	the	end	of	the	array	while	simultaneously	removing	the	first	element
of	the	array	to	limit	the	size	of	the	array:

pData.append(float(a0.read()))

del	pData[0]

The	set_xdata()	and	set_ydata()	methods	are	used	to	update	the	x	and	y	axes	data	from
these	arrays.	These	updated	values	are	plotted	using	the	draw()	method	on	each	iteration
of	the	while	loop:

l1.set_xdata([i	for	i	in	xrange(25)])

l1.set_ydata(pData)		#	update	the	data

pyplot.draw()		#	update	the	plot

You	will	also	notice	that	we	are	utilizing	an	xrange()	function	to	generate	a	range	of
values	according	to	the	provided	length,	which	is	25	in	our	case.	The	code	snippet,	[i	for
i	in	xrange(25)],	will	generate	a	list	of	25	integer	numbers	that	start	incrementally	at	0
and	end	at	24.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Integrating	plots	in	the	Tkinter	window
Due	to	the	powerful	integration	capabilities	of	Python,	it	is	very	convenient	to	interface
the	plots	generated	by	the	matplotlib	library	with	the	Tkinter	graphical	interface.	In	the
last	exercise	of	the	previous	chapter,	we	integrated	Tkinter	with	pyFirmata	to	implement
the	project	of	Chapter	3,	The	First	Project	–	Motion-triggered	LEDs,	with	the	GUI.	In	this
exercise,	we	will	extend	this	integration	further	by	utilizing	matplotlib.	We	will	perform
this	action	by	utilizing	the	same	Arduino	circuit	that	we	have	been	using	in	this	chapter
and	expand	the	code	that	we	used	in	the	previous	exercise.	Meanwhile,	we	are	not
introducing	any	new	methods	in	this	exercise;	instead	we	will	be	utilizing	what	you
learned	until	now.	Open	the	plotTkinter.py	file	from	this	chapter’s	code	folder.

As	mentioned	earlier,	the	program	utilizes	three	major	Python	libraries	and	interfaces	them
with	each	other	to	develop	an	excellent	Python-Arduino	application.	The	first	interfacing
point	is	between	Tkinter	and	matplotlib.	As	you	can	see	in	the	following	lines	of	code,
we	have	initialized	three	button	objects,	startButton,	pauseButton,	and	exitButton,	for
the	Start,	Pause,	and	Exit	buttons	respectively:

startButton	=	Tkinter.Button(top,

																													text="Start",

																													command=onStartButtonPress)

startButton.grid(column=1,	row=2)

pauseButton	=	Tkinter.Button(top,

																													text="Pause",

																													command=onPauseButtonPress)

pauseButton.grid(column=2,	row=2)

exitButton	=	Tkinter.Button(top,

																												text="Exit",

																												command=onExitButtonPress)

exitButton.grid(column=3,	row=2)

The	Start	and	Exit	buttons	provide	control	points	for	matplotlib	operations	such	as
updating	the	plot	and	closing	the	plot	through	their	respective	onStartButtonPress()	and
onExitButtonPress()	functions.	The	onStartButtonPress()	function	also	consists	of
the	interfacing	point	between	the	matplotlib	and	pyFirmata	libraries.	As	you	can	observe
from	the	following	code	snippet,	we	will	start	updating	the	plot	using	the	draw()	method
and	the	Tkinter	window	using	the	update()	method	for	each	observation	from	the	analog
pin	a0,	which	is	obtained	using	the	read()	method:

def	onStartButtonPress():

				while	True:

								if	flag.get():

												sleep(1)

												pData.append(float(a0.read()))

												pyplot.ylim([0,	1])

												del	pData[0]

												l1.set_xdata([i	for	i	in	xrange(25)])

												l1.set_ydata(pData)		#	update	the	data

												pyplot.draw()		#	update	the	plot

												top.update()

								else:

www.it-ebooks.info

http://www.it-ebooks.info/

												flag.set(True)

												break

The	onExitButtonPress()	function	implements	the	exit	function	as	described	by	the
name	itself.	It	closes	the	pyplot	figure	and	the	Tkinter	window	before	disengaging	the
Arduino	board	from	the	serial	port.

Now,	execute	the	program	after	making	the	appropriate	changes	to	the	Arduino	port
parameter.	You	should	be	able	to	see	a	window	on	your	screen	that	is	similar	to	the	one
displayed	in	the	following	screenshot.	With	this	code,	you	can	now	control	your	real-time
plots	using	the	Start	and	Pause	buttons.	Click	on	the	Start	button	and	start	rotating	the
potentiometer	knob.	When	you	click	on	the	Pause	button,	you	can	observe	that	the
program	has	stopped	plotting	new	values.	While	Pause	is	pressed,	even	rotating	the	knob
will	not	result	in	any	updates	to	the	plot.

As	soon	as	you	click	on	the	Start	button	again,	you	will	again	see	the	plot	get	updated
with	real-time	values,	discarding	the	values	generated	while	paused.	Click	on	the	Exit
button	to	safely	close	the	program:

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Summary
In	this	chapter,	we	introduced	two	major	Python	programming	paradigms:	creating,
reading,	and	writing	files	using	Python	while	also	storing	data	into	these	files	and	plotting
sensor	values	and	updating	plots	in	real	time.	We	also	explored	methods	to	store	and	plot
real-time	Arduino	sensor	data.	Besides	helping	you	in	your	Arduino	projects,	these
methods	can	also	be	used	in	your	everyday	Python	projects.	Throughout	the	chapter,	using
simple	exercises,	we	interfaced	the	newly	learned	CSV	and	matplotlib	modules	with	the
Tkinter	and	pyFirmata	modules	that	we	learned	in	the	previous	chapters.	In	the	next
chapter,	you	will	be	introduced	to	your	second	project—a	portable	unit	that	measures	and
displays	environmental	data	such	as	temperature,	humidity,	and	ambient	light.	We	will	be
utilizing	the	concepts	that	we	have	learned	so	far	to	build	this	project.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter	7.	The	Midterm	Project	–	a
Portable	DIY	Thermostat
After	the	first	Python-Arduino	project,	you	learned	the	process	of	prototyping	various
sensors,	developing	user	interfaces,	and	plotting	sensor	data.	The	concepts	that	you
learned	in	the	previous	chapters	can	be	utilized	to	create	a	wide	variety	of	Arduino-based
hardware	projects.	The	inception	of	a	good	application	concept	always	begins	with	a	real-
world	necessity	and	ends	up	as	a	practical	project	if	it	is	executed	properly.	In	this	chapter,
we	will	demonstrate	this	project-building	process	with	an	example	of	a	portable	sensor
unit.	As	you	can	estimate	from	the	chapter	title,	we	will	be	building	a	simple	and	portable
DIY	thermostat	that	can	be	deployed	without	a	desktop	computer	or	a	laptop.

To	begin	with,	we	will	describe	the	proposed	thermostat	with	specific	goals	and	processes
to	achieve	them.	Once	the	strategy	to	achieve	these	goals	has	been	laid	down,	you	will	be
introduced	to	the	two	successive	programming	stages	to	develop	the	deployable	and
portable	unit.	In	the	first	stage,	we	will	utilize	a	traditional	computer	to	successfully
develop	the	program	to	interface	Arduino	with	Python.	In	the	second	stage,	we	will
replace	this	computer	with	a	Raspberry	Pi	to	make	it	portable	and	deployable.

www.it-ebooks.info

http://www.it-ebooks.info/

Thermostat	–	the	project	description
From	the	multiple	projects	that	we	can	build	using	the	things	that	you	learned,	a	project
that	helps	you	to	monitor	your	surrounding	environment	really	stands	out	as	an	important
real-world	application.	From	the	various	environment-monitoring	projects	such	as	weather
station,	thermostat,	and	plant	monitoring	system,	we	will	be	developing	the	thermostat	as
it	focuses	on	indoor	environment	and	can	be	part	of	your	daily	routine.

The	thermostat	is	one	of	the	most	important	components	of	any	remote	home	monitoring
system	and	home	automation	system.	A	popular	commercial	example	of	a	connected
thermostat	is	the	Nest	Thermostat	(https://www.nest.com),	which	provides	intelligent
remote	monitoring	and	scheduling	features	for	your	existing	home’s	heating	and	cooling
system.	Before	we	think	about	a	full-stack	product	such	as	Nest,	we	need	first	need	to
build	a	DIY	thermostat	with	the	basic	set	of	features.	Later,	we	can	build	upon	this	project
by	adding	features	to	improve	the	DIY	thermostat	experience.	Let’s	first	outline	the
features	that	we	are	planning	to	implement	in	this	version	of	the	thermostat	project.

www.it-ebooks.info

https://www.nest.com
http://www.it-ebooks.info/

Project	background
Temperature,	humidity,	and	ambient	light	are	the	three	main	physical	characteristics	that
we	want	to	monitor	using	the	thermostat.	In	terms	of	user	experience,	we	want	to	have	an
elegant	user	interface	to	display	the	measured	sensor	data.	The	user	experience	can	be
more	resourceful	if	any	of	this	sensor	data	is	plotted	as	a	line	graph.	In	the	case	of	a
thermostat,	the	visual	representation	of	the	sensor	data	provides	a	more	meaningful
comprehension	of	the	environment	than	just	displaying	plain	numerical	values.

One	of	the	major	objectives	of	the	project	is	to	make	the	thermostat	portable	and
deployable	so	that	it	can	be	used	in	your	day-to-day	life.	To	satisfy	this	requirement,	the
thermostat	display	needs	to	be	changed	from	a	regular	monitor	to	something	small	and
more	portable.	To	ensure	its	real-world	and	meaningful	application,	the	thermostat	should
demonstrate	real-time	operation.

It	is	important	to	note	that	the	thermostat	will	not	be	interfacing	with	any	actuators	such	as
home	cooling	and	heating	systems.	As	the	interfacing	of	these	systems	with	the	thermostat
project	requires	high-level	understanding	and	experience	of	working	with	heating	and
cooling	systems,	it	will	deviate	the	flow	of	the	chapter	from	its	original	goal	of	teaching
you	Arduino	and	Python	programming.

www.it-ebooks.info

http://www.it-ebooks.info/

Project	goals	and	stages
In	order	to	describe	the	features	that	we	want	to	have	in	the	thermostat,	let’s	first	identify
the	goals	and	milestones	to	achieve	these	objectives.	The	major	goals	for	the	project	can
be	determined	as	follows:

Identify	the	necessary	sensors	and	hardware	components	for	the	project
Design	and	assemble	the	circuit	for	the	thermostat	using	these	sensors	and	the
Arduino	board
Design	an	effective	user	experience	and	develop	software	to	accommodate	the	user
experience
Develop	and	implement	code	to	interface	the	designed	hardware	with	the	software
components

The	code	development	process	of	the	thermostat	project	is	divided	into	two	major	stages.
The	objectives	of	the	first	stage	include	sensor	interfacing,	the	development	of	the
Arduino	sketch,	and	the	development	of	the	Python	code	on	your	regular	computer	that
you	have	been	using	all	along.	The	coding	milestone	for	the	first	stage	can	be	further
distributed	as	follows:

Develop	the	Arduino	sketch	to	interface	sensors	and	buttons	while	providing	output
of	the	sensor	data	to	the	Python	program	via	the	serial	port
Develop	the	Python	code	to	obtain	sensor	data	from	the	serial	port	using	the
pySerial	library	and	display	the	data	using	GUI	that	is	designed	in	Tkinter
Create	a	plot	to	demonstrate	the	real-time	humidity	readings	using	the	matplotlib
library

In	the	second	stage,	we	will	attach	the	Arduino	hardware	to	a	single-board	computer	and	a
miniature	display	to	make	it	mobile	and	deployable.	The	milestone	to	achieve	objective	of
the	second	stage	are	as	follows:

Install	and	configure	a	single-board	computer,	Raspberry	Pi,	to	run	the	Python	code
from	the	first	stage
Interface	and	configure	the	miniature	screen	with	the	Raspberry	Pi
Optimize	the	GUI	and	plot	window	to	adjust	to	this	small	screen’s	resolution

In	the	following	subsection	of	this	section,	you	will	be	notified	about	the	list	of	required
components	for	both	the	stages,	followed	by	the	hardware	circuit	design	and	the	software
flow	design.	The	programming	exercises	for	these	stages	are	explained	in	the	next	two
sections	of	the	chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

The	list	of	required	components
Instead	of	going	through	the	process	of	identifying	the	required	components,	we	have
already	selected	the	components	for	this	project	based	on	their	utilization	in	the	previous
exercises,	ease	of	use,	and	availability.	You	can	replace	these	components	according	to
their	availability	at	the	time	you	are	building	this	project	or	your	familiarity	with	other
sensors.	Just	make	sure	that	you	take	care	of	modifications	in	the	circuit	connections	and
code,	if	these	new	components	are	not	compatible	with	the	ones	that	we	are	using.

In	the	first	stage	of	prototyping,	we	will	need	components	to	develop	the	electronic	circuit
for	the	thermostat	unit.	As	we	mentioned	earlier,	we	are	going	to	measure	temperature,
humidity,	and	ambient	light	through	our	unit.	We	already	learned	about	the	temperature
sensor	TMP102	and	the	ambient	light	sensor	BH1750	in	Chapter	4,	Diving	into	Python-
Arduino	Prototyping.	We	will	be	using	these	sensors	for	this	project	with	the	humidity
sensor	HIH-4030.	The	project	will	utilize	the	same	Arduino	Uno	board	that	you	have	been
using	throughout	the	previous	chapters	with	the	necessary	cables.	We	will	also	need	two
push	buttons	to	provide	manual	inputs	to	the	unit.	The	summary	of	the	required
components	for	the	first	stage	is	provided	in	the	following	table:

Component	(first	stage) Quantity Website

Arduino	Uno 1 https://www.sparkfun.com/products/11021

USB	cable	for	Arduino 1 https://www.sparkfun.com/products/512

Breadboard 1 https://www.sparkfun.com/products/9567

TMP102	temperature	sensor 1 https://www.sparkfun.com/products/11931

HIH-4030	humidity	sensor 1 https://www.sparkfun.com/products/9569

BH1750	ambient	light	sensor 1 http://www.robotshop.com/en/dfrobot-light-sensor-bh1750.html

Push	button	switch 2 https://www.sparkfun.com/products/97

1	kilo-ohm	resistor 2 	

10	kilo-ohm	resistor 2 	

Connection	wires As	required 	

Although	the	table	provides	links	for	few	specific	website,	you	can	obtain	these
components	from	your	preferred	providers.	The	two	major	components	HIH-4030
humidity	sensor	and	push	button	switch	that	we	haven’t	used	previously	are	described	as
follows:

HIH-4030	humidity	sensor:	This	measures	and	provides	relative	humidity	results	as
an	analog	output.	The	output	of	the	sensor	can	be	directly	connected	to	any	analog
pin	of	Arduino.	The	following	image	shows	the	breakout	board	with	the	HIH-4030

www.it-ebooks.info

https://www.sparkfun.com/products/11021
https://www.sparkfun.com/products/512
https://www.sparkfun.com/products/9567
https://www.sparkfun.com/products/11931
https://www.sparkfun.com/products/9569
http://www.robotshop.com/en/dfrobot-light-sensor-bh1750.html
https://www.sparkfun.com/products/97
http://www.it-ebooks.info/

sensor	that	is	sold	by	SparkFun	Electronics.	You	can	learn	more	about	the	HIH-4030
sensor	from	its	datasheet,	which	can	be	obtained	from
https://www.sparkfun.com/datasheets/Sensors/Weather/SEN-09569-HIH-4030-
datasheet.pdf:

Push	button	switch:	Push	button	switches	are	small	switches	that	can	be	used	on	a
breadboard.	When	pressed,	the	switch	output	changes	its	status	to	HIGH,	which	is
LOW	otherwise.

www.it-ebooks.info

https://www.sparkfun.com/datasheets/Sensors/Weather/SEN-09569-HIH-4030-datasheet.pdf
http://www.it-ebooks.info/

In	the	second	stage,	we	are	going	to	make	the	sensor	unit	mobile	by	replacing	your
computer	with	a	Raspberry	Pi.	For	that,	you	will	need	the	following	components	to	get
started:

Component	(second	stage) Quantity Image

Raspberry	Pi 1 https://www.sparkfun.com/products/11546

Micro	USB	cable	with	a	power
adapter 1 http://www.amazon.com/CanaKit-Raspberry-Supply-Adapter-

Charger/dp/B00GF9T3I0/

8	GB	SD	card 1 https://www.sparkfun.com/products/12998

TFT	LCD	screen 1 http://www.amazon.com/gp/product/B00GASHVDU/

A	USB	hub Optional 	

Further	explanations	of	these	components	are	provided	later	in	the	chapter.

www.it-ebooks.info

https://www.sparkfun.com/products/11546
http://www.amazon.com/CanaKit-Raspberry-Supply-Adapter-Charger/dp/B00GF9T3I0/
https://www.sparkfun.com/products/12998
http://www.amazon.com/gp/product/B00GASHVDU/
http://www.it-ebooks.info/

Hardware	design
The	entire	hardware	architecture	of	the	thermostat	can	be	divided	into	two	units,	a
physical	world	interfacing	unit	and	a	computation	unit.	The	physical	world	interfacing
unit,	as	its	name	indicates,	monitors	phenomenon	of	the	physical	world	such	as
temperature,	humidity,	and	ambient	light	using	sensors	connected	to	the	Arduino	board.
The	physical	world	interfacing	unit	is	interchangeably	mentioned	as	the	thermostat	sensor
unit	throughout	the	chapter.	The	computational	unit	is	responsible	for	displaying	the
sensor	information	via	the	GUI	and	plots.

The	following	diagram	shows	the	hardware	components	for	the	first	stage	where	the
thermostat	sensor	unit	is	connected	to	a	computer	using	the	USB	port.	In	the	thermostat
sensor	unit,	various	sensor	components	are	connected	to	the	Arduino	board	using	I2C,
analog,	and	digital	pins:

In	the	second	programming	stage	where	we	are	going	make	our	thermostat	into	a	mobile
and	deployable	unit,	you	will	be	using	a	single-board	computer,	Raspberry	Pi,	as	the
computational	device.	In	this	stage,	we	will	use	a	miniature	thin-film	transistor	liquid-
crystal	display	(TFT	LCD)	screen	that	is	connected	to	a	Raspberry	Pi	via	general-
purpose	input/output	(GPIO)	pins	and	is	used	as	a	display	unit	to	replace	the	traditional
monitor	or	laptop	screen.	The	following	diagram	shows	this	new	thermostat	computational
unit,	which	truly	reduces	the	overall	size	of	the	thermostat	and	makes	it	portable	and
mobile.	Circuit	connections	for	the	Arduino	board	are	unchanged	for	this	stage	and	we
will	use	the	same	hardware	without	any	major	modifications.

www.it-ebooks.info

http://www.it-ebooks.info/

As	the	common	unit	for	both	stages	of	the	project,	the	Arduino-centric	thermostat	sensor
unit	requires	slightly	more	complex	circuit	connections	compared	to	other	exercises	that
you	have	been	through.	In	this	section,	we	are	going	to	interface	the	necessary	sensors	and
push	buttons	to	their	respective	pins	on	the	Arduino	board	and	you	will	need	a	breadboard
to	make	these	connections.	If	you	are	familiar	with	PCB	prototyping,	you	can	create	your
own	PCB	board	by	soldering	these	components	and	avoid	the	breadboard.	PCB	boards	are
more	robust	compared	to	breadboards	and	less	prone	to	loose	connections.	Use	the
following	instructions	and	the	Fritzing	diagram	to	complete	the	circuit	connections:

1.	 As	you	can	see	in	the	following	diagram,	connect	the	SDA	and	SCL	pins	of	TMP102
and	BH1750	to	analog	pins	4	and	5	of	the	Arduino	board	and	create	an	I2C	bus.	To
make	these	connections,	you	can	use	multiple	color-coded	wires	to	simplify	the
debugging	process.

2.	 Use	two	10	kilo-ohm	pull-up	resistors	with	the	SDA	and	SCL	lines.
3.	 Contrary	to	these	I2C	sensors,	the	HIH-4030	humidity	sensor	is	a	simple	analog

sensor	and	can	be	directly	connected	to	the	analog	pin.	Connect	the	HIH-4030	to	the
analog	pin	A0.

4.	 Connect	VCC	and	the	ground	of	TMP102,	BH1750,	and	HIH-4030	to	+5V	and	the
ground	of	the	Arduino	board	using	power	strips	of	the	breadboard,	as	displayed	in	the
diagram.	We	recommend	that	you	use	red	and	black	wires	to	represent	the	+5V	and
ground	lines	respectively.

5.	 The	push	button	provides	the	output	as	HIGH	or	LOW	state	and	interfaced	using
digital	pins.	As	displayed	in	the	circuit,	connect	these	push	buttons	to	digital	pins	2
and	3	using	two	1	kilo-ohm	resistors.

6.	 Complete	the	remaining	connections	as	displayed	in	the	following	diagram.	Make

www.it-ebooks.info

http://www.it-ebooks.info/

sure	that	you	have	firmly	connected	all	the	wires	before	powering	up	the	Arduino
board:

Note
Make	sure	that	you	always	disconnect	your	Arduino	board	from	the	power	source	or	a
USB	port	before	making	any	connections.	This	will	prevent	any	damage	to	the	board	due
to	short	circuiting.

Complete	all	the	connections	for	the	thermostat	sensor	unit	before	heading	to	the	next
section.	As	this	unit	is	being	used	in	both	the	programming	stages,	you	won’t	be
performing	any	further	changes	to	the	thermostat	sensor	unit.

www.it-ebooks.info

http://www.it-ebooks.info/

Software	flow	for	user	experience	design
One	of	the	critical	components	of	any	project	is	its	usability	or	accessibility.	When	you	are
working	on	making	your	project	prototype	into	a	product,	it	is	necessary	to	have	an
intuitive	and	resourceful	user	interface	so	that	the	user	can	easily	interact	with	your
product.	Hence,	it	is	necessary	to	define	the	user	experience	and	software	flow	of	a	project
before	you	start	coding.	The	software	flow	includes	the	flow	chart	and	the	logical
components	of	the	program	that	are	derived	from	the	project	requirements.	According	to
the	goals	that	we	have	defined	for	the	thermostat	project,	the	software	flow	can	be
demonstrated	in	the	following	diagram:

In	the	implementation,	the	software	flow	of	the	project	begins	by	measuring	the
temperature,	humidity,	and	ambient	light	from	Arduino	and	printing	them	on	a	serial	port

www.it-ebooks.info

http://www.it-ebooks.info/

line	by	line.	The	Python	program	obtains	the	sensor	data	from	Arduino	via	the	serial	port
before	presenting	the	data	on	the	screen.	Meanwhile,	the	Python	program	keeps	looking
for	a	new	line	of	data.

A	user	can	interact	with	the	thermostat	using	a	push	button,	which	will	let	the	user	change
the	unit	for	the	temperature	data.	Once	the	button	is	pressed,	the	flag	gets	changed	to
HIGH	and	the	temperature	unit	is	changed	to	Celsius	from	its	default	unit,	Fahrenheit.	If
the	button	is	pressed	again,	the	opposite	process	will	happen	and	the	unit	will	be	changed
back	to	its	default	value.	Similarly,	another	user	interaction	point	is	the	second	push	button
that	allows	a	user	to	open	a	plot	for	real-time	humidity	values.	The	second	push	button
also	utilizes	a	similar	method	of	using	flags	to	capture	the	input	and	opens	a	new	plot
window.	If	the	same	button	is	pushed	sequentially,	the	program	will	close	the	plot	window.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Stage	1	–	prototyping	the	thermostat
In	this	prototyping	stage,	we	will	develop	the	Arduino	and	Python	code	for	our	thermostat,
which	will	be	later	used	in	the	second	stage	with	minor	changes.	Before	you	start	the
coding	exercise,	make	sure	that	you	have	the	thermostat	sensor	unit	ready	with	the
Arduino	board	and	the	connected	sensors,	as	described	in	the	previous	section.	For	this
stage,	you	will	be	using	your	regular	computer	which	is	equipped	with	the	Arduino	IDE
and	the	Python	programming	environment.	The	prototyping	stage	requires	two	levels	of
programming,	the	Arduino	sketch	for	the	thermostat	sensor	unit	and	the	Python	code	for
the	computational	unit.	Let’s	get	started	with	coding	for	our	thermostat.

www.it-ebooks.info

http://www.it-ebooks.info/

The	Arduino	sketch	for	the	thermostat
The	goal	of	this	Arduino	program	is	to	interface	sensors,	get	measurements	from	the
sensors,	and	print	them	on	the	serial	port.	As	we	discussed	earlier,	rather	than	using	the
standard	Firmata	sketch	that	we	used	in	the	previous	project,	we	are	going	to	develop	a
custom	Arduino	sketch	in	this	project.	To	get	started,	open	the	Thermostat_Arduino.ino
sketch	from	this	chapter’s	code	folder,	which	is	part	of	the	source	code	that	you	received
for	the	book.

Connect	the	USB	port	of	the	Arduino	board,	which	is	now	part	of	the	thermostat	sensor
unit,	to	your	computer.	Select	the	appropriate	board	and	port	names	in	the	Arduino	IDE
and	verify	the	code.	Upload	the	code	to	your	Arduino	board	and	open	the	Serial	Monitor
window	once	the	code	is	successfully	uploaded.	You	should	be	able	to	see	text	similar	to
that	displayed	in	the	following	screenshot:

The	Arduino	code	structure	and	basic	declarations	are	already	explained	in	various
sections	throughout	the	book.	Instead	of	explaining	the	entire	code	line	by	line,	we	will
focus	here	on	the	main	components	of	the	software	flow	that	we	described	earlier.

Interfacing	the	temperature	sensor
In	the	Arduino	sketch,	the	temperature	data	is	obtained	from	the	TMP102	sensor	using	the
getTemperature()	function.	The	function	implements	the	Wire	library	on	the	I2C	address
of	TMP102	to	read	the	sensor	data.	This	is	then	converted	into	proper	temperature	values:

	float	getTemperature(){

		Wire.requestFrom(tmp102Address,	2);

		byte	MSB	=	Wire.read();

www.it-ebooks.info

http://www.it-ebooks.info/

		byte	LSB	=	Wire.read();

		//it's	a	12bit	int,	using	two's	compliment	for	negative

		int	TemperatureSum	=	((MSB	<<	8)	|	LSB)	>>	4;

		float	celsius	=	TemperatureSum*0.0625;

		return	celsius;

}

The	getTemperature()	function	returns	the	temperature	values	in	Celsius,	which	is	then
sent	to	the	serial	port.

Interfacing	the	humidity	sensor
Although	the	humidity	sensor	provides	the	analog	output,	it	is	not	straightforward	to
obtain	relative	humidity	since	it	also	depends	upon	the	temperature.	The	getHumidity()
function	calculates	the	relative	humidity	from	the	analog	output	provided	by	the	HIH-
4030	sensor.	The	formulas	to	calculate	the	relative	humidity	are	obtained	from	the
datasheet	and	reference	examples	of	the	sensor.	If	you	are	using	a	different	humidity
sensor,	please	make	sure	that	you	change	the	formulas	accordingly,	as	they	may	change
the	results	significantly:

float	getHumidity(float	degreesCelsius){

//caculate	relative	humidity

float	supplyVolt	=	5.0;

//	Get	the	sensor	value:

int	HIH4030_Value	=	analogRead(HIH4030_Pin);

//	convert	to	voltage	value

float	voltage	=	HIH4030_Value/1023.	*	supplyVolt;

//	convert	the	voltage	to	a	relative	humidity

float	sensorRH	=	161.0	*	voltage	/	supplyVolt	-	25.8;

float	trueRH	=	sensorRH	/	(1.0546	-	0.0026	*	degreesCelsius);

			return	trueRH;

}

As	we	are	calculating	relative	humidity,	the	returned	humidity	values	are	sent	to	the	serial
port	with	percentage	as	the	unit.

Interfacing	the	light	sensor
To	interface	the	BH1750	light	sensor,	we	will	use	the	BH1750	Arduino	library,	which	we
used	earlier.	Using	this	library,	the	ambient	light	value	can	be	directly	obtained	using	the
following	line	of	code:

uint16_t	lux	=	lightMeter.readLightLevel();

This	line	provides	the	luminance	values	in	the	unit	of	lux.	These	values	are	also	sent	to
the	serial	port	so	the	Python	program	can	utilize	it	further.

Using	Arduino	interrupts
Until	now	you	used	the	Arduino	program	to	read	the	physical	state	of	an	I/O	pin	using	the

www.it-ebooks.info

http://www.it-ebooks.info/

DigitalRead()	or	AnalogRead()	functions.	How	would	you	automatically	obtain	the	state
change	instead	of	periodically	reading	the	pins	and	waiting	for	the	state	to	change?
Arduino	interrupts	provide	a	very	convenient	way	of	capturing	signals	for	the	Arduino
board.	Interrupts	are	a	very	powerful	way	of	automatically	controlling	various	things	in
Arduino.	Arduino	supports	interrupts	using	the	attachInterrupt()	method.	In	terms	of
the	physical	pins,	Arduino	Uno	provides	two	interrupts:	interrupt	0	(on	digital	pin	2)	and
interrupt	1	(on	digital	pin	3).	Various	Arduino	boards	have	different	specifications	for
interrupt	pins.	If	you	are	using	any	board	other	than	Uno,	please	refer	to	Arduino’s	website
to	find	out	about	the	interrupt	pin	for	your	board.

The	attachInterrupt()	function	takes	three	input	arguments	(pin,	ISR,	and	mode).	In
these	input	arguments,	pin	refers	to	the	number	of	the	interrupt	pin,	ISR	(which	stands	for
Interrupt	Service	Routine)	refers	to	the	function	that	gets	called	when	the	interrupt	occurs,
and	mode	defines	the	condition	when	the	interrupt	should	be	triggered.	We	have	utilized
this	function	in	our	Arduino	program,	as	described	in	the	following	code	snippet:

		attachInterrupt(0,	button1Press,	RISING);

		attachInterrupt(1,	button2Press,	RISING);

The	supported	mode	for	attachInterrupt()	are	LOW,	CHANGE,	RISING,	and	FALLING.	In	our
case,	the	interrupts	are	triggered	when	the	mode	is	RISING,	that	is,	the	pin	goes	from	low
to	high.	For	interrupts	declared	at	0	and	1,	we	call	the	button1Press	and	button2Press
functions	that	will	change	flagTemperature	and	flagPlot	respectively.	When
flagTemperature	is	set	to	HIGH,	Arduino	sends	the	temperature	in	Celsius,	otherwise	it
sends	the	temperature	in	Fahrenheit.	When	flagPlot	is	HIGH,	Arduino	will	print	the	flag
on	the	serial	port,	which	will	be	used	by	the	Python	program	later	to	open	the	plot
window.	You	can	learn	more	about	Arduino	interrupts	from	the	tutorial	at
http://arduino.cc/en/Reference/attachInterrupt.

www.it-ebooks.info

http://arduino.cc/en/Reference/attachInterrupt
http://www.it-ebooks.info/

Designing	the	GUI	and	plot	in	Python
Once	your	thermostat	sensor	unit	starts	sending	sensor	data	to	the	serial	port,	it	is	time	to
execute	the	second	part	of	this	stage,	the	Python	code	for	the	GUI	and	the	plot.	From	this
chapter’s	code	folder,	open	the	Python	file	called	Thermostat_Stage1.py.	In	the	file,	go
to	the	line	that	contains	the	Serial()	function	where	the	serial	port	is	declared.	Change
the	serial	port	name	from	COM5	to	the	appropriate	one.	You	can	find	this	information	from
the	Arduino	IDE.	Save	the	change	and	exit	the	editor.	From	the	same	folder,	run	the
following	command	on	the	terminal:

$	python	Thermostat_Stage1.py

This	will	execute	the	Python	code	and	you	will	be	able	to	see	the	GUI	window	on	the
screen.

Using	pySerial	to	stream	sensor	data	in	your	Python	program
As	described	in	the	software	flow,	the	program	receives	the	sensor	data	from	the	Arduino
using	the	pySerial	library.	The	code	that	declares	the	serial	port	in	the	Python	code	is	as
follows:

Import	serial

port	=	serial.Serial('COM5',9600,	timeout=1)

It	is	very	important	to	specify	the	timeout	parameter	while	using	the	pySerial	library,	as
the	code	may	have	an	error	if	timeout	is	not	specified.

Designing	the	GUI	using	Tkinter
The	GUI	for	this	project	is	designed	using	the	Tkinter	library	that	we	used	earlier.	As	a
GUI-building	exercise,	three	columns	of	labels	(labels	to	display	the	sensor	type,	the
observation	values,	and	observation	units)	are	programmed	as	shown	in	the	following
code	snippet:

#	Labels	for	sensor	name

Tkinter.Label(top,	text	=	"Temperature").grid(column	=	1,	row	=	1)

Tkinter.Label(top,	text	=	"Humidity").grid(column	=	1,	row	=	2)

Tkinter.Label(top,	text	=	"Light").grid(column	=	1,	row	=	3)

#	Labels	for	observation	values

TempLabel	=	Tkinter.Label(top,	text	=	"	")

TempLabel.grid(column	=	2,	row	=	1)

HumdLabel	=	Tkinter.Label(top,	text	=	"	")

HumdLabel.grid(column	=	2,	row	=	2)

LighLabel	=	Tkinter.Label(top,	text	=	"	")

LighLabel.grid(column	=	2,	row	=	3)

#	Labels	for	observation	unit

TempUnitLabel	=	Tkinter.Label(top,	text	=	"	")

TempUnitLabel.grid(column	=	3,	row	=	1)

HumdUnitLabel	=	Tkinter.Label(top,	text	=	"%")

HumdUnitLabel.grid(column	=	3,	row	=	2)

LighUnitLabel	=	Tkinter.Label(top,	text	=	"lx")

www.it-ebooks.info

http://www.it-ebooks.info/

LighUnitLabel.grid(column	=	3,	row	=	3)

Once	you	initialize	the	code	and	before	you	click	on	the	Start	button,	you	will	be	able	to
see	the	following	window.	The	observation	labels	are	populated	without	any	values	at	this
stage:

Once	the	Start	button	is	clicked,	the	program	will	engage	the	thermostat	sensor	unit	and
start	reading	the	sensor	values	from	the	serial	port.	Using	the	lines	that	are	obtained	from
the	serial	port,	the	program	will	populate	the	observation	labels	with	the	obtained	values.
The	following	code	snippet	updates	the	temperature	values	in	the	observation	label	and
also	updates	the	temperature	unit:

TempLabel.config(text	=	cleanText(reading[1]))

TempUnitLabel.config(text	=	"C")

TempUnitLabel.update_idletasks()

In	the	program,	we	are	using	similar	methods	for	humidity	and	ambient	light	to	update
their	labels	respectively.	As	you	can	see	in	the	following	screenshot,	the	GUI	now	has	the
values	for	the	temperature,	humidity,	and	ambient	light	readings:

The	Start	and	Exit	buttons	are	programmed	to	call	the	onStartButtonPress()	and
onExitButtonPress()	functions	when	they	are	clicked	by	the	user.	The
onStartButtonPress()	function	executes	the	code	necessary	to	create	the	user	interface,
while	the	onExitButtonPress()	function	closes	all	the	opened	windows,	disconnects	the
thermostat	sensor	unit,	and	exits	the	code:

StartButton	=	Tkinter.Button(top,

																													text="Start",

																													command=onStartButtonPress)

StartButton.grid(column=1,	row=4)

ExitButton	=	Tkinter.Button(top,

																												text="Exit",

																												command=onExitButtonPress)

ExitButton.grid(column=2,	row=4)

www.it-ebooks.info

http://www.it-ebooks.info/

You	can	play	with	the	Start	and	Exit	buttons	to	explore	the	Python	code.	To	observe	the
changes	in	the	sensor	readings,	try	to	blow	air	or	place	an	obstacle	over	the	thermostat
sensor	unit.	If	the	program	doesn’t	behave	appropriately,	check	the	terminal	for	error
messages.

Plotting	percentage	humidity	using	matplotlib
We	will	use	the	matplotlib	library	to	plot	the	relative	humidity	values	in	real	time.	We
will	plot	the	relative	humidity	values	in	this	project,	as	the	range	of	the	data	is	fixed
between	0	and	100	percent.	Using	a	similar	method,	you	can	also	plot	temperature	and
ambient	light	sensor	values.	While	developing	the	code	to	plot	temperature	and	ambient
light	sensor	data,	make	sure	that	you	are	using	appropriate	ranges	to	cover	the	sensor	data
in	the	same	plot.	Now,	as	we	have	specified	in	the	onStartButtonPress()	function,	a
window	similar	to	the	following	screenshot	will	pop	up	once	you	press	the	push	button	for
the	plot:

The	following	code	snippet	is	responsible	for	plotting	the	line	chart	using	the	humidity
sensor	values.	The	values	are	limited	between	0	and	100	on	the	y	axis,	where	the	y	axis
represents	the	relative	humidity	range.	The	plot	is	updated	every	time	the	program
receives	a	new	humidity	value:

pyplot.figure()

pyplot.title('Humidity')

ax1	=	pyplot.axes()

l1,	=	pyplot.plot(pData)

pyplot.ylim([0,100])

www.it-ebooks.info

http://www.it-ebooks.info/

Using	button	interrupts	to	control	the	parameters
The	push	button	interrupts	are	a	critical	part	of	the	user	experience,	as	the	user	can	control
the	temperature	unit	and	the	plot	using	these	interrupts.	The	Python	features	implemented
using	the	push	button	interrupts	are	as	follows.

Changing	the	temperature	unit	by	pressing	a	button

The	Arduino	sketch	contains	the	logic	to	handle	interrupts	from	push	buttons	and	use	them
to	change	the	temperature	unit.	When	an	interrupt	occurs,	instead	of	printing	the
temperature	in	Fahrenheit,	it	sends	the	temperature	in	Celsius	to	the	serial	port.	As	you	can
see	in	the	following	screenshot,	the	Python	code	just	prints	the	obtained	numeric	value	of
the	temperature	observation	and	the	associated	unit	of	measurement	with	it:

As	you	can	see	in	the	following	code	snippet,	if	the	Python	code	receives	the
Temperature(C)	string,	it	prints	the	temperature	in	Celsius,	and	if	it	receives	the
Temperature(F)	string,	it	prints	the	temperature	in	Fahrenheit:

if	(reading[0]	==	"Temperature(C)"):

				TempLabel.config(text=cleanText(reading[1]))

				TempUnitLabel.config(text="C")

				TempUnitLabel.update_idletasks()

if	(reading[0]	==	"Temperature(F)"):

				TempLabel.config(text=cleanText(reading[1]))

				TempUnitLabel.config(text="F")

				TempUnitLabel.update_idletasks()

Swapping	between	the	GUI	and	the	plot	by	pressing	a	button

If	the	Python	code	receives	the	value	of	the	flag	from	the	serial	port	as	1	(HIGH),	it
creates	a	new	plot	and	draws	the	humidity	values	as	a	line	chart.	However,	it	closes	any
open	plots	if	it	receives	0	(LOW)	as	the	value	of	the	flag.	As	you	can	see	in	the	following
code	snippet,	the	program	will	always	try	to	update	the	plot	with	the	latest	values	for
humidity	readings.	If	the	program	can’t	find	an	opened	plot	to	draw	this	value	from,	it	will
create	a	new	plot:

if	(reading[0]	==	"Flag"):

				print	reading[1]

				if	(int(reading[1])	==	1):

								try:

												l1.set_xdata(np.arange(len(pData)))

												l1.set_ydata(pData)		#	update	the	data

												pyplot.ylim([0,	100])

												pyplot.draw()		#	update	the	plot

www.it-ebooks.info

http://www.it-ebooks.info/

								except:

												pyplot.figure()

												pyplot.title('Humidity')

												ax1	=	pyplot.axes()

												l1,	=	pyplot.plot(pData)

												pyplot.ylim([0,	100])

				if	(int(reading[1])	==	0):

								try:

												pyplot.close('all')

												l1	=	None

								except:

By	now,	you	should	have	a	complete	idea	about	the	programs	that	are	required	by	the
thermostat	sensor	unit	and	the	computation	unit.	Due	to	the	complexity	involved,	you	may
face	a	few	known	problems	during	the	execution	of	these	programs.	You	can	refer	to	the
Troubleshooting	section	in	case	you	run	into	any	trouble.

www.it-ebooks.info

http://www.it-ebooks.info/

Troubleshooting
Here	are	some	of	the	errors	that	you	may	find,	and	their	fixes:

I2C	sensor	returns	the	error	string:

Check	the	connections	to	the	SDA	and	SCL	pins.
Confirm	that	you	are	providing	enough	delay	between	the	reading	cycles	of	the
sensor.	Check	the	datasheet	for	the	delay	and	message	sequence.

The	plot	window	flickers	instead	of	staying	on	when	the	button	is	pressed:

Don’t	try	to	press	it	multiple	times.	Hold	and	let	go	quickly.	Make	sure	that	your
button	is	connected	properly.
Adjust	the	delay	in	the	Arduino	sketch.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Stage	2	–	using	a	Raspberry	Pi	for	the
deployable	thermostat
We	have	now	created	a	thermostat	that	exists	as	an	Arduino	prototype	while	the	Python
program	runs	from	your	computer.	This	prototype	is	still	nowhere	near	a	deployable	or
mobile	state	due	to	the	connected	computer,	and	the	display	monitor	if	you	are	using	a
desktop	computer.	A	real-world	thermostat	device	should	have	a	small	footprint,	portable
size,	and	miniature	display	to	show	limited	information.	The	popular	and	practical	way	to
achieve	this	goal	is	to	use	a	small	single-board	computer	that	is	capable	of	hosting	an
operating	system	and	hence	providing	the	essential	Python	programming	interface.	For
this	stage	of	the	project,	we	will	be	utilizing	a	single-board	computer—a	Raspberry	Pi—
with	a	small	LCD	display.

Note
Note	that	this	stage	of	the	project	is	optional	unless	you	want	to	extend	the	previous	stage
of	the	project	to	a	device	that	can	be	used	on	a	regular	basis.	If	you	are	referring	to	the
project	to	just	learn	Python	programming,	you	can	skip	this	entire	section.

The	following	is	an	image	of	the	Raspberry	Pi	Model	B:

If	you	haven’t	worked	with	a	single-board	computer	before,	you	may	have	a	lot	of
unanswered	questions,	such	as	“What	exactly	does	a	Raspberry	Pi	consists	of?”,	“What
are	the	benefits	of	using	a	Raspberry	Pi	in	our	project?”,	and	“Can’t	we	just	use	Arduino
for	that?”.	These	are	legitimate	questions	and	we	will	try	to	answer	them	in	the	following

www.it-ebooks.info

http://www.it-ebooks.info/

section.

www.it-ebooks.info

http://www.it-ebooks.info/

What	is	a	Raspberry	Pi?
The	Raspberry	Pi	is	a	small	(almost	the	size	of	a	credit	card)	single-board	computer	that
was	developed	with	the	initial	aim	of	helping	students	learn	the	basics	of	computer
science.	Today,	the	Raspberry	Pi	movement,	guided	by	the	Raspberry	Pi	Foundation,	has
turned	into	a	DIY	phenomenon	and	captured	the	attention	of	enthusiasts	and	developers
around	the	world.	The	capabilities	and	features	shipped	with	a	Raspberry	Pi	at	a	nominal
cost	($35)	have	boosted	the	popularity	of	the	device.

The	term	single-board	computer	is	used	for	devices	that	have	all	the	necessary
components	to	run	an	operating	system	on	one	board,	such	as	a	processor,	RAM,	graphics
processor,	storage	device,	and	basic	adaptors	for	expansion.	This	makes	a	single-board
computer	an	appropriate	candidate	for	portable	applications,	as	they	can	be	part	of	the
portable	hardware	device	that	we	are	trying	to	create.	Although	there	were	a	number	of
single-board	computers	in	the	market	before	the	introduction	of	the	Raspberry	Pi,	the	open
source	nature	of	the	hardware	and	the	economical	price	are	the	main	reasons	behind	the
popularity	and	rapid	adoption	of	the	Raspberry	Pi.	The	following	figure	shows	the
Raspberry	Pi	Model	B	with	its	major	components:

The	computational	capabilities	of	the	Raspberry	Pi	are	adequate	for	running	a	trimmed
down	version	of	Linux	OS.	Although	people	had	tried	to	use	many	types	of	operating
systems	on	a	Raspberry	Pi,	we	will	be	using	the	default	and	recommended	operating
system	called	Raspbian.	Raspbian	is	a	Debian	distribution-based	open	source	Linux	OS,
which	is	optimized	for	the	Raspberry	Pi.	The	Raspberry	Pi	uses	an	SD	card	as	the	storage
device,	which	will	be	used	to	store	your	OS	and	program	files.	In	Raspbian,	you	can	avoid
running	the	unnecessary	OS	components	that	are	shipped	with	traditional	OSes.	These
include	the	Internet	browser,	communication	application,	and	in	some	cases	even	the

www.it-ebooks.info

http://www.it-ebooks.info/

graphical	interface.

After	its	introduction,	the	Raspberry	Pi	has	gone	through	a	few	major	upgrades.	The
earlier	version,	called	Model	A,	did	not	include	the	Ethernet	port	and	only	had	a	memory
of	256	MB.	In	our	project,	we	are	using	the	Raspberry	Pi’s	Model	B	that	has	a	dedicated
Ethernet	port,	512	MB	memory,	and	dual	USB	ports.	The	latest	versions	of	Raspberry	Pi,
Model	B+,	can	be	also	used	as	it	is	also	equipped	with	an	Ethernet	port.

www.it-ebooks.info

http://www.it-ebooks.info/

Installing	the	operating	system	and	configuring	the
Raspberry	Pi
Although	the	Raspberry	Pi	is	a	computer,	it	is	different	than	traditional	desktop	computers
when	it	comes	to	interfacing	peripheral	devices.	Instead	of	supporting	traditional	VGA	or
DVI	display	ports,	the	Raspberry	Pi	provides	a	RCA	video	port	for	TVs	and	an	HDMI	port
for	the	latest	generation	of	monitors	and	TVs.	In	addition,	the	Raspberry	Pi	has	only	two
USB	ports	that	need	to	be	utilized	for	connecting	various	peripheral	devices	such	as	the
mouse,	the	keyboard,	the	USB	wireless	adapter,	and	the	USB	memory	stick.	Let’s	get
started	by	collecting	components	and	cables	to	start	working	with	a	Raspberry	Pi.

What	do	you	need	to	begin	using	the	Raspberry	Pi?
The	hardware	components	required	to	get	started	with	a	Raspberry	Pi	are	as	follows:

A	Raspberry	Pi:	For	this	stage	of	the	project,	you	will	need	a	Raspberry	Pi	version
Model	B	or	latest.	You	can	buy	the	Raspberry	Pi	from
http://www.raspberrypi.org/buy.
A	power	cable:	The	Raspberry	Pi	runs	on	5V	DC	and	requires	at	least	750	mA
current.	The	power	is	applied	through	the	micro	USB	port	that	is	located	on	the
board.	In	this	project,	you	will	need	a	micro	USB	power	supply.	Optionally,	you	can
use	a	micro	USB-based	phone	charger	to	supply	power	to	the	Raspberry	Pi.
A	display	cable:	If	you	have	an	HDMI	monitor	or	a	TV,	you	can	use	an	HDMI	cable
to	connect	it	to	your	Raspberry	Pi.	If	you	want	to	use	your	VGA	or	DVI-based
monitor,	you	will	need	a	VGA	to	HDMI	or	DVI	to	HDMI	adapter	converter.	You	can
buy	these	adapter	converters	from	Amazon	or	Best	Buy.
An	SD	card:	You	are	required	to	have	at	least	an	8	GB	SD	card	to	get	started.	It	is
preferable	to	use	an	SD	card	that	has	a	quality	of	class	4	or	better.	You	can	also	buy
an	SD	card	with	the	preinstalled	OS	at
http://swag.raspberrypi.org/collections/frontpage/products/noobs-8gb-sd-card.

Note
The	Raspberry	Pi	Model	B+	requires	a	microSD	card	instead	of	a	regular	SD	card.

A	mouse	and	keyboard:	You	will	need	a	standard	USB	keyboard	and	a	USB	mouse
to	work	with	the	Raspberry	Pi.
A	USB	hub	(optional):	Since	the	Model	B	has	just	two	USB	ports,	you	will	have	to
remove	existing	devices	from	the	USB	ports	to	make	space	for	another	device	if	you
want	to	connect	a	Wi-Fi	adapter	or	memory	stick	to	it.	A	USB	hub	can	be	handy	to
attach	multiple	peripheral	components	to	your	Raspberry	Pi.	We	recommend	that	you
use	a	USB	hub	with	external	power	supply,	as	the	Raspberry	Pi	can	drive	a	limited
number	of	peripheral	devices	through	the	USB	ports	due	to	power	limitations.

Preparing	an	SD	card
To	install	and	configure	software	components	such	as	Python	and	the	required	libraries,
first	we	need	an	operating	system	for	the	Raspberry	Pi.	A	Raspberry	Pi	officially	supports

www.it-ebooks.info

http://www.raspberrypi.org/buy
http://swag.raspberrypi.org/collections/frontpage/products/noobs-8gb-sd-card
http://www.it-ebooks.info/

Linux-based	open	source	operating	systems	that	are	preconfigured	for	custom	Raspberry
Pi	hardware	components.	Various	versions	of	these	operating	systems	are	available	on
Raspberry	Pi’s	website	(http://www.raspberrypi.org/downloads).

Raspberry	Pi’s	website	provides	a	variety	of	OSes	for	users	who	range	from	newbies	to
experts.	It	is	difficult	for	a	first-time	user	to	identify	the	appropriate	OS	and	its	installation
process.	If	this	is	your	first	attempt	with	a	Raspberry	Pi,	we	recommend	that	you	use	the
New	Out	Of	Box	Software	(NOOBS)	package.	Download	the	latest	version	of	NOOBS
from	the	previous	link.	The	NOOBS	package	includes	few	different	operating	systems	such
as	Raspbian,	Pidora,	Archlinux,	and	RaspBMC.	NOOBS	streamlines	the	entire	installation
process	and	helps	you	to	install	and	configure	your	preferred	version	of	the	OS	easily.	It	is
important	to	note	that	NOOBS	is	just	an	installation	package	and	you	will	be	left	with	only
the	Raspbian	OS	once	you	complete	the	given	installation	steps.

Raspberry	Pi	uses	the	SD	card	to	host	the	operating	system	and	you	need	to	prepare	the
SD	card	from	your	computer	before	placing	it	into	the	SD	card	slot	of	the	Raspberry	Pi.
Insert	your	SD	card	into	your	computer	and	make	sure	that	you	have	a	backup	of	any
important	information	that	is	on	the	SD	card.	During	the	installation	process,	you	will	lose
all	the	data	stored	on	the	SD	card.	Let’s	start	by	preparing	your	SD	card.

Follow	these	steps	to	prepare	an	SD	card	from	Windows:

1.	 You	will	require	a	software	tool	to	format	and	prepare	the	SD	card	for	Windows.	You
can	download	the	freely	available	formatting	tool	from
https://www.sdcard.org/downloads/formatter_4/eula_windows/.

2.	 Download	and	install	the	formatting	tool	on	your	Windows	computer.
3.	 Insert	your	SD	card	and	start	the	formatting	tool.
4.	 In	the	formatting	tool,	open	the	Options	menu	and	set	FORMAT	SIZE

ADJUSTMENT	to	ON.
5.	 Select	the	appropriate	SD	card	and	click	on	Format.
6.	 Then,	wait	for	the	formatting	tool	to	finish	formatting	the	SD	card.	Once	this	is	done,

extract	the	downloaded	NOOBS	ZIP	file	to	the	SD	card.	Make	sure	that	you	extract	the
content	of	the	ZIP	folder	to	the	root	location	of	the	SD	card.

Follow	these	directions	to	prepare	SD	card	from	Mac	OS	X:

1.	 You	will	require	a	software	tool	to	format	and	prepare	the	SD	card	for	Mac	OS	X.
You	can	download	the	freely	available	formatting	tool	from
https://www.sdcard.org/downloads/formatter_4/eula_mac/.

2.	 Download	and	install	the	formatting	tool	on	your	machine.
3.	 Insert	your	SD	card	and	run	the	formatting	tool.
4.	 In	the	formatting	tool,	select	Overwrite	Format.
5.	 Select	the	appropriate	SD	card	and	click	on	Format.
6.	 Then,	wait	for	the	formatting	tool	to	finish	formatting	the	SD	card.	Once	this	is	done,

extract	the	downloaded	NOOBS	ZIP	file	to	the	SD	card.	Make	sure	that	you	extract	the
content	of	the	ZIP	folder	to	the	root	location	of	the	SD	card.

www.it-ebooks.info

http://www.raspberrypi.org/downloads
https://www.sdcard.org/downloads/formatter_4/eula_windows/
https://www.sdcard.org/downloads/formatter_4/eula_mac/
http://www.it-ebooks.info/

Follow	these	steps	to	prepare	the	SD	card	from	Ubuntu	Linux:

1.	 To	format	the	SD	card	on	Ubuntu,	you	can	use	a	formatting	tool	called	gparted.
Install	gparted	using	the	following	command	on	the	terminal:

$	sudo	apt-get	install	gparted

2.	 Insert	your	SD	card	and	run	gparted.
3.	 In	the	gparted	window,	select	the	entire	SD	card	and	format	it	using	FAT32.
4.	 Once	the	format	process	is	complete,	extract	the	downloaded	NOOBS	ZIP	file	to	the

SD	card.	Make	sure	that	you	extract	the	content	of	the	ZIP	folder	to	the	root	location
of	the	SD	card.

Tip
If	you	have	any	trouble	following	these	steps,	you	can	refer	to	the	official
documentation	for	preparing	the	SD	card	for	a	Raspberry	Pi	at
http://www.raspberrypi.org/documentation/installation/installing-images/.

The	Raspberry	Pi	setup	process
Once	you	have	prepared	your	SD	card	with	NOOBS,	insert	it	into	the	SD	card	slot	of	the
Raspberry	Pi.	Connect	your	monitor,	mouse,	and	keyboard	before	connecting	the	micro
USB	cable	for	the	power	adapter.	Once	you	connect	the	power	adapter,	the	Raspberry	Pi
will	turn	on	automatically	and	you	will	be	able	to	see	the	installation	process	on	the
monitor.	If	you	are	not	able	to	see	any	progress	on	the	monitor	after	connecting	the	power
adapter,	refer	to	the	troubleshooting	section	that	is	available	later	in	this	chapter.

Once	the	Raspberry	Pi	boots	up,	it	will	repartition	the	SD	card	and	show	you	the	following
installation	screen	so	that	you	can	get	started:

www.it-ebooks.info

http://www.raspberrypi.org/documentation/installation/installing-images/
http://www.it-ebooks.info/

Note
The	preceding	screenshot	is	taken	from	raspberry_pi_F01_02_5a.jpg	by	Simon	Monk
and	is	licensed	under	Attribution	Creative	Commons	license
(https://learn.adafruit.com/assets/11384).

1.	 As	a	first-time	user,	select	Raspbian	[RECOMMENDED]	as	the	recommended
operating	system	and	click	on	the	Install	OS	button.	Raspbian	is	a	Debian-based	OS
that	is	optimized	for	the	Raspberry	Pi	and	it	supports	useful	Linux	commands	that	we
have	already	learned	in	the	previous	chapters.	The	process	will	take	about	10	to	20
minutes	to	complete.

2.	 On	successful	completion,	you	will	be	able	to	see	a	screen	similar	to	the	one
displayed	in	the	following	screenshot.	The	screenshot	displays	the	raspi-config	tool
that	will	let	you	set	up	the	initial	parameters.	We	will	skip	this	process	to	complete
the	installation.	Select	<Finish>	and	press	Enter:

3.	 You	can	go	back	to	this	screen	again,	in	case	you	want	to	change	any	parameter,	by
typing	the	following	command	in	the	terminal:

$	sudo	raspi-config

4.	 Raspberry	Pi	will	now	reboot	and	you	will	be	prompted	to	the	default	login	screen.
Log	in	using	the	default	username	pi	and	password	raspberry.

5.	 You	can	start	the	graphical	desktop	of	the	Raspberry	Pi	by	typing	the	following
command	in	the	terminal:

$	startx

6.	 To	run	the	Python	code	that	we	developed	in	the	first	stage,	you	will	need	to	set	up
required	Python	libraries	on	the	Raspberry	Pi.	You	will	have	to	connect	your
Raspberry	Pi	to	the	Internet	using	the	Ethernet	cable	to	install	the	packages.	Install
the	required	Python	packages	on	the	Raspberry	Pi	terminal	using	the	following
command:

$	sudo	apt-get	install	python-setuptools,	python-matplotlib,	python-

www.it-ebooks.info

https://learn.adafruit.com/assets/11384
http://www.it-ebooks.info/

numpy

7.	 Install	pySerial	using	Setuptools:

$	sudo	easy_install	pyserial

Now,	your	Raspberry	Pi	is	ready	with	an	operating	system	and	the	necessary	components
to	support	Python-Arduino	programming.

www.it-ebooks.info

http://www.it-ebooks.info/

Using	a	portable	TFT	LCD	display	with	the
Raspberry	Pi
TFT	LCD	is	a	great	way	to	expand	the	Raspberry	Pi’s	functionalities	and	avoid	the	use	of
large	display	devices.	These	TFT	LCD	displays	can	be	interfaced	directly	with	GPIO	pins.
TFT	LCD	screens	are	available	in	various	shapes	and	size,	but	for	the	Raspberry	Pi	we
recommend	that	you	use	a	screen	with	a	size	smaller	than	or	equal	to	3.2	inches	due	to
interfacing	convenience.	Most	of	these	small	screens	do	not	require	additional	power
supply	and	can	be	directly	powered	using	the	GPIO	pins.	In	a	few	cases,	touch	screen
versions	are	also	available	to	extend	the	functionality	of	the	Raspberry	Pi.

In	this	project,	we	are	using	a	Tontec	2.4	inch	TFT	LCD	screen	that	can	be	directly
interfaced	with	the	Raspberry	Pi	via	GPIO.	Although	you	can	use	any	available	TFT	LCD
screen,	this	book	only	cover	the	setup	and	configuration	process	for	this	particular	screen.
In	most	cases,	manufacturers	of	these	screens	provide	detailed	configuration	tutorials	on
their	websites.	Raspberry	Pi	forums	and	blogs	are	another	good	places	to	look	for	help	if
you	are	using	a	different	type	of	the	TFT	LCD	screen.	The	following	image	shows	the
back	of	the	Tontec	2.4	inch	TFT	LCD	screen	with	the	location	of	the	GPIO	pins.	Let’s	get
started	and	use	this	screen	with	your	Raspberry	Pi:

Connecting	the	TFT	LCD	using	GPIO
Before	we	can	use	the	screen,	we	will	have	to	connect	it	to	the	Raspberry	Pi.	Let’s
disconnect	the	micro	USB	power	adapter	from	the	Raspberry	Pi	and	locate	the	GPIO	male
pins	near	the	RCA	video	port	on	the	Raspberry	Pi.	Get	your	TFT	screen	and	connect	the
GPIO	pins	as	such	you	can	see	Raspberry	Pi	and	the	screen	as	displayed	in	the	following
image.	In	handful	cases,	the	notations	on	the	screen	will	be	misleading,	and	therefore	we
suggest	that	you	follow	the	guidelines	from	the	manufacturer	to	make	the	connections:

www.it-ebooks.info

http://www.it-ebooks.info/

Once	your	screen	is	connected	to	the	Raspberry	Pi,	power	it	up	using	the	micro	USB
cable.	Do	not	disconnect	your	HDMI	cable	yet,	as	your	screen	is	still	not	ready.	Before	we
go	ahead	with	any	of	the	configuration	steps,	let’s	first	connect	the	Raspberry	Pi	to	the
Internet.	Connect	the	Ethernet	port	of	the	Raspberry	Pi	to	your	home	or	office	network
using	an	Ethernet	cable.	Now,	let’s	configure	the	TFT	LCD	screen	in	the	Raspbian	OS	to
make	it	work	properly.

Configuring	the	TFT	LCD	with	the	Raspberry	Pi	OS
Once	your	Raspberry	Pi	is	powered	up,	log	in	using	your	username	and	password.
Complete	the	following	steps	to	configure	the	screen	with	your	Raspberry	Pi:

1.	 Download	the	supporting	files	and	manual	using	the	following	command	on	the
terminal:

$	wget	https://s3.amazonaws.com/tontec/24usingmanual.zip

2.	 Unzip	the	file.	The	following	command	will	extract	the	files	into	the	same	directory:

$	unzip	24usingmanual.zip

3.	 Navigate	to	the	src	directory:

$	cd	cd	mztx-ext-2.4/src/

4.	 Enter	following	command	to	compile	the	source	files:

www.it-ebooks.info

http://www.it-ebooks.info/

$	make

5.	 Open	the	boot	configuration	files:

$	sudo	pico	/boot/config.txt

6.	 In	the	config.txt	file,	locate	and	uncomment	the	following	lines	of	code:

framebuffer_width=320

framebuffer_height=240

7.	 Save	and	exit	the	file.
8.	 Now,	every	time	the	Raspberry	Pi	restarts	we	need	to	execute	a	command	to	start	the

TFT	LCD	screen.	To	do	this,	open	the	rc.local	file	using	the	following	command:

$	sudo	pico	/etc/rc.local

9.	 Add	the	following	line	of	code	to	the	file	that	starts	the	screen:

sudo	/home/pi/mztx-ext-2.4/src/mztx06a	&

10.	 Save	and	exit	the	file.	Then,	reboot	the	Raspberry	Pi	using	the	following	command:

$	sudo	reboot

You	can	remove	your	HDMI	monitor	now	and	start	working	with	your	TFT	LCD	screen.
One	thing	that	you	will	have	to	keep	in	mind	is	that	the	screen	resolution	is	very	small	and
it	is	not	optimized	for	coding.	We	prefer	to	use	the	HDMI	monitor	to	perform	the	major
code	modifications	that	are	required	in	the	next	section.	The	utilization	of	the	TFT	LCD
screen	in	this	project	is	to	accommodate	the	mobility	and	portability	requirements	of	the
thermostat.

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing	the	GUI	for	the	TFT	LCD	screen
The	resolution	of	the	TFT	LCD	screen	that	we	configured	in	the	previous	section	is	only
320	x	240	pixels,	but	the	windows	that	we	created	in	first	programming	stage	are	quite
large.	Therefore,	before	we	copy	and	run	our	Python	code	on	the	Raspberry	Pi,	we	need	to
adjust	a	few	parameters	in	the	code.

In	your	regular	computer	where	you	have	this	chapter’s	folder	from	the	book’s	source
code,	open	the	Thermostat_Stage2.py	file.	This	file	contains	the	details	of	the
modification	required	to	obtain	the	optimum	size	with	minor	cosmetic	changes.	You	will
be	using	this	file,	instead	of	the	one	that	we	used	in	the	previous	stage,	on	your	Raspberry
Pi.	These	adjustments	in	the	code	are	explained	in	the	following	lines	of	code.

The	first	major	alteration	is	in	the	port	name.	For	the	Raspberry	Pi,	you	need	to	change	the
name	of	the	Arduino	port	from	that	you	were	using	in	the	first	stage	to	/dev/ttyACM0,
which	is	the	address	assigned	to	Arduino	in	the	majority	of	the	cases:

port	=	serial.Serial('/dev/ttyACM0',9600,	timeout=1)

In	this	program	file,	the	size	of	the	Tkinter	main	window	and	the	matplotlib	figure	are
also	adjusted	to	fit	the	screen	size.	If	you	are	using	a	different-sized	screen,	change	the
following	lines	of	code	appropriately:

top.minsize(320,160)

pyplot.figure(figsize=(4,3))

Now,	with	the	preceding	changes,	the	GUI	window	should	be	able	to	fit	within	Raspberry
Pi’s	screen.	As	the	Raspberry	Pi’s	screen	will	be	used	as	the	dedicated	screen	for	the
thermostat	application,	we	need	to	adjust	the	text	size	on	the	screen	to	fit	the	window
properly.	Add	the	font=("Helvetica",	20)	text	in	the	declaration	of	the	labels	to
increase	the	font	size.	The	following	line	of	code	shows	changes	that	are	performed	on	the
labels	to	contain	the	sensor	names:

Tkinter.Label(top,

														text="Humidity",

														font=("Helvetica",	20)).grid(column=1,	row=2)

Similarly,	the	font	option	is	added	to	the	observation	labels:

HumdUnitLabel	=	Tkinter.Label(top,

																														text="%",

																														font=("Helvetica",	20))

The	labels	for	the	observation	unit	also	carry	similar	modifications:

HumdLabel.config(text=cleanText(reading[1]),

																	font=("Helvetica",	20))

The	Thermostat_	Stage2.py	file	already	includes	the	preceding	modifications	and	is
ready	to	run	on	your	Raspberry	Pi.	Before	you	run	the	file,	first	we	need	to	copy	the	file	to
the	Raspberry	Pi.	At	this	stage,	the	USB	hub	will	be	very	handy	to	copy	the	files.	If	you
don’t	have	a	USB	hub,	you	can	utilize	two	available	USB	ports	simultaneously	to	attach

www.it-ebooks.info

http://www.it-ebooks.info/

the	USB	pen	drive,	mouse,	and	keyboard.	With	the	use	of	the	USB	hub,	connect	the	USB
pen	drive	containing	the	Python	files	and	copy	them	to	the	home	folder.	Attach	the	USB
port	of	the	Arduino	board	to	one	of	the	ends	of	the	USB	hub.	From	the	start	menu	of	the
Raspberry	Pi,	open	the	LXTerminal	program	by	navigating	to	Accessories	|	LXterminal.
Run	the	Python	code	from	the	home	folder	and	you	will	be	able	to	see	the	optimized	user
interface	window	that	opens	on	the	Raspberry	Pi’s	screen.	If	every	step	mentioned	in	the
chapter	is	performed	correctly,	you	will	be	able	to	see	the	sensor	observation	being	printed
when	you	click	on	the	Start	button:

At	the	end	of	the	chapter,	you	must	be	wondering	what	a	mobile	unit	with	sensors,
Arduino,	Raspberry	Pi,	and	TFT	screen	might	look	like.	The	following	image	shows	a
sample	thermostat	that	was	developed	using	the	instructions	given	in	this	chapter.	We	used
an	acrylic	sheet	to	hold	the	Raspberry	Pi	and	the	Arduino	board	together	and	created	a
compact	form	factor:

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Troubleshooting
There	are	a	few	known	problems	that	you	may	face	in	this	stage	of	the	project.	The
following	section	describes	these	problems	and	their	quick	fixes:

The	Raspberry	Pi	is	not	booting	up:

Make	sure	that	the	SD	card	is	formatted	properly	with	the	specified	tools.	The
Raspberry	Pi	won’t	boot	if	the	SD	card	is	not	prepared	properly.
Check	the	HDMI	cable	and	the	monitor	to	see	whether	they	are	working	fine.
Make	sure	that	the	power	adapter	is	compatible	with	the	Raspberry	Pi.

The	TFT	LCD	screen	doesn’t	turn	on:

Make	sure	that	the	screen	is	properly	connected	to	the	GPIO	pins	of	the
Raspberry	Pi.
If	you	are	using	any	other	TFT	LCD	screen,	make	sure	from	its	datasheet	that
your	screen	doesn’t	require	additional	power.
Check	whether	the	screen	is	properly	configured	using	the	steps	described	in	the
Optimizing	the	GUI	for	the	TFT	LCD	screen	section.

There	is	a	slow	refresh	rate	of	the	sensor	data	on	the	Raspberry	Pi:

Try	decreasing	the	delay	between	each	serial	message	that	is	sent	by	Arduino.
Terminate	any	other	application	that	is	running	in	the	background.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Summary
With	this	project,	we	successfully	created	a	portable	and	deployable	thermostat	using
Arduino,	which	monitors	temperature,	humidity,	and	ambient	light.	During	this	process,
we	assembled	the	thermostat	sensor	unit	using	the	necessary	components	and	developed
custom	Arduino	program	to	support	them.	We	also	utilized	Python	programming	methods
including	GUI	development	and	plots	using	Tkinter	and	matplotlib	libraries
respectively.	Later	in	the	chapter,	we	utilized	the	Raspberry	Pi	to	convert	a	mere	project
prototype	into	a	practical	application.	Henceforth,	you	should	be	able	to	develop	similar
projects	that	require	you	to	observe	and	visualize	real-time	sensor	information.

Going	forward,	we	will	be	expanding	this	project	to	accommodate	upcoming	topics	such
as	Arduino	networking,	cloud	communication,	and	remote	monitoring.	In	the	next	level	of
the	thermostat	project,	we	will	integrate	these	advanced	features	and	make	it	a	really
resourceful	DIY	project	that	can	be	used	in	everyday	life.	In	the	next	chapter,	we	are	going
to	start	the	next	stage	of	our	journey	from	making	simple	Python-Arduino	projects	to
Internet-connected	and	remotely	accessible	IoT	projects.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter	8.	Introduction	to	Arduino
Networking
So	far,	we	used	a	hardwired	serial	connection	to	interact	with	Arduino,	a	serial	monitor	to
observe	the	Arduino	serial	data,	and	a	Python	serial	library	(pySerial)	to	transfer	data
between	the	Arduino	and	Python	applications.	During	this	entire	exchange,	the	range	of
communication	was	limited	due	to	the	hardwired	serial	connection.	As	a	solution,	you	can
use	a	wireless	protocol	such	as	ZigBee,	Bluetooth,	or	other	RF	channels	to	establish	a
communication	channel	for	a	remote	serial	interface.	These	wireless	protocols	are
extensively	used	in	remote	hardware	applications,	and	they	use	the	serial	interface	to
transfer	data.	Due	to	their	use	of	serial	communication,	these	protocols	require	very	little
to	no	additional	programming	changes	on	the	Arduino	or	Python	side.	You	may	require
additional	hardware	to	enable	these	protocols,	however.	The	major	benefit	of	these
protocols	is	that	they	are	really	easy	to	implement.	However,	they	are	restricted	with	only
a	small	geographical	coverage	area	and	limited	data	bandwidth.

Besides	serial	communication	methods,	the	other	way	to	remotely	access	your	Arduino
device	is	to	use	a	computer	network.	Today,	computer	networks	are	the	most	prolific	way
of	communicating	between	computing	units.	In	the	next	two	chapters,	we	will	explore
various	networking	techniques	using	Arduino	and	Python,	which	range	from	establishing
very	basic	Ethernet	connectivity	to	developing	complex,	cloud-based	web	applications.

In	this	chapter,	we	will	cover	the	following	topics:

The	fundamentals	of	networking	and	hardware	extensions	that	enable	networking	for
Arduino
Python	frameworks	used	to	develop	Hypertext	Transfer	Protocol	(HTTP)	web
servers	on	your	computer
Interfacing	Arduino-based	HTTP	clients	with	the	Python	web	server
IoT	messaging	protocol	MQTT	(we	will	install	a	middleware	tool	called	Mosquitto
to	enable	MQTT	on	our	computer)
Utilizing	the	publisher/subscriber	paradigm,	used	by	MQTT,	to	develop	Arduino-
Python	web	applications

www.it-ebooks.info

http://www.it-ebooks.info/

Arduino	and	the	computer	networking
Computer	networking	is	a	huge	domain,	and	covering	every	aspect	of	networking	is	not
the	main	objective	of	this	book.	We	will,	however,	try	to	explain	a	few	fundamentals	of
computer	networking	wherever	this	knowledge	will	need	to	be	applied.	Unlike	the	serial
interface	approach,	where	a	point-to-point	connection	is	required	between	devices,	the
network-based	approach	provides	distributed	access	to	resources.	Specifically	in	hardware
applications	where	a	single	hardware	unit	is	required	to	be	accessed	by	multiple	endpoints
(for	example,	in	a	personal	computer,	mobile	phone,	or	remote	server),	the	computer
network	stands	superior.

In	this	section,	we	will	cover	the	basics	of	networking	and	hardware	components	that
enable	networking	in	Arduino.	Later	in	this	chapter,	we	will	use	the	Arduino	library	and	a
built-in	example	to	demonstrate	how	remote	access	to	Arduino	using	your	local	network
works.

www.it-ebooks.info

http://www.it-ebooks.info/

Networking	fundamentals
Whenever	you	see	a	computer	or	mobile	device,	you	are	also	looking	at	some	type	of
computer	network	being	used	to	connect	those	devices	with	other	devices.	In	simple
terms,	a	computer	network	is	a	group	of	interconnected	computational	devices	(also	called
network	nodes)	that	allow	the	exchange	of	data	between	these	devices.	These	network
nodes	include	various	devices	such	as	your	personal	computers,	mobile	phones,	servers,
tablets,	routers,	and	other	pieces	of	networking	hardware.

A	computer	network	can	be	classified	into	numerous	types	according	to	parameters	such
as	geographical	location,	network	topology,	and	organizational	scope.	In	terms	of
geographical	scale,	a	network	can	be	categorized	into	local	area	network	(LAN),	home
area	network	(HAN),	wide	area	network	(WAN),	and	so	on.	When	you	are	utilizing
your	home	router	to	connect	to	the	Internet,	you	are	using	the	LAN	created	by	your	router.
With	regards	to	the	organization	that	handles	the	network,	LAN	can	be	configured	as
Intranet,	Extranet,	and	Internet.	The	Internet	is	the	largest	example	of	any	computer
network,	as	it	interconnects	all	types	of	networks	deployed	globally.	In	your
implementation	of	various	projects	throughout	this	book,	you	will	mostly	be	using	your
LAN	and	the	Internet	for	the	exchange	of	data	between	an	Arduino,	your	computer,	the
Raspberry	Pi,	and	the	cloud	services.

To	standardize	communication	between	network	nodes,	various	governing	bodies	and
organizations	have	created	a	set	of	rules	called	protocols.	In	the	large	list	of	standard
protocols,	there	are	a	few	protocols	that	your	computer	uses	on	a	daily	basis.	The
examples	of	those	protocols	associated	with	the	local	area	network	include	Ethernet	and
Wi-Fi.	In	the	IEEE	802	family	of	standards,	the	IEEE	802.3	standard	describes	different
types	of	wired	connectivity	between	nodes	in	a	local	area	network,	also	called	Ethernet.
Similarly,	Wireless	LAN	(also	referred	to	as	Wi-Fi),	is	part	of	the	IEEE	802.11	standard,
where	a	communication	channel	uses	wireless	frequency	bands	to	exchange	data.

Most	network	nodes	deployed	with	IEEE	802	standards	(that	is,	Ethernet,	Wi-Fi,	and	so
on)	have	a	unique	identifier	assigned	to	the	network	interface	hardware,	called	a	media
access	control	(MAC)	address.	This	address	is	assigned	by	the	manufacturer	and	is
mostly	fixed	for	each	network	interface.	While	using	Arduino	for	network	connectivity,
we	will	need	the	MAC	address	to	enable	networking.	A	MAC	address	is	a	48-bit	address,
and	in	human-friendly	form	it	contains	six	groups	of	two	hexadecimal	digits.	For	example,
01:23:45:67:89:ab	is	the	human-readable	form	of	a	48-bit	MAC	address.

While	the	MAC	address	is	associated	with	the	hardware-level	(that	is,	“physical”)
protocols,	the	Internet	Protocol	(IP)	is	a	communication	protocol	that	is	widely	used	at
the	Internet	level	to	enable	internetworking	between	networked	nodes.	In	the
implementation	of	version	4	of	the	IP	protocol	suite	(IPv4),	each	network	node	is	assigned
a	32-bit	number	called	the	IP	address	(for	example,	192.168.0.1).	When	you	connect	a
computer,	phone,	or	any	other	device	to	your	local	home	network,	an	IP	address	is
assigned	to	that	device	by	your	router.	One	of	the	most	popular	IP	addresses	is	127.0.0.1,
which	is	also	called	the	localhost	IP	address.	Apart	from	the	IP	address	assigned	to	a

www.it-ebooks.info

http://www.it-ebooks.info/

computer	by	the	network,	each	computer	also	has	the	localhost	IP	address	associated	with
it.	The	localhost	IP	address	is	very	useful	when	you	want	to	internally	access	or	call	your
computer	from	the	same	device.	In	the	case	of	a	remote-access	application,	you	need	to
know	the	IP	address	assigned	by	the	network.

www.it-ebooks.info

http://www.it-ebooks.info/

Obtaining	the	IP	address	of	your	computer
Arduino	is	a	resource-constrained	device,	and	therefore	it	can	only	demonstrate	a	limited
amount	of	network	capability.	While	working	with	Arduino-based	projects	that	include	the
utilization	of	a	computer	network,	you	will	require	a	server	or	Gateway	interface.	These
interfaces	include,	but	are	not	limited	to,	a	desktop	computer,	a	laptop,	the	Raspberry	Pi,
and	other	remote	computing	instances.	If	you	are	using	these	interfaces	as	part	of	your
hardware	project,	you	will	need	their	IP	addresses.	Ensure	that	they	are	under	the	same
network	as	your	Arduino.	The	following	are	the	techniques	to	obtain	IP	addresses	in	major
operating	systems.

Windows
In	most	versions	of	the	Windows	OS,	you	can	obtain	the	IP	address	from	the	Network
Connection	utility	in	Control	Panel.	Navigate	to	Control	Panel	|	Network	and	Internet
|	Network	Connections	and	open	the	Local	Area	Connection	Status	window.	Click	on
the	Details	button	to	see	the	details	of	the	Network	Connection	Details	window.	As	you
can	see	in	this	screenshot,	the	IP	address	of	the	network	interface	is	listed	as	IPv4
Address	in	the	opened	window:

You	can	also	obtain	the	IP	address	of	your	computer	using	the	built-in	ipconfig	utility.
Open	the	Command	Prompt	and	enter	the	following	command:

>	ipconfig

As	you	can	see	in	the	following	screenshot,	the	IP	address	of	your	computer	is	listed	under
the	Ethernet	adapter.	If	you	are	using	a	wireless	connection	to	connect	to	your	network,

www.it-ebooks.info

http://www.it-ebooks.info/

the	Ethernet	adapter	will	be	replaced	by	the	wireless	Ethernet	adapter.

Mac	OS	X
If	you	are	using	Mac	OS	X,	you	can	obtain	the	IP	address	from	the	network	settings.	Open
System	Preferences	and	click	on	the	Network	icon.	You	will	see	a	window	similar	to
what	is	shown	in	the	next	screenshot.	In	the	left	sidebar,	click	on	the	interface	you	are
looking	to	obtain	the	IP	address	of.

www.it-ebooks.info

http://www.it-ebooks.info/

If	you	want	to	get	the	IP	address	using	the	terminal,	you	can	use	the	following	command.
This	command	will	require	you	to	enter	the	system	name	of	the	interface,	en0:

$	ipconfig	getifaddr	en0

If	you	are	connected	to	multiple	networks	and	are	not	aware	of	the	network	name,	you	can
find	the	list	of	IP	addresses	associated	with	your	computer,	using	the	command	shown
here:

$	ifconfig	|	grep	inet

As	you	can	see	in	this	screenshot,	you	will	get	all	the	network	addresses	associated	with
your	Mac	computer	and	other	network	parameters:

Linux
On	the	Ubuntu	OS,	you	can	obtain	the	IP	address	of	your	computer	from	the	Network
Settings	utility.	To	open	it,	navigate	to	System	Settings	|	Network	and	click	on	the
adapter	through	which	the	computer	is	connected	to	your	home	network.	You	can	select	an
appropriate	adapter	to	obtain	the	IP	address,	as	displayed	in	the	following	screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

In	a	Linux-based	system,	there	are	multiple	ways	of	obtaining	the	IP	address	from	the
command	line.	You	can	use	the	same	command	(ifconfig)	that	we	used	in	Mac	OS	X	in
the	Linux	environment	to	obtain	the	IP	address	of	your	computer:

$	ifconfig

You	can	obtain	the	IP	address	from	the	inet	addr	field	of	the	appropriate	adapter,	as
displayed	in	this	screenshot:

If	supported	by	your	operating	system,	another	command	that	can	be	utilized	to	obtain	the
IP	address	is	hostname:

$	hostname	–I

Be	careful	when	using	this	utility	to	obtain	the	IP	address,	as	you	may	end	up	getting	the
IP	address	of	a	different	adapter	if	you	are	not	familiar	with	the	supported	command
options	of	the	utility.

Note
If	you	are	going	to	connect	your	Arduino	to	the	same	local	area	network	as	your	computer,
make	sure	you	are	choosing	the	proper	IP	address	that	is	covered	by	the	same	domain	as
that	of	your	computer.	Also	ensure	that	no	other	network	device	is	using	the	same	IP
address	that	you	have	selected	for	your	Arduino.	This	practice	will	help	you	avoid	IP
address	conflicts	within	the	network.

www.it-ebooks.info

http://www.it-ebooks.info/

Networking	extensions	for	Arduino
There	are	various	hardware	devices	available	in	the	Arduino	community	that	enable
networking	for	the	Arduino	platform.	Among	these	devices,	a	few	can	be	used	as
extensions	for	your	existing	Arduino	board,	while	others	exist	as	standalone	Arduino
modules	with	networking	capabilities.	The	most	popular	extensions	used	to	enable
networking	are	the	Arduino	Ethernet	Shield	and	Arduino	WiFi	Shield.	Similarly,	Arduino
Yún	is	an	example	of	a	standalone	Arduino	platform	that	includes	built-in	networking
capabilities.	In	this	book,	we	are	going	to	develop	various	networking	applications	around
the	Arduino	Ethernet	Shield.	There	are	also	a	few	other	extensions	(Arduino	GSM	Shield)
and	standalone	Arduino	platforms	(Arduino	Ethernet,	Arduino	Tre,	and	so	on),	but	we	are
not	going	to	cover	them	in	detail.	Let’s	get	familiar	with	the	following	Arduino	extensions
and	board.

Arduino	Ethernet	Shield
The	Arduino	Ethernet	Shield	is	an	officially	supported	and	open	source	network	extension
designed	to	work	with	Arduino	Uno.	The	Ethernet	Shield	is	equipped	with	an	RJ45
connector	to	enable	Ethernet	networking.	The	Ethernet	Shield	is	designed	to	mount	on	top
of	Arduino	Uno	and	it	extends	the	layout	of	the	pins	from	your	Arduino	Uno	to	the	top	of
the	board.	The	Ethernet	Shield	is	also	equipped	with	a	microSD	card	slot	to	store
important	files	over	the	network.	Just	like	most	of	these	shield	extensions,	the	Ethernet
Shield	is	powered	by	the	Arduino	board	it	is	attached	to.

Source:	http://arduino.cc/en/uploads/Main/ArduinoEthernetShield_R3_Front.jpg

Every	Ethernet	Shield	board	is	equipped	with	a	unique	hardware	(MAC)	address.	You	can
see	it	on	the	back	of	the	board.	You	may	want	to	note	down	this	hardware	address,	as	it
will	be	required	frequently	in	the	upcoming	exercises.	Also	make	sure	that	you	get
familiar	with	mounting	the	Arduino	Ethernet	Shield	for	those	exercises.	Buy	an	Arduino

www.it-ebooks.info

http://arduino.cc/en/uploads/Main/ArduinoEthernetShield_R3_Front.jpg
http://www.it-ebooks.info/

Ethernet	Shield	module	from	SparkFun	or	Amazon	before	your	start	working	on	any
exercises.	You	can	obtain	additional	information	about	this	Shield	at
http://arduino.cc/en/Main/ArduinoEthernetShield.

Arduino	WiFi	Shield
The	Arduino	WiFi	Shield	has	a	layout	similar	to	that	of	the	Arduino	Ethernet	Shield	as	far
as	mounting	on	top	of	the	Arduino	board	is	concerned.	Instead	of	the	Ethernet	RJ45
connector,	the	WiFi	Shield	contains	components	to	enable	wireless	networking.	Using	the
WiFi	Shield,	you	can	connect	to	the	IEEE	802.11	(Wi-Fi)	wireless	networks,	which	is	one
of	the	most	popular	ways	of	connecting	computers	to	the	home	network	nowadays.

Source:	http://arduino.cc/en/uploads/Main/A000058_front.jpg

The	Arduino	WiFi	Shield	requires	additional	power	through	a	USB	connector.	It	also
contains	a	microSD	slot	to	save	files.	Just	like	the	Ethernet	Shield,	you	can	view	the	MAC
address	on	the	back	of	the	board.	More	information	about	the	Arduino	WiFi	Shield	can	be
found	at	http://arduino.cc/en/Main/ArduinoWi-FiShield.

Arduino	Yún
Unlike	the	Ethernet	Shield	and	the	WiFi	Shield,	the	Arduino	Yún	is	a	standalone	variant
of	the	Arduino	board.	It	includes	both	Ethernet-	and	Wi-Fi-based	network	connectivity,	in
addition	to	the	basic	Arduino	component—the	microcontroller.	Yún	is	equipped	with	the
latest	and	more	powerful	processing	units	compared	to	Uno.	Instead	of	the	traditional	way
of	using	Arduino	code,	Yún	supports	a	lightweight	version	of	the	Linux	operating	system,
providing	functionality	similar	to	a	single-board	computer	such	as	the	Raspberry	Pi.	You
can	use	your	Arduino	IDE	to	program	Yún	even	while	running	Unix	shell	scripts.

www.it-ebooks.info

http://arduino.cc/en/Main/ArduinoEthernetShield
http://arduino.cc/en/uploads/Main/A000058_front.jpg
http://arduino.cc/en/Main/ArduinoWi-FiShield
http://www.it-ebooks.info/

Source:	http://arduino.cc/en/uploads/Main/ArduinoYunFront_2.jpg

You	can	find	more	information	about	Yún	at	the	Arduino	official	website,	at
http://arduino.cc/en/Main/ArduinoBoardYun.

www.it-ebooks.info

http://arduino.cc/en/uploads/Main/ArduinoYunFront_2.jpg
http://arduino.cc/en/Main/ArduinoBoardYun
http://www.it-ebooks.info/

Arduino	Ethernet	library
The	Arduino	Ethernet	library	provides	support	for	the	Ethernet	protocol,	and	hence
provides	support	for	Ethernet	extensions	of	Arduino,	such	as	the	Ethernet	Shield.	This	is	a
standard	Arduino	library	and	it	gets	deployed	with	the	Arduino	IDE.

The	library	is	designed	to	accept	incoming	connection	requests	when	deployed	as	a	server
and	while	making	outgoing	connections	to	other	servers	when	being	utilized	as	a	client.
The	library	concurrently	supports	up	to	four	connections	due	to	the	limited	computation
capability	of	the	Arduino	board.	To	use	the	Ethernet	library	in	your	Arduino	program,	the
first	step	you	have	to	take	is	to	import	it	in	to	your	Arduino	sketch:

#include	<Ethernet.h>

The	Ethernet	library	implements	various	functionalities	through	specific	classes,	which	are
described	as	follows.

Tip
We	are	going	to	describe	only	the	important	methods	provided	by	these	classes.	You	can
obtain	more	information	regarding	this	library	and	its	classes	from
http://arduino.cc/en/Reference/Ethernet.

The	Ethernet	class
The	Ethernet	class	is	a	core	class	of	the	Ethernet	library,	and	it	provides	methods	to
initialize	this	library	and	the	network	settings.	This	is	an	essential	class	for	any	program
that	wants	to	use	the	Ethernet	library	to	establish	connections	through	the	Ethernet	Shield.
The	primary	information	required	to	establish	this	connection	is	the	MAC	address	of	the
device.	You’ll	need	to	create	a	variable	that	has	the	MAC	address	as	an	array	of	6	bytes,	as
described	here:

byte	mac[]	=	{	0xDE,	0xAD,	0xBE,	0xEF,	0xFE,	0xED	};

The	Ethernet	library	supports	the	Dynamic	Host	Control	Protocol	(DHCP),	which	is
responsible	for	dynamically	assigning	IP	addresses	to	new	network	nodes.	If	your	home
network	is	configured	to	support	DHCP,	you	can	establish	the	Ethernet	connection	using
the	begin(mac)	method	from	the	Ethernet	class:

Ethernet.begin(mac);

Keep	in	mind	that	when	you	are	initializing	an	Ethernet	connection	using	this	class,	you
are	only	initializing	the	Ethernet	connection	and	setting	up	the	IP	address.	This	means	that
you	still	need	to	configure	Arduino	as	a	server	or	a	client	in	order	to	enable	further
communication.

The	IPAddress	class
In	applications	where	you	have	to	manually	assign	the	IP	address	to	your	Arduino	device,
you	will	have	to	use	the	IPAddress	class	of	the	Ethernet	library.	This	class	provides
methods	to	specify	the	IP	address,	which	can	be	either	local	or	remote	depending	upon	the

www.it-ebooks.info

http://arduino.cc/en/Reference/Ethernet
http://www.it-ebooks.info/

application:

IPAddress	ip(192,168,1,177);

The	IP	address	created	using	this	method	can	be	used	in	the	initialization	of	the	network
connection	that	we	performed	in	the	previous	section.	If	you	want	to	assign	a	manual	IP
address	to	your	Arduino,	you	can	use	the	begin(mac,	ip)	method	with	the	MAC	and	IP
addresses:

Ethernet.begin(mac,	ip);

The	Server	class
The	Server	class	is	designed	to	create	a	server	using	the	Ethernet	library	on	Arduino,
which	listens	to	incoming	connection	requests	for	a	specific	port.	The	EthernetServer()
method,	when	specified	with	in	integer	value	of	the	port	number,	initializes	the	server	on
Arduino:

EthernetServer	server	=	EthernetServer(80);

By	specifying	port	80	in	the	previous	line	of	code	(which	represents	the	HTTP	protocol	on
the	TCP/IP	suite),	we	have	specifically	created	a	web	server	using	the	Ethernet	library.	To
start	listening	to	the	incoming	connection	requests,	you	have	to	use	the	begin()	method
on	the	server	object:

server.begin();

Once	the	connection	is	established,	you	can	respond	to	a	request	using	various	methods
supported	by	the	server	class,	such	as	write(),	print(),	and	println().

The	Client	class
The	Client	class	provides	methods	to	create	an	Ethernet	client	to	connect	and
communicate	with	servers.	The	EthernetClient()	method	initializes	a	client	that	can	be
connected	to	a	specific	server	using	its	IP	address	and	port	number.	The	connect(ip,
port)	method	on	the	client	object	will	establish	a	connection	with	the	server	on	the
mentioned	IP	address:

EthernetClient	client;

client.connect(server,	80);

The	Client	class	also	has	the	connected()	method,	which	provides	the	status	of	the
current	connection	in	binary.	This	status	can	be	true	(connected)	or	false	(disconnected).
This	method	is	useful	for	the	periodic	monitoring	of	the	connection	status:

client.connected()

Other	important	client	methods	include	read()	and	write().	These	methods	help	the
Ethernet	client	to	read	the	request	from	the	server	and	to	send	messages	to	the	server
respectively.

www.it-ebooks.info

http://www.it-ebooks.info/

Exercise	1	–	a	web	server,	your	first	Arduino
network	program
The	best	way	to	test	the	Arduino	Ethernet	library	and	the	Ethernet	Shield	is	by	using	the
built-in	examples	that	are	deployed	with	the	Arduino	IDE.	If	you	are	using	version	1.x	of
the	Arduino	IDE,	you	can	find	a	bunch	of	Ethernet	examples	by	navigating	to	File	|
Examples	|	Ethernet.	By	utilizing	one	of	these	examples,	we	are	going	to	build	a	web
server	that	delivers	the	sensor	values	when	requested	by	a	web	browser.	As	Arduino	will
be	connected	to	your	home	network	through	the	Ethernet,	you	will	be	able	to	access	it
from	any	other	computer	connected	to	your	network.	The	major	goals	for	this	exercise	are
listed	here:

Use	the	Arduino	Ethernet	library	with	the	Arduino	Ethernet	Shield	extension	to
create	a	web	server
Remotely	access	Arduino	using	your	home	computer	network
Utilize	a	default	Arduino	example	to	provide	humidity	and	motion	sensor	values
using	a	web	server

To	achieve	these	goals,	the	exercise	is	divided	into	the	following	stages:

Design	and	build	hardware	for	the	exercise	using	your	Arduino	and	the	Ethernet
Shield
Run	a	default	example	from	the	Arduino	IDE	as	the	starting	point	of	the	exercise
Modify	the	example	to	accommodate	your	hardware	design	and	redeploy	the	code

The	following	is	a	Fritzing	diagram	of	the	circuit	required	for	this	exercise.	The	first	thing
you	should	do	is	mount	the	Ethernet	Shield	on	top	of	your	Arduino	Uno.	Ensure	that	all
the	pins	of	the	Ethernet	Shield	are	aligned	with	the	corresponding	pins	of	the	Arduino
Uno.	Then	you	need	to	connect	the	previously	used	humidity	sensor,	HIH-4030,	and	the
PIR	motion	sensor.

www.it-ebooks.info

http://www.it-ebooks.info/

Note
While	deploying	the	Arduino	hardware	for	remote	connectivity	without	USB,	you	will
have	to	provide	external	power	for	the	board,	as	you	no	longer	have	a	USB	connection	to
power	the	board.

Now	connect	your	Arduino	Uno	to	a	computer	using	a	USB	cable.	You	will	also	need	to
connect	Arduino	to	your	local	home	network	using	an	Ethernet	cable.	To	do	that,	use	a
straight	CAT5	or	CAT6	cable	and	connect	one	end	of	the	cable	to	your	home	router.	This
router	should	be	the	same	device	that	provides	network	access	to	the	computer	you	are
using.	Connect	the	other	end	of	the	Ethernet	cable	to	the	Ethernet	port	of	the	Arduino
Ethernet	Shield	board.	If	the	physical-level	connection	has	been	established	correctly,	you
should	see	a	green	light	on	the	port.

Now	it’s	time	to	start	coding	your	first	Ethernet	example.	Open	the	WebServer	example
by	navigating	to	File	|	Examples	|	Ethernet	|	WebServer	in	your	Arduino	IDE.	As	you
can	see,	the	Ethernet	library	is	included	with	the	other	required	libraries	and	the	supported
code.	In	the	code,	you	will	need	to	change	the	MAC	and	IP	addresses	to	make	it	work	for
your	configuration.	While	you	can	obtain	the	MAC	address	of	the	Ethernet	Shield	from
the	back	of	the	board,	you	will	have	to	select	an	IP	address	according	to	your	home
network	configuration.	As	you	have	already	obtained	the	IP	address	of	the	computer	you
are	working	with,	select	another	address	in	the	range.	Ensure	that	no	other	network	node	is
using	this	IP	address.	Use	these	MAC	and	IP	addresses	to	update	the	following	values	in

www.it-ebooks.info

http://www.it-ebooks.info/

your	code.	You	will	need	to	repeat	these	steps	for	every	exercise	when	you	are	dealing
with	Arduino	Ethernet:

byte	mac[]	=	{0x90,	0xA2,	0xDA,	0x0D,	0x3F,	0x62};

IPAddress	ip(10,0,0,75);

Tip
In	the	IP	network,	the	visible	range	of	IP	addresses	for	your	network	is	a	function	of
another	address	called	subnetwork	or	subnet.	The	subnet	of	your	LAN	IP	network	can
help	you	select	the	appropriate	IP	address	for	the	Ethernet	Shield	in	the	range	of	the	IP
address	of	your	computer.	You	can	learn	about	the	basics	of	the	subnet	at
http://en.wikipedia.org/wiki/Subnetwork.

Before	venturing	further	into	the	code,	compile	the	code	with	these	modifications	and
upload	it	to	your	Arduino.	Once	the	uploading	process	is	completed	successfully,	open	a
web	browser	and	enter	the	IP	address	that	you	had	specified	in	the	Arduino	sketch.	If
everything	goes	fine,	you	should	see	text	displaying	the	values	of	the	analog	pins.

To	better	understand	what	happened	here,	let’s	go	back	to	the	code.	As	you	can	see,	at	the
beginning	of	the	code	we	initialize	the	Ethernet	server	library	on	port	80	using	the
EthernetServer	method	from	the	Ethernet	library:

EthernetServer	server(80);

During	the	execution	of	setup(),	the	program	initializes	the	Ethernet	connection	through
the	Ethernet	Shield	using	the	Ethernet.being()	method	with	the	mac	and	ip	variables
that	you	defined	earlier.	The	server.begin()	method	will	start	the	server	from	here.	Both
of	these	steps	are	mandatory	to	start	a	server	if	you	are	using	the	Ethernet	library	for
server	code:

Ethernet.begin(mac,	ip);

server.begin();

In	the	loop()	function,	we	initialize	a	client	object	to	listen	to	incoming	client	requests
using	the	EthernetClient	method.	This	object	will	respond	to	any	request	coming	from
connected	clients	that	try	to	access	the	Ethernet	server	through	port	80:

EthernetClient	client	=	server.available();

On	receiving	the	request,	the	program	will	wait	for	the	request	payload	to	end.	Then	it	will
reply	to	the	client	with	formatted	HTML	data	using	the	client.print()	method:

while	(client.connected())	{

						if	(client.available())	{

								char	c	=	client.read();

								Serial.write(c);

							#	Response	code

}

If	you	try	to	access	the	Arduino	server	from	the	browser,	you	will	see	that	the	web	server
replies	to	the	clients	with	the	analog	pin	readings.	Now,	to	obtain	the	proper	values	of	the
humidity	and	PIR	sensors	that	we	connected	in	the	hardware	design,	you	will	have	to

www.it-ebooks.info

http://en.wikipedia.org/wiki/Subnetwork
http://www.it-ebooks.info/

perform	the	following	modification	to	the	code.	You	will	notice	here	that	we	are	replying
to	the	clients	with	the	calculated	values	of	relative	humidity,	instead	of	raw	readings	from
all	the	analog	pins.	We	have	also	modified	the	text	that	will	be	printed	in	the	web	browser
to	match	the	proper	sensor	title:

if	(c	==	'\n'	&&	currentLineIsBlank)	{

										//	send	a	standard	http	response	header

										client.println("HTTP/1.1	200	OK");

										client.println("Content-Type:	text/html");

										client.println("Connection:	close");

										client.println("Refresh:	5");

										client.println();

										client.println("<!DOCTYPE	HTML>");

										client.println("<html>");

										float	sensorReading	=	getHumidity(analogChannel,	temperature);

										client.print("Relative	Humidity	from	HIH4030	is	");

										client.print(sensorReading);

										client.println("	%	
");

										client.println("</html>");

										break;

								}

In	this	process,	we	also	added	an	Arduino	function,	getHumidity(),	that	will	calculate	the
relative	humidity	from	the	values	observed	from	the	analog	pins.	We	have	already	used	a
similar	function	to	calculate	relative	humidity	in	one	of	the	previous	projects:

float	getHumidity(int	analogChannel,	float	temperature){

		float	supplyVolt	=	5.0;

		int	HIH4030_Value	=	analogRead(analogChannel);

		float	analogReading	=	HIH4030_Value/1023.0	*	supplyVolt;

		float	sensorReading	=	161.0	*	analogReading	/	supplyVolt	-	25.8;

		float	humidityReading	=	sensorReading	/	(1.0546	-	0.0026	*	temperature);

		return	humidityReading;

}

You	can	implement	these	changes	to	the	WebServer	Arduino	example	for	the	testing
phase,	or	just	open	the	WebServer_Custom.ino	sketch	from	the	Exercise	1	-	Web
Server	folder	of	your	code	directory.	As	you	can	see	in	the	opened	sketch	file,	we	have
already	modified	the	code	to	reflect	the	changes,	but	you	will	still	have	to	change	the
MAC	and	IP	addresses	to	the	appropriate	addresses.	Once	you	are	done	with	these	minor
changes,	compile	and	upload	the	sketch	to	Arduino.

If	everything	goes	as	planned,	you	should	be	able	to	access	the	web	server	using	your	web
browser.	Open	the	IP	address	of	your	recently	prepared	Arduino	in	the	web	browser.	You
should	be	able	to	receive	a	similar	response	as	displayed	in	the	following	screenshot.
Although	we	are	only	displaying	humidity	values	through	this	sketch,	you	can	easily
attach	motion	sensor	values	using	additional	client.print()	methods.

www.it-ebooks.info

http://www.it-ebooks.info/

Just	like	the	mechanism	we	implemented	in	this	exercise,	a	web	server	responds	to	the
request	made	by	a	web	browser	and	delivers	the	web	pages	you	are	looking	for.	Although
this	method	is	very	popular	and	universally	used	to	deliver	web	pages,	the	payload
contains	a	lot	of	additional	metadata	compared	to	the	actual	size	of	the	sensor	information.
Also,	the	server	implementation	using	the	Ethernet	server	library	occupies	a	lot	of	the
Arduino’s	resources.	Arduino,	being	a	resource-constrained	device,	is	not	suitable	for
running	a	server	application,	as	the	Arduino’s	resources	should	be	prioritized	to	handle	the
sensors	rather	than	communication.	Moreover,	the	web	server	created	using	the	Ethernet
library	supports	a	very	limited	amount	of	connections	at	a	time,	making	it	unusable	for
large-scale	applications	and	multiuser	systems.

The	best	approach	to	overcome	this	problem	is	by	using	Arduino	as	a	client	device,	or	by
using	lightweight	communication	protocols	that	are	designed	to	work	with	resource-
constrained	hardware	devices.	In	the	next	few	sections,	you	are	going	to	learn	and
implement	these	approaches	for	Arduino	communication	on	the	Ethernet.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Developing	web	applications	using	Python
By	implementing	the	previous	program,	you	have	enabled	networking	on	Arduino.	In	the
preceding	example,	we	created	an	HTTP	web	server	using	methods	available	from	the
Ethernet	library.	By	creating	an	Arduino	web	server,	we	made	the	Arduino	resources
available	on	the	network.	Similarly,	Python	also	provides	extensibility	by	way	of	various
libraries	to	create	web	server	interfaces.	By	running	the	Python-based	web	server	on	your
computer	or	other	devices	such	as	the	Raspberry	Pi,	you	can	avoid	using	Arduino	to	host
the	web	server.	Web	applications	created	using	high-level	languages	such	as	Python	can
also	provide	additional	capabilities	and	extensibility	compared	to	Arduino.

In	this	section,	we	will	use	the	Python	library,	web.py,	to	create	a	Python	web	server.	We
will	also	use	this	library	to	create	interactive	web	applications	that	will	enable	the	transfer
of	data	between	an	Arduino	client	and	a	web	browser.	After	you	have	learned	the	basics	of
web.py,	we	will	interface	Arduino	with	web.py	using	serial	ports	to	make	Arduino
accessible	through	the	Python	web	server.	Then	we	will	upgrade	the	Arduino
communication	method	from	the	serial	interface	to	HTTP-based	messaging.

www.it-ebooks.info

http://www.it-ebooks.info/

Python	web	framework	–	web.py
A	web	server	can	be	developed	in	Python	using	various	web	frameworks	such	as	Django,
bottle,	Pylon,	and	web.py.	We	have	selected	web.py	as	the	preferred	web	framework	due
to	its	simple	yet	powerful	functionalities.

The	web.py	library	was	initially	developed	by	the	late	Aaron	Swartz	with	the	goal	of
developing	an	easy	and	straightforward	approach	to	create	web	applications	using	Python.
This	library	provides	two	main	methods,	GET	and	POST,	to	support	the	HTTP
Representation	State	Transfer	(REST)	architecture.	This	architecture	is	designed	to
support	the	HTTP	protocol	by	sending	and	receiving	data	between	clients	and	the	server.
Today,	the	REST	architecture	is	implemented	by	a	huge	number	of	websites	to	transfer
data	over	HTTP.

Installing	web.py
To	get	started	with	web.py,	you	need	to	install	the	web.py	library	using	Setuptools.	We
installed	Setuptools	for	various	operating	systems	in	Chapter	1,	Getting	Started	with
Python	and	Arduino.	On	Linux	and	Mac	OS	X,	execute	either	of	these	commands	on	the
terminal	to	install	web.py:

$	sudo	easy_install	web.py

$	sudo	pip	install	web.py

On	Windows,	open	the	Command	Prompt	and	execute	the	following	command:

>	easy_install.exe	web.py

If	Setuptools	is	set	up	correctly,	you	should	be	able	to	install	the	library	without	any
difficulty.	To	verify	the	installation	of	the	library,	open	the	Python	interactive	prompt	and
run	this	command	to	see	whether	you	have	imported	the	library	without	any	errors:

>>>	import	web

Your	first	Python	web	application
Implementing	a	web	server	using	web.py	is	a	very	simple	and	straightforward	process.
The	web.py	library	requires	the	declaration	of	a	mandatory	method,	GET,	to	successfully
start	the	web	server.	When	a	client	tries	to	access	the	server	using	a	web	browser	or
another	client,	web.py	receives	a	GET	request	and	returns	data	as	specified	by	the	method.
To	create	a	simple	web	application	using	the	web.py	library,	create	a	Python	file	using	the
following	lines	of	code	and	execute	the	file	using	Python.	You	can	also	run	the
webPyBasicExample.py	file	from	the	code	folder	of	this	chapter:

import	web

urls	=	(

				'/',	'index'

)

class	index:

				def	GET(self):

								return	"Hello,	world!"

if	__name__	==	"__main__":

www.it-ebooks.info

http://www.it-ebooks.info/

				app	=	web.application(urls,	globals())

				app.run()

On	execution,	you	will	see	that	the	server	is	now	running	and	accessible	through	the
http://0.0.0.0:8080	address.	As	the	server	program	is	running	on	the	0.0.0.0	IP
address,	you	can	access	it	using	the	same	computer,	localhost,	or	any	other	computer	from
the	same	network.

To	check	out	the	server,	open	a	web	browser	and	go	to	http://0.0.0.0:8080.	When	you
are	trying	to	access	the	server	from	the	same	computer,	you	can	also	use
http://127.0.0.1:8080	or	http://localhost:8080.	The	127.0.0.1	IP	address	actually
stands	for	localhost,	that	is,	the	network	address	of	the	same	computer	on	which	the
program	is	running.	You	will	be	able	to	see	the	response	of	the	server	displayed	in	the
browser,	as	shown	in	the	following	screenshot:

To	understand	how	this	simple	code	works,	check	out	the	GET	method	in	the	previous	code
snippet.	As	you	can	see,	when	the	web	browser	requests	the	URL,	the	GET	method	returns
the	Hello,	world!	string	to	the	browser.	Meanwhile,	you	can	also	observe	two	other
mandatory	web.py	components	in	your	code:	the	urls	and	web.application()	methods.
The	web.py	library	requires	initialization	of	the	response	location	in	the	declaration	of	the
urls	variable.	Every	web.py-based	web	application	requires	the	application(urls,
global())	method	to	be	called	to	initialize	the	web	server.	By	default,	the	web.py
applications	run	on	port	number	8080,	which	can	be	changed	to	another	port	number	by
specifying	it	during	execution.	For	example,	if	you	want	to	run	your	web.py	application	on
port	8888,	execute	the	following	command:

$	python	webPyBasicExample.py	8888

Although	this	only	returns	simple	text,	you	have	now	successfully	created	your	first	web
application	using	Python.	We	will	take	it	forward	from	here	and	create	more	complex	web
applications	in	the	upcoming	chapters	using	the	web.py	library.	To	develop	these	complex
applications,	we	will	require	more	than	just	the	GET	method.	Let’s	start	exploring	advance
concepts	to	further	enhance	your	familiarity	with	the	web.py	library.

www.it-ebooks.info

http://www.it-ebooks.info/

Essential	web.py	concepts	for	developing	complex
web	applications
The	web.py	library	has	been	designed	to	provide	convenient	and	simple	methods	to
develop	dynamic	websites	and	web	applications	using	Python.	Using	web.py,	it	is	really
easy	to	build	complex	websites	by	utilizing	just	a	few	additional	Python	concepts	along
with	what	you	already	know.	Due	to	this	limited	learning	curve	and	easy-to-implement
methods,	web.py	is	one	of	the	quickest	ways	to	create	web	applications	in	any
programming	language.	Let’s	begin	with	understanding	these	web.py	concepts	in	detail.

Handling	URLs
You	might	have	noticed	that	in	our	first	web.py	program,	we	defined	a	variable	called
urls	that	points	to	the	root	location	(/)	of	the	Index	class:

urls	=	(

				'/',	'index'

)

In	the	preceding	declaration,	the	first	part,	'/',	is	a	regular	expression	used	to	match	the
actual	URL	requests.	You	can	use	regular	expressions	to	handle	complex	queries	coming
to	your	web.py	server	and	point	them	to	the	appropriate	class.	In	web.py,	you	can
associate	different	landing	page	locations	with	appropriate	classes.	For	example,	if	you
want	to	redirect	the	/data	location	to	the	data	class	in	addition	to	the	Index	class,	you	can
change	the	urls	variable	as	follows:

urls	=	(

				'/',	'index',

				'/data',	'data',

)

With	this	provision,	when	a	client	sends	a	request	to	access	the	http://<ip-
address>:8080/data	address,	the	request	will	be	directed	towards	the	data	class	and	then
the	GET	or	POST	method	of	that	class.

The	GET	and	POST	methods
In	exercise	1,	where	we	created	an	Arduino-based	web	server	running	on	port	80,	we	used
a	web	browser	to	access	the	web	server.	Web	browsers	are	one	of	the	most	popular	types
of	web	clients	used	to	access	a	web	server;	cURL,	Wget,	and	web	crawlers	are	the	other
types.	A	web	browser	uses	HTTP	to	communicate	with	any	web	servers,	including	the
Arduino	web	server	that	we	used.	GET	and	POST	are	two	fundamental	methods	supported
by	the	HTTP	protocol	to	address	server	requests	coming	from	a	web	browser.

Whenever	you	are	trying	to	open	a	website	in	your	browser	or	any	other	HTTP	client,	you
are	actually	requesting	the	GET	function	from	the	web	server;	for	example,	when	you	open
a	website	URL,	http://www.example.com/,	you	are	requesting	that	the	web	server	that
hosts	this	website	serves	you	the	GET	request	for	the	'/'	location.	In	the	Handling	URLs
section,	you	learned	how	to	associate	the	web.py	classes	with	URL	landing	locations.

www.it-ebooks.info

http://www.it-ebooks.info/

Using	the	GET	method	provided	by	the	web.py	library,	you	can	associate	the	GET	request
with	individual	classes.	Once	you	have	captured	the	GET	request,	you	need	to	return
appropriate	values	as	the	response	to	the	client.	The	following	code	snippet	shows	how	the
GET()	function	will	be	called	when	anyone	makes	a	GET	request	to	the	'/'	location:

def	GET(self):

		f	=	self.submit_form()

		f.validates()

		t	=	75

		return	render.test(f,t);

The	POST	function	of	the	HTTP	protocol	is	mainly	used	to	submit	a	form	or	any	other	data
to	the	web	server.	In	most	cases,	POST	is	embedded	in	a	web	page,	and	a	request	to	the
server	is	generated	when	a	user	submits	the	component	carrying	the	POST	function.	The
web.py	library	also	provides	the	POST()	function,	which	is	called	when	a	web	client	tries
to	contact	the	web.py	server	using	the	POST	method.	In	most	implementations	of	the
POST()	function,	the	request	includes	some	kind	of	data	submitted	through	forms.	You	can
retrieve	individual	form	elements	using	f['Celsius'].value	which	will	give	you	a	value
associated	with	the	form	element	called	Celsius.	Once	the	POST()	function	has	performed
the	provided	actions,	you	can	return	appropriate	information	to	the	client	in	response	to
the	POST	request:

				def	POST(self):

								f	=	self.submit_form()

								f.validates()

								c	=	f['Celsius'].value

								t	=	c*(9.0/5.0)	+	32

								return	render.test(f,t)

Templates
Now	you	know	how	to	redirect	an	HTTP	request	to	an	appropriate	URL,	and	also	how	to
implement	methods	to	respond	to	these	HTTP	requests	(that	is,	GET	and	POST).	But	what
about	the	web	page	that	needs	to	be	rendered	once	the	request	is	received?	To	understand
the	rendering	process,	let’s	start	with	creating	a	folder	called	templates	in	the	same
directory	where	our	web.py	program	is	going	to	be	placed.	This	folder	will	store	the
templates	that	will	be	used	to	render	the	web	pages	when	requested.	You	have	to	specify
the	location	of	this	template	folder	in	the	program	using	the	template.render()	function,
as	displayed	in	the	following	line	of	code:

render	=	web.template.render('templates')

Once	you	have	instantiated	the	rendering	folder,	it	is	time	to	create	template	files	for	your
program.	According	to	the	requirements	of	your	program,	you	can	create	as	many
template	files	as	you	want.	A	language	called	Templetor	is	used	to	create	these	template
files	in	web.py.	You	can	learn	more	about	it	at	http://webpy.org/templetor.	Each	template
file	created	using	Templetor	needs	to	be	stored	in	the	HTML	format	with	the	.html
extension.

Let’s	create	a	file	called	test.html	in	the	templates	folder	using	a	text	editor	and	paste

www.it-ebooks.info

http://webpy.org/templetor
http://www.it-ebooks.info/

the	following	code	snippet	in	to	the	file:

$def	with(form,	i)

<form	method="POST">

				$:form.render()

</form>

<p>Value	is:	$:i	</p>

As	you	can	see	in	the	preceding	code	snippet,	the	template	file	begins	with	the	$def
with()	expression,	where	you	need	to	specify	the	input	arguments	as	variables	within	the
brackets.	Once	the	template	is	rendered,	these	will	be	the	only	variables	you	can	utilize	for
the	web	page;	for	example,	in	the	previous	code	snippet,	we	passed	two	variables	(form
and	i)	as	input	variables.	We	utilized	the	form	object	using	$:form.render()	to	render	it
inside	the	web	page.	When	you	need	to	render	the	form	object,	you	can	directly	pass	the
other	variable	by	simply	declaring	it	(that	is,	$:i).	Templetor	will	render	the	HTML	code
of	the	template	file	as	it	is,	while	utilizing	the	variables	in	the	instances	where	they	are
being	used.

Now	you	have	a	template	file,	test.html,	ready	to	be	used	in	your	web.py	program.
Whenever	a	GET()	or	POST()	function	is	executed,	you	are	required	to	return	a	value	to	the
requesting	client.	Although	you	can	return	any	variable	for	these	requests,	including	None,
you	will	have	to	render	a	template	file	where	the	response	is	associated	with	loading	a	web
page.	You	can	return	the	template	file	using	the	render()	function,	followed	by	the
filename	of	the	template	file	and	input	arguments:

return	render.test(f,	i);

As	you	can	see	in	the	preceding	line	of	code,	we	are	returning	the	rendered	test.html
page	by	specifying	the	render.test()	function,	where	test()	is	just	the	filename	without
the	.html	extension.	The	function	also	includes	a	form	object,	f,	and	variable,	i,	that	will
be	passed	as	input	arguments.

Forms
The	web.py	library	provides	simple	ways	of	creating	form	elements	using	the	Form
module.	This	module	includes	the	capability	to	create	HTML	form	elements,	obtain	inputs
from	users,	and	validate	these	inputs	before	utilizing	them	in	the	Python	program.	In	the
following	code	snippet,	we	are	creating	two	form	elements,	Textbox	and	Button,	using	the
Form	library:

				submit_form	=	form.Form(

						form.Textbox('Celsius',	description	=	'Celsius'),

						form.Button('submit',	type="submit",	description='submit')

)

Besides	Textbox	(which	obtains	text	input	from	users)	and	Button	(which	submits	the
form),	the	Form	module	also	provides	a	few	other	form	elements,	such	as	Password	to
obtain	hidden	text	input,	Dropbox	to	obtain	a	mutually	exclusive	input	from	a	drop-down
list,	Radio	to	obtain	mutually	exclusive	inputs	from	multiple	options,	and	Checkbox	to
select	a	binary	input	from	the	given	options.	While	all	of	these	elements	are	very	easy	to
implement,	you	should	select	form	elements	only	according	to	your	program

www.it-ebooks.info

http://www.it-ebooks.info/

requirements.

In	the	web.py	implementation	of	Form,	the	web	page	needs	to	execute	the	POST	method
every	time	the	form	is	submitted.	As	you	can	in	see	in	the	following	implementation	of	the
form	in	the	template	file,	we	are	explicitly	declaring	the	form	submission	method	as	POST:

$def	with(form,	i)

<form	method="POST">

				$:form.render()

</form>

www.it-ebooks.info

http://www.it-ebooks.info/

Exercise	2	–	playing	with	web.py	concepts	using	the
Arduino	serial	interface
Now	you	have	a	general	idea	of	the	basic	web.py	concepts	used	to	build	a	web	application.
In	this	exercise,	we	will	utilize	the	concepts	you	learned	to	create	an	application	to	provide
the	Arduino	with	sensor	information.	As	the	goal	of	this	exercise	is	to	demonstrate	the
web.py	server	for	Arduino	data,	we	are	not	going	to	utilize	the	Ethernet	Shield	for
communication.	Instead,	we	will	capture	the	Arduino	data	using	the	serial	interface,	while
using	the	web.py	server	to	respond	to	the	requests	coming	from	different	clients.

As	you	can	see	in	the	following	diagram,	we	are	using	the	same	hardware	that	you
designed	for	exercise	1,	but	without	utilizing	the	Ethernet	connection	to	our	home	router.
Your	computer	running	the	web.py	server,	which	is	also	a	part	of	your	home	network,	will
serve	the	client	requests.

In	the	first	step,	we	are	going	to	code	Arduino	to	periodically	send	the	humidity	sensor
value	to	the	serial	interface.	For	the	Arduino	code,	open	the
WebPySerialExample_Arduino.ino	sketch	from	the	Exercise	2	folder	of	your	code
directory.	As	you	can	see	in	the	following	code	snippet	of	the	Arduino	sketch,	we	are
sending	raw	values	from	the	analog	port	to	the	serial	interface.	Now	compile	and	upload
the	sketch	to	your	Arduino	board.	Open	the	Serial	Monitor	window	from	the	Arduino
IDE	to	confirm	that	you	are	receiving	the	raw	humidity	observations.	Once	you	have
confirmed	it,	close	the	Serial	Monitor	window.	You	won’t	be	able	to	run	the	Python	code

www.it-ebooks.info

http://www.it-ebooks.info/

if	the	Serial	Monitor	window	is	using	the	port:

	void	loop()	{

		int	analogChannel	=	0;

		int	HIH4030_Value	=	analogRead(analogChannel);

		Serial.println(HIH4030_Value);

		delay(200);	

}

Once	the	Arduino	code	is	running	properly,	it	is	time	to	execute	the	Python	program,
which	contains	the	web.py	server.	The	Python	program	for	this	exercise	is	located	in	the
WebPySerialExample_Python	directory.	Open	the	webPySerialExample.py	file	in	your
code	editor.	The	Python	program	is	organized	in	two	sections:	capturing	sensor	data	from
the	serial	interface	using	the	pySerial	library,	and	using	the	web.py	server-based	server	to
respond	to	the	requests	from	the	clients.

In	the	first	stage	of	the	code,	we	are	interfacing	the	serial	port	using	the	Serial()	method
from	the	pySerial	library.	Don’t	forget	to	change	the	serial	port	name	as	it	may	be
different	for	your	computer,	depending	on	the	operating	system	and	physical	port	that	you
are	using:

import	serial

port	=	serial.Serial('/dev/tty.usbmodemfa1331',	9600,	timeout=1)

Once	the	port	object	for	the	serial	port	is	created,	the	program	starts	reading	the	text
coming	from	the	physical	port,	using	the	readline()	method.	Using	the
relativeHumidity()	function,	we	convert	the	raw	humidity	data	to	appropriate	relative
humidity	observations:

line	=	port.readline()

if	line:

		data	=	float(line)

		humidity	=	relativeHumidity(line,	25)

On	the	web	server	side,	we	will	be	using	all	the	major	web.py	components	you	learned	in
the	previous	section	to	complete	this	goal.	As	part	of	it,	we	are	implementing	an	input
form	for	the	temperature	value.	We	will	capture	this	user	input	and	utilize	it	with	the	raw
sensor	data	to	calculate	relative	humidity.	Therefore,	we	need	to	define	the	render	object
to	use	the	template	directory.	In	this	exercise,	we	are	only	using	the	default	landing	page
location	('/')	for	the	web	server,	which	is	directed	towards	the	Index	class:

render	=	web.template.render('templates')

As	you	can	see	in	the	WebPySerialExample_Python	folder,	we	have	a	directory	called
templates.	This	directory	contains	a	template	with	the	base.html	filename.	As	this	is	an
HTML	file,	it	is	likely	that	if	you	just	click	on	the	file,	it	opens	in	a	web	browser.	Make
sure	that	you	open	the	file	in	a	text	editor.	In	the	opened	file,	you’ll	see	that	we	are
initializing	the	template	file	with	$def	with(form,	humidity).	In	this	initialization,	form
and	humidity	are	input	variables	that	are	required	by	the	template	during	the	rendering
process.	The	template	declares	the	actual	<form>	element	with	the	$:form.render()
method,	while	displaying	the	humidity	value	using	the	$humidity	variable:

www.it-ebooks.info

http://www.it-ebooks.info/

<form	method="POST">

				$:form.render()

</form>

<h3>Relative	Humidity	is:</h3>

<p	name="temp">$humidity	</p>

Although	the	template	file	renders	the	form	variable,	we	have	to	define	this	variable	in	the
Python	program	first.	As	you	can	see	in	the	following	code	snippet,	we	have	declared	a
variable	called	submit_form	using	the	form.Form()	method	of	the	web.py	library.	The
submit_form	variable	includes	a	Textbox	element	to	capture	the	temperature	value	and	a
Button	element	to	enable	the	submit	action:

submit_form	=	form.Form(

		form.Textbox('Temperature',	description	=	'Temperature'),

		form.Button('submit',	type="submit",	description='submit')

)

When	you	want	to	access	the	current	submitted	values	of	the	submit_form	variable,	you
will	have	to	validate	the	form	using	the	validates()	method:

f	=	self.submit_form()

f.validates()

Now	we	have	the	user-facing	web	page	and	input	components	designed	for	the	exercise.	It
is	time	to	define	the	two	main	methods,	GET	and	POST,	to	respond	to	the	request	coming
from	the	web	page.	When	you	launch	or	refresh	the	web	page,	the	web.py	server	generates
the	GET	request,	which	is	then	handled	by	the	GET	function	of	the	Index	class.	So	during
the	execution	of	the	GET	method,	the	program	obtains	the	latest	raw	humidity	value	from
the	serial	port	and	calculates	the	relative	humidity	using	the	relativeHumidity()	method.

Note
In	the	process	of	dealing	with	the	GET	request,	we	are	not	submitting	any	form	with	the
user	input.	For	this	reason,	in	the	GET	method,	we	will	use	the	default	value	of	temperature
(25)	for	the	relativeHumidity()	method.

Once	the	humidity	value	is	derived,	the	program	will	render	the	base	template	using	the
render.base()	function,	as	displayed	in	the	following	code	snippet,	where	base()	refers
to	the	base	template:

def	GET(self):

		f	=	self.submit_form()

		f.validates()

		line	=	port.readline()

		if	line:

				data	=	float(line)

				humidity	=	relativeHumidity(line,	25)

				return	render.base(f,humidity);

		else:

				return	render.base(f,	"Not	valid	data");

Contrary	to	the	GET	method,	the	POST	method	is	invoked	when	the	form	is	submitted	to	the
web	page.	The	submitted	form	includes	the	temperature	value	provided	by	the	user,	which

www.it-ebooks.info

http://www.it-ebooks.info/

will	be	used	to	obtain	the	value	of	the	relative	humidity.	Like	the	GET()	function,	the
POST()	function	also	renders	the	base	template	with	the	recent	humidity	value	once	the
humidity	is	calculated:

def	POST(self):

		f	=	self.submit_form()

		f.validates()

		temperature	=	f['Temperature'].value

		line	=	port.readline()

		if	line:

				data	=	float(line)

				humidity	=	relativeHumidity(line,	float(temperature))

				return	render.base(f,	humidity);

		else:

				return	render.base(f,	"Not	valid	data");

Now	it	is	time	to	run	the	web.py-based	web	server.	In	the	Python	program,	make	the
necessary	changes	to	accommodate	the	serial	port	name	and	any	other	appropriate	values.
If	everything	is	configured	correctly,	you	will	be	able	to	execute	the	program	from	the
terminal	without	any	errors.	You	can	access	the	web	server,	which	is	running	on	port	8080,
from	a	web	browser	on	the	same	computer,	that	is,	http://localhost:8080.	Now	the
goal	of	the	exercise	is	to	demonstrate	the	remote	accessibility	of	the	web	server	from	your
home	network,	and	you	can	do	this	by	opening	the	website	from	another	computer	in	your
network,	that	is,	http://<ip-address>:8080,	where	<ip-address>	refers	to	the	IP
address	of	the	computer	that	is	running	the	web.py	service.

The	preceding	screenshot	shows	how	the	web	application	will	look	when	opened	in	a	web
browser.	When	you	load	the	website,	you	will	be	able	to	see	a	relative	humidity	value
obtained	using	the	GET	method.	Now	you	can	enter	an	appropriate	temperature	value	and
press	the	submit	button	to	invoke	the	POST	method.	On	successful	execution,	you	will	be
able	to	see	the	latest	relative	humidity	value,	which	is	calculated	based	on	the	temperature
value	that	you	submitted.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

RESTful	web	applications	with	Arduino
and	Python
In	the	previous	exercise,	we	implemented	the	GET	and	POST	requests	using	the	web.py
library.	These	requests	are	actually	part	of	the	most	popular	communication	architecture	of
the	World	Wide	Web	(WWW)	called	REST.	The	REST	architecture	implements	a	client-
server	paradigm	using	the	HTTP	protocol	for	operations	such	as	POST,	READ,	and	DELETE.
The	GET()	and	POST()	functions,	implemented	using	web.py,	are	functional	subsets	of
these	standard	HTTP	REST	operations,	that	is,	GET,	POST,	UPDATE,	and	DELETE.	The	REST
architecture	is	designed	for	network	applications,	websites,	and	web	services	to	establish
communication	through	HTTP-based	calls.	Rather	than	being	just	a	set	of	standard	rules,
the	REST	architecture	utilizes	existing	web	technologies	and	protocols,	making	it	a	core
component	of	the	majority	of	the	websites	we	use	today.	Due	to	this	reason,	the	WWW
can	be	considered	to	be	the	largest	implementation	of	REST-based	architecture.

www.it-ebooks.info

http://www.it-ebooks.info/

Designing	REST-based	Arduino	applications
The	REST	architecture	uses	a	client-server	model,	where	the	server	acts	as	a	centralized
node	in	the	network.	It	responds	to	the	requests	made	by	the	distributed	network	nodes
(called	clients)	that	query	it.	In	this	paradigm,	the	client	initiates	a	request	for	the	state
directed	towards	the	server,	while	the	server	responds	to	the	state	request	without	storing
the	client	context.	This	communication	is	always	one-directional	and	always	initiated	from
the	client	side.

To	further	explain	the	state	transfer	for	the	GET	and	POST	requests,	check	out	the	previous
diagram.	When	a	client	sends	a	GET	request	to	a	server	using	a	URL,	the	server	responds
with	raw	data	as	the	HTTP	response.	Similarly,	in	the	POST	request,	the	client	sends	data	as
payload	to	the	server,	while	the	server	responds	with	simply	a	“received	confirmation”
message.

REST	methods	are	relatively	simple	to	implement	and	develop	using	simple	HTTP	calls.
We	are	going	to	start	developing	Arduino	networking	applications	using	REST-based
requests,	as	they	are	easy	to	implement	and	understand	and	are	directly	available	through
examples.	We	will	begin	by	individually	implementing	REST-based	Arduino	clients	for
HTTP-based	GET	and	POST	methods.	Later	in	this	chapter,	we	will	go	through	an	exercise
to	combine	the	GET	and	POST	methods	through	the	same	Arduino	REST	client,	while
developing	the	HTTP	server	using	web.py.

www.it-ebooks.info

http://www.it-ebooks.info/

Working	with	the	GET	request	from	Arduino
In	this	exercise,	we	will	implement	the	HTTP	GET	client	on	Arduino,	while	using	an	HTTP
server	that	was	developed	using	web.py.	The	premise	of	this	programming	exercise	is	to
use	the	Ethernet	Shield	extension	and	the	Ethernet	library	to	develop	a	physical	Arduino
HTTP	client	that	supports	the	GET	request.

The	Arduino	code	to	generate	the	GET	request
The	Arduino	IDE	ships	with	a	few	basic	examples	that	utilize	the	Ethernet	library.	One	of
these	examples	is	WebClient,	which	can	be	found	by	navigating	to	File	|	Examples	|
Ethernet	|	WebClient.	It	is	designed	to	demonstrate	the	GET	request	by	implementing	the
HTTP	client	on	Arduino.	Open	this	sketch	in	the	Arduino	IDE,	as	we	are	going	to	use	this
sketch	and	modify	it	to	accommodate	the	Arduino	hardware	we	created.

The	first	thing	you	need	to	change	in	the	opened	sketch	is	the	IP	address	and	the	MAC
address	of	your	Arduino	Ethernet	Shield.	Replace	the	following	variables	with	the
variables	appropriate	for	your	system.	The	following	code	snippet	shows	the	IP	address
and	the	MAC	address	for	our	hardware,	and	you	need	to	change	it	to	accommodate	yours:

byte	mac[]	=	{	0x90,	0xA2,	0xDA,	0x00,	0x47,	0x28	};

IPAddress	ip(10,0,0,75);

As	you	can	see,	the	example	uses	Google	as	a	server	to	get	a	response.	You	need	to	change
this	address	to	reflect	the	IP	address	of	your	computer,	which	will	host	the	web.py	server:

char	server[]	=	"10.0.0.20";

In	the	setup()	function,	you	will	have	to	change	the	server	IP	address	again.	Also	change
the	default	HTTP	port	(80)	to	the	port	used	by	web.py	(8080):

		if	(client.connect(server,	8080))	{

				Serial.println("connected");

				//	Make	a	HTTP	request:

				client.println("GET	/data	HTTP/1.1");

				client.println("Host:	10.0.0.20");

				client.println("Connection:	close");

				client.println();

		}

Once	you	have	made	all	of	these	changes,	go	to	the	Arduino_GET_Webpy\ArduinoGET
folder	and	open	the	ArduinoGET.ino	sketch.	Compare	your	modified	sketch	with	this
sketch	and	perform	the	appropriate	changes.	Now	you	can	save	your	sketch	and	compile
your	code	for	any	errors.

At	this	stage,	we	are	assuming	that	you	have	the	Arduino	Ethernet	Shield	mounted	on
your	Arduino	Uno.	Connect	the	Ethernet	Shield	to	your	local	network	using	an	Ethernet
cable,	and	connect	Uno	with	your	computer	using	a	USB	cable.	Upload	the	sketch	to	the
Arduino	board	and	open	the	Serial	Monitor	window	to	check	the	activity.	At	this	stage,
Arduino	would	not	be	able	to	connect	to	the	server	because	your	web.py	server	is	still	not
running.	You	can	close	the	serial	monitor	for	now.

www.it-ebooks.info

http://www.it-ebooks.info/

The	HTTP	server	using	web.py	to	handle	the	GET	request
In	your	first	web.py	application,	you	developed	a	server	that	returned	Hello,	world!
when	requested	from	a	web	browser.	Despite	all	the	additional	tasks	it	can	perform,	your
web	browser	is	an	HTTP	client	at	its	core.	This	means	that	if	your	first	web.py	server	code
was	able	to	respond	to	the	GET	request	made	by	the	web	browser,	it	should	also	be	able	to
respond	to	the	Arduino	web	client.	To	check	this	out,	open	your	first	web.py	program,
webPyBasicExample.py,	and	change	the	return	string	from	Hello	World!	to	test.	We	are
performing	this	string	change	to	differentiate	it	from	the	other	instances	of	this	program.
Execute	the	Python	program	from	the	terminal	and	open	the	Serial	Monitor	window	in
the	Arduino	IDE	again.	This	time,	you	will	be	able	to	see	that	your	Arduino	client	is
receiving	a	response	for	the	GET	request	it	sent	to	the	web.py	server.	As	you	can	see	in	the
following	screenshot,	you	will	be	able	to	see	the	test	string	printed	in	the	Serial	Monitor
window,	which	is	returned	by	the	web.py	server	for	the	GET	request:

Although	in	this	example	we	are	returning	a	simple	string	for	the	GET	request,	you	can
extend	this	method	to	obtain	different	user-specified	parameters	from	the	web	server.	This
GET	implementation	can	be	used	in	a	large	number	of	applications	where	Arduino	requires
repeated	input	from	the	user	or	other	programs.	But	what	if	the	web	server	requires	input
from	the	Arduino?	In	that	case,	we	will	have	to	use	the	POST	request.	Let’s	develop	an
Arduino	program	to	accommodate	the	HTTP	POST	request.

www.it-ebooks.info

http://www.it-ebooks.info/

Working	with	the	POST	request	from	Arduino
Since	we	have	now	implemented	the	GET	request,	we	can	use	a	similar	approach	to
exercise	the	POST	request.	Instead	of	asking	the	server	to	provide	a	response	for	a	state
request,	we	will	send	sensor	data	as	payload	from	Arduino	in	the	implementation	of	the
POST	request.	Similarly,	on	the	server	side,	we	will	utilize	web.py	to	accept	the	POST
request	and	display	it	through	a	web	browser.

The	Arduino	code	to	generate	the	POST	request
Open	the	Arduino	sketch	ArduinoPOST.ino	from	the	Arduino_POST_Webpy\ArduinoPOST
folder	of	the	code	repository.	As	in	the	previous	exercise,	you	will	first	have	to	provide	the
IP	address	and	the	MAC	address	of	your	Arduino.

Once	you	have	completed	these	basic	changes,	observe	the	following	code	snippet	for	the
implementation	of	the	POST	request.	You	might	notice	that	we	are	creating	payload	for	the
POST	request	as	the	variable	data	from	the	values	obtained	from	analog	pin	0:

		String	data;

		data+="";

		data+="Humidity	";

		data+=analogRead(analogChannel);

In	the	following	Arduino	code,	we’ll	first	create	a	client	object	using	the	Ethernet	library.
In	the	recurring	loop()	function,	we’ll	use	this	client	object	to	connect	to	the	web.py
server	running	on	our	computer.	You	will	have	to	replace	the	IP	address	in	the	connect()
method	with	the	IP	address	of	your	web.py	server.	Once	connected,	we’ll	create	a	custom
POST	message	with	the	payload	data	we	calculated	previously.	The	Arduino	loop()
function	will	periodically	send	the	updated	sensor	value	generated	by	this	code	sample	to
the	web.py	server:

		if	(client.connect("10.0.0.20",8080))	{

				Serial.println("connected");

				client.println("POST	/data	HTTP/1.1");

				client.println("Host:	10.0.0.20");

				client.println("Content-Type:	application/x-www-form-urlencoded");

				client.println("Connection:	close");

				client.print("Content-Length:	");

				client.println(data.length());

				client.println();

				client.print(data);

				client.println();

				Serial.println("Data	sent.");

		}

Once	you	have	performed	the	changes,	compile	and	upload	this	sketch	to	the	Arduino
board.	As	the	web.py	server	is	yet	not	implemented,	the	POST	request	that	originated	from
Arduino	will	not	be	able	to	reach	its	destination	successfully,	so	let’s	create	the	web.py
server	to	accept	POST	requests.

The	HTTP	server	using	web.py	to	handle	the	POST	request

www.it-ebooks.info

http://www.it-ebooks.info/

In	this	implementation	of	the	POST	method,	we	require	two	web.py	classes,	index	and
data,	to	individually	serve	requests	from	the	web	browser	and	Arduino	respectively.	As
we	are	going	to	use	two	separate	classes	to	update	common	sensor	values	(that	is,
humidity	and	temperature),	we	are	going	to	declare	them	as	global	variables:

global	temperature,	humidity

temperature	=	25

As	you	may	have	noticed	in	the	Arduino	code	(client.println("POST	/data
HTTP/1.1")),	we	were	sending	the	POST	request	to	the	URL	located	at	/data.	Similarly,
we	will	use	the	default	root	location,	'/',	to	land	any	request	coming	from	the	web
browser.	These	requests	for	the	root	location	will	be	handled	by	the	index	class,	just	as	we
covered	in	exercise	2:

urls	=	(

				'/',	'index',

				'/data','data',

)

The	data	class	takes	care	of	any	POST	request	originating	from	the	/data	location.	In	this
case,	these	POST	requests	contain	payload	that	has	sensor	information	attached	by	the
Arduino	POST	client.	On	receiving	the	message,	the	method	splits	the	payload	string	into
sensor-type	and	value,	updating	the	global	value	of	the	humidity	variable	in	this	process:

class	data:

				def	POST(self):

								global	humidity

								i	=	web.input()

								data	=	web.data()

								data	=	data.split()[1]

								humidity	=	relativeHumidity(data,temperature)

								return	humidity

Each	POST	request	received	from	Arduino	updates	the	raw	humidity	value,	which	is
represented	by	the	data	variable.	We	are	using	the	same	code	from	exercise	2	to	obtain
manual	temperature	values	from	the	user.	The	relative	humidity	value,	humidity,	is
updated	according	to	the	temperature	value	you	updated	using	the	web	browser	and	the
raw	humidity	value	is	obtained	from	your	Arduino.

www.it-ebooks.info

http://www.it-ebooks.info/

To	check	out	the	Python	code,	open	the	WebPyEthernetPOST.py	file	from	the	code
repository.	After	making	the	appropriate	changes,	execute	the	code	from	the	terminal.	If
you	don’t	start	getting	any	updates	from	the	Arduino	on	the	terminal,	you	should	restart
Arduino	to	reestablish	the	connection	with	the	web.py	server.	Once	you	start	seeing
periodic	updates	from	the	Arduino	POST	requests	at	the	terminal,	open	the	location	of	the
web	application	in	your	browser.	You	will	be	able	to	see	something	similar	to	the
preceding	screenshot.	Here,	you	can	submit	the	manual	temperature	value	using	the	form,
while	the	browser	will	reload	with	the	updated	relative	humidity	according	to	the
temperature	value	entered.

www.it-ebooks.info

http://www.it-ebooks.info/

Exercise	3	–	a	RESTful	Arduino	web	application
The	goal	of	this	exercise	is	to	simply	combine	the	GET	and	POST	methods	you	learned	in
the	previous	two	sections	in	order	to	create	a	complete	REST	experience	using	Arduino
and	Python.	The	architecture	for	this	exercise	can	be	described	as	follows:

The	Arduino	client	periodically	uses	the	GET	request	to	obtain	the	sensor	type	from
the	server.	It	uses	this	sensor	type	to	select	a	sensor	for	observation.	In	our	case,	it	is
either	a	humidity	or	motion	sensor.
The	web	server	responds	to	the	GET	request	by	returning	the	current	sensor	type	of	the
sensor	selected	by	the	user.	The	user	provides	this	selection	through	a	web
application.
After	receiving	the	sensor	type,	the	Arduino	client	utilizes	POST	to	send	sensor
observation	to	the	server.
The	web	server	receives	the	POST	data	and	updates	the	sensor	observation	for	that
particular	sensor	type.
On	the	user	side,	the	web	server	obtains	the	current	sensor	type	through	the	web
browser.
When	the	submit	button	in	the	browser	is	pressed,	the	server	updates	the	sensor
value	in	the	browser	with	the	latest	value.

The	Arduino	sketch	for	the	exercise
Using	the	same	Arduino	hardware	we	built,	open	the	Arduino	sketch	named
WebPyEthernetArduinoGETPOST.ino	from	the	Exercise	3	-	RESTful	application
Arduino	and	webpy	code	folder.	As	we	described	in	the	exercise’s	architecture	earlier,	the
Arduino	client	should	periodically	send	GET	requests	to	the	server	and	get	the
corresponding	value	of	the	sensor	type	in	the	response.	After	comparing	the	sensor	type,
the	Arduino	client	fetches	the	current	sensor	observation	from	the	Arduino	pins	and	sends
that	observation	back	to	the	server	using	POST:

if	(client.connected())	{

						if	(client.find("Humidity")){

											#	Fetch	humidity	sensor	value

											if	(client.connect("10.0.0.20",8080))	{

											#	Post	humidity	values

										}

						}

						else{

											#	Fetch	motion	sensor	value

											if	(client.connect("10.0.0.20",8080))	{

											#	Post	motion	values

										}

						}

					#	Add	delay

}

After	changing	the	appropriate	server’s	IP	address	in	the	code,	compile	and	upload	it	to
the	Arduino.	Open	the	Serial	Monitor	window,	where	you	will	find	unsuccessful
connection	attempts,	as	your	web.py	server	is	not	yet	running.	Close	any	other	instance	or

www.it-ebooks.info

http://www.it-ebooks.info/

program	of	the	web.py	server	running	on	your	computer.

The	web.py	application	to	support	REST	requests
Open	the	WebPyEthernetGETPOST.py	file	from	the	Exercise	3	-	RESTful	application
Arduino	and	webpy	code	folder.	As	you	can	see,	the	web.py	based	web	server	implements
two	separate	classes,	index	and	data,	to	support	the	REST	architecture	for	the	web
browser	and	the	Arduino	client,	respectively.	We	are	introducing	a	new	concept	for	the
Form	element,	called	Dropdown().	Using	this	Form	method,	you	can	implement	the	drop-
down	selection	menu	and	ask	the	user	to	select	one	option	from	the	list	of	options:

form.Dropdown('dropdown',

											[('Humidity','Humidity'),('Motion','Motion')]),

form.Button('submit',

										type="submit",	description='submit'))

In	the	previous	web.py	program,	we	implemented	the	GET	and	POST	methods	for	the	index
class	and	only	the	POST	method	for	the	data	class.	Moving	forward	in	this	exercise,	we’ll
also	add	the	GET	method	to	the	data	class.	This	method	returns	the	value	of	the
sensorType	variable	when	the	GET	request	is	made	for	the	/data	location.	From	the	user
side,	the	value	of	the	sensorType	variable	is	updated	when	the	form	gets	submitted	with
an	option.	This	action	sends	a	selected	value	to	the	POST	method	of	the	index	class,
ultimately	updating	the	sensorType	value:

class	data:

				def	GET(self):

								return	sensorType

				def	POST(self):

								global	humidity,	motion

								i	=	web.input()

								data	=	web.data()

								data	=	data.split()[1]

								if	sensorType	==	"Humidity":

												humidity	=	relativeHumidity(data,temperature)

												return	humidity

								else:

												motion	=	data

												return	motion

Before	you	run	this	Python	program,	make	sure	you	have	checked	every	component	of	the
code	and	updated	the	values	where	needed.	Then	execute	the	code	from	the	terminal.	Your
web	server	will	now	run	on	your	local	computer	on	the	port	number	8080.	Power-cycle
your	Arduino	device	in	case	the	connection	attempt	from	Arduino	fails.	To	test	your
system,	open	the	web	application	from	your	web	browser.	You	will	see	a	web	page	open	in
your	browser,	as	displayed	in	the	following	screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

You	can	choose	the	sensor	type	from	the	dropdown	menu	(Humidity	or	Motion)	before
pressing	the	Submit	button.	On	submission,	you	will	be	able	to	see	the	page	updated	with
the	appropriate	sensor	type	and	its	current	value.

www.it-ebooks.info

http://www.it-ebooks.info/

Why	do	we	need	a	resource-constrained	messaging
protocol?
In	the	previous	section,	you	learned	how	to	use	the	HTTP	REST	architecture	to	send	and
receive	data	between	your	Arduino	and	the	host	server.	The	HTTP	protocol	was	originally
designed	to	serve	textual	data	through	web	pages	on	the	Internet.	The	data	delivery
mechanism	used	by	HTTP	requires	a	comparatively	large	amount	of	computation	and
network	resources,	which	may	be	sufficient	for	a	computer	system	but	not	for	resource-
constrained	hardware	platforms	such	as	Arduino.	As	we	discussed	earlier,	the	client-server
paradigm	implemented	by	the	HTTP	REST	architecture	creates	a	tightly	coupled	system.
In	this	paradigm,	both	sides	(the	client	and	the	server)	need	to	be	constantly	active,	or	live,
to	respond.	Also,	the	REST	architecture	only	allows	unidirectional	communication	from
client	to	server,	where	requests	are	always	initialized	by	the	client	and	the	server	responds
to	the	client.	This	request-response-based	architecture	is	not	suitable	for	constrained
hardware	devices	because	of	(but	not	limited	to)	the	following	reasons:

These	devices	should	avoid	active	communication	mode	to	save	power
The	communication	should	have	less	data	overhaul	to	save	network	resources
They	usually	do	not	have	enough	computational	resources	to	enable	bidirectional
REST	communication,	that	is,	implementing	both	client	and	server	mechanisms	on
each	side
The	code	should	have	a	smaller	footprint	due	to	storage	constraints

Tip
The	REST-based	architecture	can	still	be	useful	when	the	application	specifically
requires	a	request-response	architecture,	but	most	sensor-based	hardware	applications
are	limited	due	to	the	preceding	points.

Among	other	data	delivery	paradigms	that	solve	the	preceding	problems,	the	architecture
based	on	publisher/subscriber	(pub/sub)	stands	tall.	The	pub/sub	architecture	enables
bidirectional	communication	capabilities	between	the	node	that	generates	the	data
(Publisher)	and	the	node	that	consumes	the	data	(Subscriber).	We	are	going	to	use
MQTT	as	the	protocol	that	uses	the	pub/sub	model	of	message	transportation.	Let’s	begin
by	covering	the	pub/sub	architecture	and	MQTT	in	detail.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

MQTT	–	A	lightweight	messaging	protocol
Just	like	REST,	pub/sub	is	one	of	the	most	popular	messaging	patterns,	mostly	deployed	to
transfer	short	messages	between	nodes.	Instead	of	deploying	client-server-based
architecture,	the	pub/sub	paradigm	implements	messaging	middleware	called	a	broker	to
receive,	queue,	and	relay	messages	between	the	subscriber	and	publisher	clients:

The	pub/sub	architecture	utilizes	a	topic-based	system	to	select	and	process	messages,
where	each	message	is	labeled	with	a	specific	topic	name.	Instead	of	sending	a	message
directly	to	the	subscriber,	the	publisher	sends	it	first	to	the	broker	with	a	topic	name.	In	a
totally	independent	process,	the	subscriber	registers	its	subscription	for	particular	topics
with	the	broker.	In	the	event	of	receiving	a	message	from	the	publisher,	the	broker
performs	topic-based	filtering	on	that	message	before	forwarding	it	to	the	subscribers
registered	for	that	topic.	As	publishers	are	loosely	coupled	to	subscribers	in	this
architecture,	the	publishers	do	not	need	to	know	the	whereabouts	of	the	subscribers	and
can	work	uninterrupted	without	worrying	about	their	status.

While	discussing	the	limitations	of	the	REST	architecture,	we	noticed	that	it	requires	the
implementation	of	both	the	HTTP	client	and	server	on	the	Arduino	end	to	enable
bidirectional	communication	with	Arduino.	With	the	broker-based	architecture
demonstrated	by	pub/sub,	you	only	need	to	implement	lightweight	code	for	the	publisher
or	subscriber	client	on	Arduino,	while	the	broker	can	be	implemented	on	a	device	with
more	computation	resources.	Henceforth,	you	will	have	bidirectional	communication
enabled	on	Arduino	without	using	significant	resources.

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction	to	MQTT
Message	Queue	Telemetry	Transport	(MQTT)	is	a	very	simple,	easy,	and	open
implementation	of	the	pub/sub	paradigm.	IBM	has	been	working	on	standardizing	and
supporting	the	MQTT	protocol.	The	documentation	for	the	latest	specification	of	the
MQTT	protocol,	v3.1,	can	be	obtained	from	the	official	MQTT	website	at
http://www.mqtt.org.

As	a	standard	for	machine	messaging,	MQTT	is	designed	to	be	extremely	lightweight	and
with	a	smaller	footprint	for	code,	while	also	using	a	lower	network	bandwidth	for
communication.	MQTT	is	very	specifically	designed	to	work	on	embedded	systems—like
hardware	platforms	such	as	Arduino	and	other	appliances—that	carry	limited	processor
and	memory	resources.	While	MQTT	is	a	transport	layer	messaging	protocol,	it	uses
TCP/IP	for	network-level	connectivity.	As	MQTT	is	designed	to	support	the	pub/sub
messaging	paradigm,	the	implementation	of	MQTT	on	your	hardware	application	provides
support	for	one-to-many	distributed	messaging,	eliminating	the	limitation	of	unidirectional
communication	demonstrated	by	HTTP	REST.	As	MQTT	is	agnostic	of	the	content	of	the
payload,	there	is	no	restriction	on	the	type	of	message	you	can	pass	using	this	protocol.

Due	to	all	the	benefits	associated	with	the	pub/sub	paradigm	and	its	implementation	in	the
MQTT	protocol,	we	will	be	using	the	MQTT	protocol	for	the	rest	of	the	exercises	to	have
messages	communicated	between	Arduino	and	its	networked	computer.	To	achieve	this,
we	will	be	using	the	MQTT	broker	to	provide	the	ground	work	for	message
communication	and	host	topics,	while	deploying	the	MQTT	publisher	and	subscriber
clients	at	the	Arduino	and	Python	ends.

www.it-ebooks.info

http://www.mqtt.org
http://www.it-ebooks.info/

Mosquitto	–	an	open	source	MQTT	broker
As	we	described,	MQTT	is	just	a	protocol	standard,	and	it	still	requires	software	tools	so
that	it	can	be	implemented	in	actual	applications.	Mosquitto	is	an	open	source
implementation	of	the	message	broker,	which	supports	the	latest	version	of	the	MQTT
protocol	standard.	The	Mosquitto	broker	enables	the	pub/sub	paradigm	implemented	by
the	MQTT	protocol,	while	providing	a	lightweight	mechanism	to	enable	messaging
between	machines.	Development	of	Mosquitto	is	supported	through	community	efforts.
Mosquitto	is	one	of	the	most	popular	MQTT	implementations,	freely	available	and	widely
supported	on	the	Internet.	You	can	obtain	further	information	regarding	the	actual	tool	and
community	from	its	website,	at	http://www.mosquitto.org.

www.it-ebooks.info

http://www.mosquitto.org
http://www.it-ebooks.info/

Setting	up	Mosquitto
The	installation	and	configuration	of	Mosquitto	are	very	straightforward	processes.	At	the
time	of	writing	this	book,	the	latest	version	of	Mosquitto	is	1.3.4.	You	can	also	obtain	the
latest	updates	and	installation	information	regarding	Mosquitto	at
http://www.mosquitto.org/download/.

On	Windows,	you	can	simply	download	the	latest	version	of	the	installation	files	for
Windows,	which	is	made	for	Win32	or	Win64	systems.	Download	and	run	the	executable
file	to	install	the	Mosquitto	broker.	To	run	Mosquitto	from	the	command	prompt,	you	will
have	to	add	the	Mosquitto	directory	to	the	PATH	variables	in	the	environment	variables	of
the	system	properties.	In	Chapter	1,	Getting	Started	with	Python	and	Arduino,	we
comprehensively	described	the	process	of	adding	a	PATH	variable	to	install	Python.	Using
the	same	method,	add	the	path	of	the	Mosquitto	installation	directory	at	the	end	of	the
PATH	value.	If	you	are	using	a	64-bit	operating	system,	you	should	use	C:\Program	Files
(x86)\mosquitto.	For	a	32-bit	operating	system,	you	should	use	C:\Program
Files\mosquitto	as	the	path.	Once	you	are	done	with	adding	this	value	at	the	end	of	the
PATH	value,	close	any	existing	command	prompt	windows	and	open	a	new	Command
Prompt	window.	You	can	validate	the	installation	by	typing	the	following	command	in	the
newly	opened	window.	If	everything	is	installed	and	configured	correctly,	the	following
command	should	execute	without	any	errors:

C:\>	mosquitto

For	Mac	OS	X,	the	best	way	to	install	Mosquitto	is	to	use	the	Homebrew	tool.	We	already
went	through	the	process	of	installing	and	configuring	Homebrew	in	Chapter	1,	Getting
Started	with	Python	and	Arduino.	Install	the	Mosquitto	broker	by	simply	executing	the
following	script	on	the	terminal.	This	script	will	install	Mosquitto	with	the	Mosquitto
utilities	and	also	configure	them	to	run	from	the	terminal	as	commands:

$	brew	install	mosquitto

On	Ubuntu,	the	default	repository	already	has	the	installation	package	for	Mosquitto.
Depending	on	the	version	of	Ubuntu	you	are	using,	this	Mosquitto	version	could	be	older
than	the	current	version.	In	that	case,	you	must	add	this	repository	first:

$	sudo	apt-add-repository	ppa:mosquitto-dev/mosquitto-ppa

$	sudo	apt-get	update

Now	you	can	install	the	Mosquitto	packages	by	simply	running	the	following	command:

$	sudo	apt-get	install	mosquitto	mosquitto-clients

www.it-ebooks.info

http://www.mosquitto.org/download/
http://www.it-ebooks.info/

Getting	familiar	with	Mosquitto
Due	to	the	multiple	installation	methods	involved	for	different	operating	systems,	the
initialization	of	Mosquitto	may	be	different	for	your	instance.	In	some	cases,	Mosquitto
might	already	be	running	on	your	computer.	For	a	Unix-based	operating	system,	you	can
check	whether	Mosquitto	is	running	or	not	with	this	command:

$	ps	aux	|	grep	mosquitto

Unless	you	find	a	running	instance	of	the	broker,	you	can	start	Mosquitto	by	executing	the
following	command	in	the	terminal.	After	executing	it,	you	should	be	able	to	see	the
broker	running	while	printing	the	initialization	parameters	and	other	requests	coming	to	it:

$	mosquitto

When	you	installed	the	Mosquitto	broker,	the	installation	process	would	also	have
installed	a	few	Mosquitto	utilities,	which	include	the	MQTT	clients	for	the	publisher	and
the	subscriber.	These	client	utilities	can	be	used	to	communicate	with	any	Mosquitto
broker.

To	use	the	subscriber	client	utility,	mosquitto_sub,	use	the	following	command	at	the
terminal	with	the	IP	address	of	the	Mosquitto	broker.	As	we	are	communicating	to	the
Mosquitto	broker	running	on	the	same	computer,	you	can	avoid	the	–h	<Broker-IP>
option.	The	subscriber	utility	uses	the	–t	option	to	specify	the	name	of	the	topic	that	you
are	planning	to	subscribe.	As	you	can	see,	we	are	subscribing	to	the	test	topic:

$	mosquitto_sub	-h	<Broker-IP>	-t	test

Similar	to	the	subscriber	client,	the	publisher	client	(mosquitto_pub)	can	be	used	to
publish	a	message	to	the	broker	for	a	specific	topic.	As	described	in	the	following
command,	you	are	required	to	use	the	–m	option	followed	by	a	message	to	successfully
publish	it.	In	this	command,	we	are	publishing	a	Hello	message	for	the	test	topic:

$	mosquitto_pub	-h	<Broker-IP>	-t	test	-m	Hello

Other	important	Mosquitto	utilities	include	mosquitto_password	and	mosquitto.conf,
which	can	be	used	to	manage	the	Mosquitto	password	files	and	the	setup	broker
configuration,	respectively.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Getting	started	with	MQTT	on	Arduino
and	Python
Now	that	you	have	the	Mosquitto	broker	installed	on	your	computer,	it	means	that	you
have	a	working	broker	that	implements	the	MQTT	protocol.	Our	next	goal	is	to	develop
the	MQTT	clients	in	Arduino	and	also	in	Python	so	that	they	will	work	as	publishers	and
subscribers.	After	implementing	the	MQTT	clients,	we	will	have	a	fully-functional	MQTT
system,	where	these	clients	communicate	through	the	Mosquitto	broker.	Let’s	begin	with
deploying	MQTT	on	the	Arduino	platform.

www.it-ebooks.info

http://www.it-ebooks.info/

MQTT	on	Arduino	using	the	PubSubClient	library
As	MQTT	is	a	network-based	messaging	protocol,	you	will	always	need	an	Ethernet
Shield	to	communicate	with	your	network.	For	the	following	exercise,	we	will	continue
using	the	same	hardware	that	we	have	been	using	throughout	this	chapter.

Installing	the	PubSubClient	library
To	use	Arduino	for	pub/sub	and	enable	simple	MQTT	messaging,	you	need	the	Arduino
client	library	for	MQTT,	also	known	as	the	PubSubClient	library.	The	PubSubClient
library	helps	you	develop	Arduino	as	an	MQTT	client,	which	can	then	communicate	with
the	MQTT	server	(Mosquitto	broker	in	our	case)	running	on	your	computer.	As	the	library
provides	methods	to	create	only	an	MQTT	client	and	not	a	broker,	the	footprint	of	the
Arduino	code	is	quite	small	compared	to	other	messaging	paradigms.	The	PubSubClient
library	extensively	utilizes	the	default	Arduino	Ethernet	library	and	implements	the
MQTT	client	as	a	subclass	of	the	Ethernet	client.

To	get	started	with	the	PubSubClient	library,	you’ll	first	need	to	import	the	library	to	your
Arduino	IDE.	Download	the	latest	version	of	the	PubSubClient	Arduino	library	from
https://github.com/knolleary/pubsubclient/.	Once	you	have	the	file	downloaded,	import	it
to	your	Arduino	IDE.

We	will	be	using	one	of	the	examples	installed	with	the	PubSubClient	library	to	get
started.	The	goal	of	the	exercise	is	to	utilize	a	basic	example	to	create	an	Arduino	MQTT
client,	while	performing	minor	modifications	to	accommodate	the	local	network
parameters.	We	will	then	use	the	Mosquitto	commands	you	learned	in	the	previous	section
to	test	the	Arduino	MQTT	client.	Meanwhile,	ensure	that	your	Mosquitto	broker	is
running	in	the	background.

Developing	the	Arduino	MQTT	client
Let’s	start	with	opening	the	mqtt_basic	example	by	navigating	to	File	|	Examples	|
PubSubClient	in	our	Arduino	IDE	menu.	In	the	opened	program,	change	the	MAC	and	IP
address	values	for	Arduino	by	updating	the	mac[]	and	ip[]	variables,	respectively.	In	the
previous	section,	you	successfully	installed	and	tested	the	Mosquitto	broker.	Use	the	IP
address	of	the	computer	running	Mosquitto	to	update	the	server[]	variable:

byte	mac[]				=	{		0x90,	0xA2,	0xDA,	0x0D,	0x3F,	0x62	};

byte	server[]	=	{	10,	0,	0,	20	};

byte	ip[]					=	{	10,	0,	0,	75	};

As	you	can	see	in	the	code,	we	are	initializing	the	client	using	the	IP	address	of	the	server,
Mosquitto	port	number,	and	Ethernet	client.	Before	using	any	other	method	for	the
PubSubClient	library,	you	will	always	have	to	initialize	the	MQTT	client	using	a	similar
method:

EthernetClient	ethClient;

PubSubClient	client(server,	1883,	callback,	ethClient);

Further	on	in	the	code,	we	are	using	the	publish()	and	subscribe()	methods	on	the

www.it-ebooks.info

https://github.com/knolleary/pubsubclient/
http://www.it-ebooks.info/

client	class	to	publish	a	message	for	the	outTopic	topic	and	subscribe	to	the	inTopic
topic.	You	can	specify	the	name	of	the	client	using	the	client.connect()	method.	As	you
can	see	in	the	following	code	snippet,	we	are	declaring	arduinoClient	as	the	name	for
this	client:

		Ethernet.begin(mac,	ip);

		if	(client.connect("arduinoClient"))	{

				client.publish("outTopic","hello	world");

				client.subscribe("inTopic");

		}

As	we	are	using	this	code	in	the	setup()	function,	the	client	will	only	publish	the	hello
world	message	once—during	the	initialization	of	the	code—while	the	subscribe	method
will	keep	looking	for	new	messages	for	inTopic	due	to	the	use	of	the	client.loop()
method	in	the	Arduino	loop()	function:

		client.loop();

Now,	while	running	Mosquitto	in	the	background,	open	another	terminal	window.	In	this
terminal	window,	run	the	following	command.	This	command	will	use	a	computer-based
Mosquitto	client	to	subscribe	to	the	outTopic	topic:

$	mosquitto_sub	-t	"outTopic"

Compile	your	Arduino	sketch	and	upload	it.	As	soon	as	the	upload	process	is	complete,
you	will	be	able	to	see	the	hello	world	string	printed.	Basically,	as	soon	as	the	Arduino
code	starts	running,	the	Arduino	MQTT	client	will	publish	the	hello	world	string	to	the
Mosquitto	broker	for	the	outTopic	topic.	On	the	other	side,	that	is,	on	the	side	of	the
Mosquitto	client,	you’ve	started	using	the	mosquitto_sub	utility	and	will	receive	this
message,	as	it	is	subscribed	to	outTopic.

Although	you	ran	the	modified	Arduino	example,	mqtt_basic,	you	can	also	find	the	code
for	this	exercise	from	this	chapter’s	code	folder.	In	this	exercise,	the	Arduino	client	is	also
subscribed	to	inTopic	to	receive	any	message	that	originates	for	this	topic.	Unfortunately,
the	program	doesn’t	display	or	deal	with	messages	it	obtains	as	a	subscriber.	To	test	the
subscriber	functionalities	of	the	Arduino	MQTT	client,	let’s	open	the	mqtt_advance
Arduino	sketch	from	this	chapter’s	code	folder.

As	you	can	see	in	the	following	code	snippet,	we	have	added	code	to	display	the	received
message	in	the	callback()	method.	The	callback()	method	will	be	called	when	the
client	receives	any	message	from	the	subscribed	topics.	Therefore,	you	can	implement	all
types	of	functionality	on	the	received	message	from	the	callback()	method:

void	callback(char*	topic,	byte*	payload,	unsigned	int	length)	{

		//	handle	message	arrived

		Serial.print(topic);

		Serial.print(':');

		Serial.write(payload,length);

		Serial.println();

}

In	this	mqtt_advance	Arduino	sketch,	we	have	also	moved	the	publishing	statement	of

www.it-ebooks.info

http://www.it-ebooks.info/

outTopic	from	setup()	to	the	loop()	function.	This	action	will	help	us	to	periodically
publish	the	value	for	outTopic.	In	future,	we	will	expand	this	method	to	use	sensor
information	as	messages	so	that	the	other	devices	can	obtain	those	sensor	values	by
subscribing	to	these	sensor	topics:

void	loop()

{

		client.publish("outTopic","From	Arduino");

		delay(1000);

		client.loop();

}

After	updating	the	mqtt_advance	sketch	with	the	appropriate	network	addresses,	compile
and	upload	the	sketch	to	your	Arduino	hardware.	To	test	the	Arduino	client,	use	the	same
mosquitto_sub	command	to	subscribe	to	outTopic.	This	time,	you	will	periodically	get
updates	for	outTopic	on	the	terminal.	To	check	out	the	subscriber	functionality	of	your
Arduino	client,	open	your	Serial	Monitor	window	in	your	Arduino	IDE.	Once	the	Serial
Monitor	window	begins	running,	execute	the	following	command	in	the	terminal:

$	mosquitto_pub	–	t	"inTopic"	–m	"Test"

You	can	see	in	the	Serial	Monitor	window	that	the	Test	text	is	printed	with	the	topic
name	as	inTopic.	Henceforth,	your	Arduino	will	serve	as	both	an	MQTT	publisher	and	an
MQTT	subscriber.	Now	let’s	develop	a	Python	program	to	implement	the	MQTT	clients.

www.it-ebooks.info

http://www.it-ebooks.info/

MQTT	on	Python	using	paho-mqtt
In	the	previous	exercise,	we	tested	the	Arduino	MQTT	client	using	command-line	utilities.
Unless	the	published	and	subscribed	messages	are	captured	in	Python,	we	cannot	utilize
them	to	develop	all	the	other	applications	we’ve	built	so	far.	To	transfer	messages	between
the	Mosquitto	broker	and	the	Python	interpreter,	we	use	a	Python	library	called	paho-
mqtt.	This	library	used	to	be	called	mosquitto-python	before	it	was	donated	to	the	Paho
project.	Identical	to	the	Arduino	MQTT	client	library,	the	paho-mqtt	library	provides
similar	methods	to	develop	the	MQTT	pub/sub	client	using	Python.

Installing	paho-mqtt
Like	all	other	Python	libraries	we	used,	paho-mqtt	can	also	be	installed	using	Setuptools.
To	install	the	library,	run	this	command	in	the	terminal:

$	sudo	pip	install	paho-mqtt

For	the	Windows	operating	system,	use	easy_install.exe	to	install	the	library.	Once	it	is
installed,	you	can	check	the	successful	installation	of	the	library	using	the	following
command	in	the	Python	interactive	terminal:

>>>	import	paho.mqtt.client

Using	the	paho-mqtt	Python	library
The	paho-mqtt	Python	library	provides	very	simple	methods	to	connect	to	your	Mosquitto
broker.	Let’s	open	the	mqttPython.py	file	from	this	chapter’s	code	folder.	As	you	can	see,
we	have	initialized	the	code	by	importing	the	paho.mqtt.client	library	method:

import	paho.mqtt.client	as	mq

Just	like	the	Arduino	MQTT	library,	the	paho-mqtt	library	also	provides	methods	to
connect	to	the	Mosquitto	broker.	As	you	can	see,	we	have	named	our	client
mosquittoPython	by	simply	using	the	Client()	method.	The	library	also	provides
methods	for	activities,	for	example,	when	the	client	receives	a	message,	on_message,	and
publishes	a	message,	on_publish.	Once	you	have	initialized	these	methods,	you	can
connect	your	client	to	the	Mosquitto	server	by	specifying	the	server	IP	address	and	the
port	number.

To	subscribe	to	or	publish	for	a	topic,	you	simply	need	to	implement	the	subscribe()	and
publish()	methods	on	the	client,	respectively,	as	displayed	in	the	following	code	snippet.
In	this	exercise,	we	are	using	the	loop_forever()	method	for	the	client	to	periodically
check	the	broker	for	any	new	messages.	As	you	can	see	in	the	code,	we	are	executing	the
publishTest()	function	before	the	control	enters	the	loop:

cli	=	mq.Client('mosquittoPython')

cli.on_message	=	onMessage

cli.on_publish	=	onPublish

cli.connect("10.0.0.20",	1883,	15)

cli.subscribe("outTopic",	0)

publishTest()

www.it-ebooks.info

http://www.it-ebooks.info/

cli.loop_forever()

It	is	very	important	to	run	all	the	required	functions	or	pieces	of	code	before	you	enter	the
loop,	as	the	program	will	enter	the	loop	with	the	Mosquitto	server	once	loop_forever()	is
executed.	During	this	period,	the	client	will	only	execute	the	on_publish	and	on_message
methods	for	any	update	on	the	subscribed	or	published	topics.

To	overcome	this	situation,	we	are	implementing	the	multithreading	paradigm	of	the
Python	programming	language.	Although	we	are	not	going	to	dive	deep	into
multithreading,	the	following	example	will	teach	you	enough	to	implement	basic
programming	logic.	To	understand	more	about	the	Python	threading	library	and	supported
methods,	visit	https://docs.python.org/2/library/threading.html.

To	better	understand	our	implementation	of	the	threading	method,	check	out	the	following
code	snippet.	As	you	can	see	in	the	code,	we	are	implementing	recursion	for	the
publishTest()	function	every	5	seconds,	using	the	Timer()	threading	method.	Using	this
method,	the	program	will	start	a	new	thread	that	is	separate	from	the	main	program	thread
that	contains	the	loop	for	Mosquitto.	Every	5	seconds,	the	publishTest()	function	will	be
executed,	recursively	running	the	publish()	method,	and	ultimately	publishing	a	message
for	inTopic:

import	threading

def	publishTest():

				cli.publish("inTopic","From	Python")

				threading.Timer(5,	publishTest).start()

Now,	in	the	main	thread,	when	the	client	gets	a	new	message	from	the	subscribed	topics,
the	thread	invokes	the	onMessage()	function.	In	the	current	implementation	of	this
function,	we	are	just	printing	the	topic	and	message	for	demonstration	purposes.	In	real
applications,	this	function	can	be	used	to	implement	any	kind	of	operation	on	the	received
message,	for	example,	writing	a	message	to	a	database,	running	an	Arduino	command,
selecting	an	input,	calling	other	functions,	and	so	on.	In	short,	this	function	is	the	entry
point	of	any	input	you	receive	through	the	Mosquitto	broker	from	your	subscribed	topics:

def	onMessage(mosq,	obj,	msg):

				print	msg.topic+":"+msg.payload

Similarly,	every	time	you	publish	a	message	from	the	second	thread,	the	onPublish()
function	is	executed	by	the	program.	Just	like	the	previous	function,	you	can	implement
various	operations	within	this	function,	while	the	function	behaves	as	the	exit	point	of	any
message	published	using	this	Python	MQTT	client.	In	the	current	implementation	of
onPublish(),	we	are	not	performing	any	operations:

def	onPublish(mosq,	obj,	mid):

				pass

In	the	opened	Python	file,	mqttPython.py,	you	will	only	need	to	change	the	IP	address	of
the	server	running	the	Mosquitto	broker.	If	you	are	running	the	Mosquitto	broker	on	the
same	computer,	you	can	use	127.0.0.1	as	the	IP	address	of	the	localhost.	Before	you
execute	this	Python	file,	ensure	that	your	Arduino	is	running	with	the	MQTT	client	we
created	in	the	previous	exercise.	Once	you	run	this	code,	you	can	start	seeing	the	messages

www.it-ebooks.info

https://docs.python.org/2/library/threading.html
http://www.it-ebooks.info/

being	sent	from	your	Arduino	in	the	Python	terminal,	as	displayed	in	the	following
screenshot.	Whenever	a	new	message	is	received,	the	Python	program	prints	the	outTopic
topic	name	followed	by	the	From	Arduino	message.	This	confirms	that	the	Python	client
is	receiving	messages	for	outTopic,	to	which	it	is	subscribed.	If	you	look	back	at	the
Arduino	code,	you	will	notice	that	it	is	the	same	message	that	we	were	publishing	from	the
Arduino	client.

Now,	to	confirm	the	publishing	operation	of	the	Python	MQTT	client,	let’s	open	the	Serial
Monitor	window	from	your	Arduino	IDE.	As	you	can	see	in	the	Serial	Monitor	window,
text	that	contains	the	inTopic	topic	name	and	the	From	Python	message	is	being	printed
every	5	seconds.	This	validates	the	Python	publisher,	as	we	are	publishing	the	same
message	for	the	same	topic	every	5	seconds	through	the	publishTest()	function.

www.it-ebooks.info

http://www.it-ebooks.info/

Exercise	4	–	MQTT	Gateway	for	Arduino
In	exercise	3,	we	used	the	REST	architecture	to	transfer	motion	and	humidity	sensor	data
between	our	Arduino	and	the	web	browser.	In	this	exercise,	we	will	develop	an	MQTT
Gateway	using	the	Mosquitto	broker	and	the	MQTT	clients	to	transfer	sensor	information
from	our	Arduino	to	the	web	browser.	The	goal	of	the	exercise	is	to	replicate	the	same
components	that	we	implemented	in	the	REST	exercise,	but	with	the	MQTT	protocol.

As	you	can	see	in	the	architectural	sketch	of	the	system,	we	have	Arduino	with	the
Ethernet	Shield	connected	to	our	home	network,	while	the	computer	is	running	the
Mosquitto	broker	and	the	Python	applications	on	the	same	network.	We	are	using	the	same
sensors	(that	is,	a	motion	sensor	and	a	humidity	sensor)	and	the	same	hardware	design	that
we	used	in	the	previous	exercises	in	this	chapter.

In	the	software	architecture,	we	have	the	Arduino	code	that	interfaces	with	the	humidity
and	motion	sensors	using	analog	pin	0	and	digital	pin	3,	respectively.	Using	the
PubSubClient	library,	the	Arduino	publishes	sensor	information	to	the	Mosquitto	broker.
On	the	MQTT	Gateway,	we	have	two	different	Python	programs	running	on	the	computer.
The	first	program	uses	the	paho-mqtt	library	to	subscribe	and	retrieve	sensor	information
from	the	Mosquitto	broker	and	then	post	it	to	the	web	application.	The	second	Python
program,	which	is	based	on	web.py,	implements	the	web	applications	while	obtaining
sensor	values	from	the	first	Python	program.	This	program	provides	a	user	interface	front

www.it-ebooks.info

http://www.it-ebooks.info/

for	the	MQTT	Gateway.

Although	both	of	the	preceding	Python	programs	can	be	part	of	a	single	application,	we
are	delegating	the	tasks	of	communicating	with	Mosquitto	and	serving	information	using
the	web	application	to	separate	applications	for	the	following	reasons:

We	want	to	demonstrate	the	functions	of	both	libraries,	paho-mqtt	and	web.py,	in
separate	applications
If	you	want	to	run	routines	based	on	paho-mqtt	and	web.py	in	the	same	application,
you	will	have	to	implement	multithreading,	as	both	of	these	routines	need	to	be	run
independently
We	also	want	to	demonstrate	the	transfer	of	information	between	the	two	Python
programs	using	Python-based	REST	methods	with	the	help	of	the	httplib	library

In	this	exercise,	we	are	labeling	humidity	and	motion	sensor	information	with	the	topic
labels	Arduino/humidity	and	Arduino/motion,	respectively.	The	Arduino-based	MQTT
publisher	and	the	Python-based	MQTT	subscriber	will	be	utilizing	these	topic	names	if
they	want	to	transfer	information	through	the	Mosquitto	broker.	Before	we	begin	with
implementing	the	MQTT	client	on	our	Arduino,	let’s	start	the	Mosquitto	broker	on	our
computer.

Developing	Arduino	as	the	MQTT	client
The	goal	of	the	Arduino	MQTT	client	is	to	periodically	publish	the	humidity	and	motion
data	to	the	Mosquitto	broker	running	on	your	computer.	Open	the	Step1_Arduino.ino
sketch	from	the	Exercise	4	-	MQTT	gateway	folder	in	your	code	repository.	Like	all	the
other	exercises,	you	first	need	to	change	the	MAC	address	and	the	server	address	value,
and	assign	an	IP	address	for	your	Arduino	client.	Once	you	are	done	with	these
modifications,	you	can	see	the	setup()	function	that	we	are	publishing	as	a	one-time
connection	message	to	the	Mosquitto	broker	to	check	the	connection.	You	can	implement
a	similar	function	on	a	periodic	basis	if	you	have	a	problem	with	keeping	your	Mosquitto
connection	alive:

if	(client.connect("Arduino"))	{

				client.publish("Arduino/connection","Connected.");

		}

www.it-ebooks.info

http://www.it-ebooks.info/

In	the	loop()	method,	we	are	executing	the	publishData()	function	every	5	seconds.	It
contains	the	code	to	publish	sensor	information.	The	client.loop()	method	also	helps	us
keep	the	Mosquitto	connection	alive	and	avoids	the	connection	timeout	from	the
Mosquitto	broker.

void	loop()

{

		publishData();

		delay(5000);

		client.loop();

}

As	you	can	see	in	the	following	code	snippet,	the	publishData()	function	obtains	the
sensor	values	and	publishes	them	using	the	appropriate	topic	labels.	You	might	have
noticed	that	we	are	using	the	dtostrf()	function	in	this	function	to	change	the	data	format
before	publishing.	The	dtostrf()	function	is	a	function	provided	by	the	default	Arduino
library	that	converts	a	double	value	into	an	ASCII	string	representation.	We	are	also
adding	a	delay	of	another	5	seconds	between	the	successive	publishing	of	sensor	data	to
avoid	any	data	buffering	issues:

void	publishData()

{

		float	humidity	=	getHumidity(22.0);

		humidityC	=	dtostrf(humidity,	5,	2,	message_buff2);

		client.publish("Arduino/humidity",	humidityC);

		delay(5000);

		int	motion	=	digitalRead(MotionPin);

		motionC	=	dtostrf(motion,	5,	2,	message_buff2);

		client.publish("Arduino/motion",	motionC);

}

Complete	any	other	modification	you	want	to	implement,	and	then	compile	your	code.	If
your	code	is	compiled	successfully,	you	can	upload	it	to	your	Arduino	board.	If	your
Mosquitto	is	running,	you	will	be	able	see	that	a	new	client	is	connected	as	Arduino,
which	is	the	client	name	you	specified	in	the	preceding	Arduino	code.

Developing	the	MQTT	Gateway	using	Mosquitto
You	can	have	the	Mosquitto	broker	running	on	the	same	computer	as	the	Mosquitto
Gateway,	or	on	any	other	node	in	your	local	network.	For	this	exercise,	let’s	run	it	on	the
same	computer.	Open	the	program	file	named	mosquittoGateway.py	for	this	stage	from
the	Step2_Gateway_mosquitto	folder,	which	is	inside	the	Exercise	4	-	MQTT	gateway
folder.	The	first	stage	of	the	Gateway	application	includes	the	paho-mqtt	based	Python
program,	which	subscribes	to	the	Mosquitto	broker	for	the	Arduino/humidity	and
Arduino/motion	topics:

cli.subscribe("Arduino/humidity",	0)

cli.subscribe("Arduino/motion",	0)

When	this	MQTT	subscriber	program	receives	a	message	from	the	broker,	it	calls	the
onMessage()	function,	as	we’ve	already	described	in	the	previous	coding	exercise.	This
method	then	identifies	the	appropriate	sensor	type	and	sends	the	data	to	the	web.py

www.it-ebooks.info

http://www.it-ebooks.info/

program	using	the	POST	method.	We	are	using	the	default	Python	library,	httplib,	to
implement	the	POST	method	in	this	program.	While	using	the	httplib	library,	you	have	to
use	the	HTTPConnection()	method	to	connect	to	the	web	application	running	on	port
number	8080.

Note
Although	this	program	requires	that	your	web	application	(second	stage)	must	run	in
parallel,	we	are	going	to	implement	this	web	application	in	the	upcoming	section.	Make
sure	that	you	first	run	the	web	application	from	the	next	section	before	executing	this
program;	otherwise	you	will	end	up	with	errors.

The	implementation	of	this	library	requires	that	you	first	import	the	library	into	your
program.	Being	a	built-in	library,	httplib	does	not	require	an	additional	setup	process:

import	httplib

Once	the	connection	is	established	with	the	web	application,	you	have	to	prepare	the	data
that	needs	to	be	sent	in	the	POST	method.	The	httplib	method	uses	the	request()	method
on	the	opened	connection	to	post	the	data.	You	can	also	use	the	same	method	in	other
applications	to	implement	the	GET	function.	Once	you	are	done	with	sending	the	data,	you
can	close	the	connection	using	the	close()	method.	In	the	current	implementation	of	the
httplib	library,	we	are	creating	and	closing	the	connection	on	each	message.	You	can	also
declare	the	connection	outside	the	onMessage()	function	and	close	it	when	you	terminate
the	program:

def	onMessage(mosq,	obj,	msg):

				print	msg.topic

				connection	=	httplib.HTTPConnection('10.0.0.20:8080')

				if	msg.topic	==	"Arduino/motion":

								data	=	"motion:"	+	msg.payload

								connection.request('POST',	'/data',	data)

								postResult	=	connection.getresponse()

								print	postResult

				elif	msg.topic	==	"Arduino/humidity":

								data	=	"humidity:"	+	msg.payload

								connection.request('POST',	'/data',	data)

								postResult	=	connection.getresponse()

								print	postResult

				else:

								pass

				connection.close()

Once	you	have	performed	the	appropriate	modifications,	such	as	changing	the	IP	address
of	the	Mosquitto	broker	and	the	web.py	application,	go	to	the	next	exercise	before	running
the	code.

Extending	the	MQTT	Gateway	using	web.py
The	MQTT	Gateway	code	provides	the	user	interface	with	the	sensor	information	using
the	web.py	based	web	application.	The	code	is	quite	similar	to	what	you	implemented	in
exercise	3.	The	program	file	is	named	GatewayWebApplication.py	and	located	in	your

www.it-ebooks.info

http://www.it-ebooks.info/

Exercise	4	-	MQTT	gateway	code	folder.	In	this	application,	we	have	removed	the	sensor
selection	process	by	simply	implementing	a	button,	displayed	as	Refresh.	This	application
waits	for	the	POST	message	from	the	previous	program,	which	will	be	received	on	the
http://<ip-address>:8080/data	URL,	ultimately	triggering	the	data	class.	The	POST
method	in	this	class	will	split	the	received	string	to	identify	and	update	the	value	of	the
humidity	and	motion	global	sensor	variables:

class	data:

				def	POST(self):

								global	motion,	humidity

								i	=	web.input()

								data	=	web.data()

								data	=	data.split(":")

								if	data[0]	==	"humidity":

												humidity	=	data[1]

								elif	data[0]	==	"motion":

												motion	=	data[1]

								else:

												pass

								return	"Ok"	

The	default	URL,	http://<ip-address>:8080/,	displays	the	base	template	with	the
Refresh	button,	populated	using	the	Form()	method.	As	displayed	in	the	following	code
snippet,	the	default	index	class	renders	the	template	with	the	updated	(current)	humidity
and	motion	values	when	it	receives	the	GET	or	POST	request:

class	index:

				submit_form	=	form.Form(

								form.Button('Refresh',

																				type="submit",

																				description='refresh')

)

				#	GET	function

				def	GET(self):

								f	=	self.submit_form()

								return	render.base(f,	humidity,	motion)

				#	POST	function

				def	POST(self):

								f	=	self.submit_form()

								return	render.base(f,	humidity,	motion)

Run	the	program	from	the	command	line.	Make	sure	that	you	are	running	both	programs
from	separate	terminal	windows.

Testing	your	Mosquitto	Gateway
You	have	to	follow	these	steps	in	the	specified	order	to	successfully	execute	and	test	all
the	components	of	this	exercise:

1.	 Run	the	Mosquitto	broker.
2.	 Run	the	Arduino	client.	If	it	is	running	already,	restart	the	program	by	powering	off

the	Arduino	client	and	powering	it	on	again.

www.it-ebooks.info

http://www.it-ebooks.info/

3.	 Execute	the	web	application	in	your	terminal	or	from	the	Command	Prompt.
4.	 Run	the	paho-mqtt	Gateway	program.

If	you	follow	this	sequence,	all	of	your	programs	will	start	without	any	errors.	If	you	get
any	errors	while	executing,	make	sure	that	you	follow	all	the	instructions	correctly,	while
also	confirming	the	IP	addresses	in	your	programs.	To	check	out	your	Arduino	MQTT
client,	open	the	Serial	Monitor	window	in	your	Arduino	IDE.	You	will	be	able	to	see	the
periodic	publication	of	the	sensor	information,	as	displayed	in	this	screenshot:

Now	open	a	web	browser	on	your	computer	and	go	to	the	URL	of	your	web	application.
You	should	be	able	to	see	a	window	that	looks	like	what	is	shown	in	the	following
screenshot.	You	can	click	on	the	Refresh	button	to	check	out	the	updated	sensor	values.

Note
We	have	set	a	delay	of	5	seconds	between	successive	sensor	updates.	Henceforth,	you
won’t	be	able	to	see	the	updated	values	if	you	rapidly	press	the	Refresh	button.

www.it-ebooks.info

http://www.it-ebooks.info/

On	the	Gateway	program	terminal,	you	will	be	able	to	see	the	label	of	the	topic	every	time
the	program	receives	a	new	message	from	Mosquitto.	If	the	delay	between	successive
sensor	updates	is	not	sufficient	and	httplib	doesn’t	have	enough	time	to	get	the	response
back	from	the	web.py	application,	the	program	will	generate	an	error	message	with	the
httplib	function.	Although	we	require	an	additional	delay	for	httplib	to	successively
send	the	data	and	receive	the	response,	we	will	be	able	to	avoid	this	delay	when	we
implement	the	core	Python	code	with	threading,	avoiding	the	entire	notion	of	POST	in
between	the	programs:

With	this	exercise,	you	have	implemented	two	different	types	of	messaging	architecture	to
transfer	data	between	your	Arduino	and	your	computer	or	web	applications	using	your
home	network.	Although	we	recommend	the	use	of	hardware-centric	and	lightweight
MQTT	messaging	paradigms	over	REST	architecture,	you	can	use	either	of	these
communication	methods	according	to	the	application’s	requirements.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Summary
Connectivity	to	computer	networks	can	really	open	up	limitless	possibilities	for	future
application	development	using	Arduino.	We	started	the	chapter	by	explaining	important
computer	network	fundamentals,	while	also	covering	hardware	extensions	that	enable
computer	networking	for	Arduino.	Regarding	the	various	methods	of	enabling
networking,	we	began	the	chapter	by	establishing	a	web	server	for	Arduino.	We	concluded
that	the	web	server	on	Arduino	is	not	the	best	way	for	network	communication	due	to	the
limited	number	of	connections	offered	by	the	web	server.	Then	we	demonstrated	the	use
of	Arduino	as	a	web	client	to	enable	HTTP-based	GET	and	POST	requests.	Although	this
method	is	useful	for	request-based	communication	and	requires	fewer	resources	compared
to	a	web	server,	it	is	still	not	the	best	way	for	sensor	communication	due	to	the	additional
data	overhead.	In	the	later	part	of	the	chapter,	we	described	a	lightweight	messaging
protocol,	MQTT,	designed	specifically	for	sensor	communication.	We	demonstrated	its
superiority	to	HTTP-based	protocols	using	a	few	exercises.

With	the	help	of	each	method	of	Arduino	Ethernet	communication,	you	learned	about
compatible	Python	libraries	used	to	support	these	communication	methods.	We	used	the
web.py	library	to	develop	a	web	server	using	Python,	and	demonstrated	the	use	of	the
library	with	multiple	examples.	To	support	the	MQTT	protocol,	we	explored	an	MQTT
broker,	Mosquitto,	and	employed	the	Python	library,	paho_mqtt,	to	serve	the	MQTT
requests.

Overall,	we	covered	every	major	aspect	of	Arduino	and	Python	communication	methods
throughout	this	chapter,	and	demonstrated	them	with	simple	exercises.	In	the	upcoming
chapters,	we	will	build	upon	the	basics	you	learned	in	this	chapter,	in	order	to	develop
advanced	Arduino-Python	projects	that	will	enable	remote	access	to	our	Arduino	hardware
through	the	Internet.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter	9.	Arduino	and	the	Internet	of
Things
In	the	previous	chapter,	we	learned	how	to	access	Arduino	using	Ethernet	from	a	remote
location.	The	main	objective	was	to	get	you	started	with	developing	Arduino-based
network	applications	using	Python.	We	were	able	to	accomplish	this	using	various	tools
such	as	the	web.py	Python	library,	Mosquitto	MQTT	broker,	and	the	Arduino	Ethernet
library.	Remote	access	to	sensor	data	via	a	Python-like	extensible	language	can	open	up
limitless	possibilities	for	sensor-based	web	applications.	In	recent	years,	the	rapid	growth
of	these	applications	has	enabled	the	development	of	a	domain	called	the	Internet	of
Things	(IoT).

In	the	last	chapter,	we	worked	on	Arduino	networking.	However,	it	was	limited	to	LAN
and	the	premise	of	the	exercises	was	limited	to	your	home	or	office.	We	didn’t	even
involve	the	Internet	to	enable	global	access	in	our	exercises.	Traditional	IoT	applications
require	Arduino	to	be	accessed	remotely	from	any	part	of	the	world	via	the	Internet.	In	this
chapter,	we	will	extend	the	Arduino	networking	concepts	by	interfacing	Arduino	with
cloud-based	platforms.	We	will	also	develop	web	applications	to	access	the	sensor	data
from	these	cloud	platforms.	Later	in	the	chapter,	we	will	go	through	the	process	of	setting
up	your	cloud-based	messaging	platform	to	serve	sensor	data.	At	the	end	of	this	chapter,
you	should	be	able	to	design	and	develop	full-stack	IoT	applications,	using	Arduino,
Python,	and	the	cloud.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting	started	with	the	IoT
Long	before	the	Internet,	sensor-	and	actuator-based	electronic	control	systems	existed	in
high-tech	automation	systems.	In	those	systems,	sensors	were	interfaced	to	the
microcontroller	via	hard-wired	connections.	Due	to	extensibility	limitations,	the	coverage
area	of	these	systems	was	geographically	restricted.	Examples	of	these	high-tech	systems
included	factory	automation,	satellite	systems,	weapon	systems,	and	so	on.	In	most	cases,
the	sensors	used	in	these	systems	were	huge	and	the	microcontrollers	were	also	limited	by
their	low	computational	capabilities.

With	recent	advancements	in	technology,	especially	in	the	semiconductor	industry,	the
physical	size	of	sensors	and	microcontrollers	has	significantly	reduced.	It	has	also	been
made	possible	to	manufacture	low-cost	and	highly	efficient	electronic	components,	hence
today	it	is	relatively	inexpensive	to	develop	small	and	efficient	sensor-based	hardware
products.	Arduino	and	Raspberry	Pi	are	great	examples	of	these	achievements.	These
sensor-and	actuator-based	hardware	systems	interface	with	the	physical	world	that	we	live
in.	The	sensors	measure	various	elements	from	the	physical	environment,	while	the
actuators	manipulate	the	physical	environment.	These	types	of	hardware-based	electronic
systems	are	also	known	as	physical	systems.

On	the	other	front,	advancements	in	the	semiconductor	industry	also	enabled	the
development	of	highly	efficient	computation	units,	empowering	personal	computer	and
networking	industries.	This	movement	led	to	the	worldwide	network	of	connected
computers	called	CyberWorld	or	the	Internet.	Every	day,	petabytes	of	data	get	generated
and	transferred	across	the	Internet.

The	domain	of	IoT	stands	at	the	crossroads	of	these	progresses	in	physical	and	cyber
systems,	where	ancient	hardwired	sensor-based	systems	are	ready	to	get	upgraded	to	more
powerful	and	efficient	systems	that	are	also	highly	connected	through	the	Internet.	Due	to
the	large	number	of	sensors	involved,	these	systems	generate	and	send	an	avalanche	of
data.	The	data	generated	by	these	sensors	has	already	eclipsed	the	data	generated	by
humans.

The	IoT	has	started	to	become	a	significant	domain	in	recent	years	after	a	large	number	of
consumer	IoT	products	have	started	entering	the	market.	These	products	include
applications	in	home	automation,	health	care,	activity	tracking,	smart	energy,	and	so	on.
One	of	the	major	reasons	behind	the	rapid	growth	of	the	IoT	domain	is	the	introduction	of
these	visible	solutions.	In	a	large	number	of	cases,	this	was	made	possible	due	to	fast	and
inexpensive	prototyping	that	was	enabled	by	Arduino	and	other	open	source	hardware
platforms.

Up	to	this	point	in	the	book,	we	have	learned	various	methods	of	interfacing	sensors	and
then	developing	applications	using	these	connected	sensors.	In	this	chapter,	we	will	learn
the	last	step	in	the	development	of	a	full-stack	IoT	application—enabling	access	for	your
Python-Arduino	application	through	the	Internet.	Now,	let’s	try	to	first	understand	the
architecture	of	the	IoT.

www.it-ebooks.info

http://www.it-ebooks.info/

Architecture	of	IoT	web	applications
In	this	book,	we	have	covered	three	major	concepts	in	the	first	eight	chapters:

Physical	layer:	We	used	various	sensors	and	actuators	with	the	Arduino	board	to
deal	with	the	physical	environment.	The	sensors	such	as	the	temperature	sensor,
humidity	sensor,	and	motion	sensor	were	used	measured	the	physical	phenomenon,
while	the	actuators	such	as	LEDs	were	utilized	to	alter	or	produce	physical	elements.
Computation	layer:	We	used	Arduino	sketches	and	Python	programs	to	convert
these	physical	elements	into	numerical	data.	We	also	utilized	these	high-level
languages	to	perform	various	computations	such	as	calculating	relative	humidity,
developing	user	interfaces,	plotting	data,	and	providing	web	interfaces.
Interfacing	layer:	Throughout	the	material	that	we	covered,	we	also	utilized	various
interfacing	methods	to	establish	communication	between	Arduino	and	Python.	For
interfacing	part	of	the	interfacing	layer	between	the	physical	and	computation	layers,
we	used	serial	port	libraries,	established	network-based	communication	using	the
REST	and	MQTT	protocol,	and	developed	web	applications.

As	you	can	see,	we	have	developed	applications	with	tightly-coupled	physical,
computation,	and	interfacing	layers.	In	the	research	domain,	these	types	of	applications	are
also	known	as	cyber-physical	systems.	One	of	the	widely	used	and	popular	terms	for	the
domain	of	cyber-physical	system	is	the	IoT.	Although	the	cyber-physical	domain	is
thoroughly	defined	compared	to	the	IoT,	the	IoT	has	recently	gained	more	popularity	due
to	the	large	number	of	subdomains—industrial	Internet,	wearable	devices,	connected
devices,	smart	grid,	and	so	on—that	are	covered	under	this	umbrella	term.	In	simple
terms,	an	application	can	qualify	as	an	IoT	application	if	it	consists	of	hardware	devices
that	deal	with	the	physical	world	and	have	sufficient	computational	capabilities	with
Internet	connectivity.	Let’s	try	to	understand	the	architecture	of	the	IoT	from	the	material
that	we	have	already	covered.

On	the	physical	side,	the	following	figure	shows	the	hardware	components	that	we	utilized
to	deal	with	the	physical	environment.	The	sensors	and	actuators	that	interface	with	the
actual	physical	world	can	be	connected	to	Arduino	using	multiple	low-level	protocols.
These	components	can	be	connected	using	GPIO	pins	and	using	the	I2C	or	SPI	protocols.
The	data	acquired	from	these	components	gets	processed	on	the	Arduino	board	using	the
code	that	is	uploaded	by	the	user.	Although	the	Arduino	code	can	be	made	self-reliant	to
execute	tasks	without	any	external	inputs,	these	inputs	from	users	or	other	applications	are
required	in	advanced	applications.

www.it-ebooks.info

http://www.it-ebooks.info/

As	part	of	the	communication	layer,	Arduino	can	be	connected	locally	to	other	computers
using	USB.	One	can	extend	the	coverage	range	by	utilizing	Ethernet,	Wi-Fi,	or	any	other
radio	communication	method.

As	illustrated	in	the	following	figure,	the	sensor	data	is	collected	using	computation	units
for	advance	processing.	These	computation	units	are	powerful	enough	to	host	operating
systems	and	programming	platforms.	In	this	book,	we	utilized	Python	to	develop	various
features	at	the	computation	layer.	At	this	level,	we	performed	high-level	computation	tasks
such	as	developing	graphical	user	interfaces	using	the	Tkinter	library,	plotting	charts
using	the	matplotlib	library,	and	developing	web	applications	using	the	web.py	library.

www.it-ebooks.info

http://www.it-ebooks.info/

In	all	the	coding	exercises	that	we	performed	previously,	the	physical	coverage	areas	of
the	projects	were	limited	because	of	hardwired	serial	interfaces	or	local	Ethernet	network,
as	displayed	in	the	following	figure:

To	develop	full-stack	IoT	applications,	we	need	to	remotely	access	Arduino	or	host	the
computation	layer	on	the	Internet.	In	this	chapter,	we	are	going	to	work	on	this	missing
link	and	develop	various	applications	to	provide	Internet	connectivity	to	the	exercises.	To
perform	this	operation,	we	are	going	to	utilize	a	commercial	cloud	platform	in	the	first
section	and	develop	our	customized	platform	in	the	later	section.

www.it-ebooks.info

http://www.it-ebooks.info/

As	the	focus	of	this	chapter	is	going	to	be	on	cloud	connectivity,	we	are	not	going	to
develop	a	hardware	circuit	for	each	exercise.	We	will	go	through	the	hardware	design
exercise	only	once	and	keep	using	the	same	hardware	for	all	the	programming	exercises.
Similarly,	we	will	also	reuse	the	web.py	programs	that	we	developed	in	the	previous
chapter	to	focus	on	code	snippets	that	are	associated	with	Python	libraries	to	develop
cloud	applications.

www.it-ebooks.info

http://www.it-ebooks.info/

Hardware	design
Let’s	begin	by	developing	standard	hardware	for	all	the	upcoming	exercises.	We	will	need
the	Arduino	board	that	is	attached	to	the	Ethernet	Shield	to	use	the	Ethernet	protocol	for
network	connectivity.	In	terms	of	components,	you	will	be	using	simple	sensors	and
actuators	that	you	already	used	in	the	previous	coding	exercises.	We	will	use	the	PIR
motion	sensor	and	the	HIH-4030	humidity	sensor	to	provide	digital	and	analog	outputs,
respectively.	We	will	also	have	an	LED	as	part	of	the	hardware	design	and	this	will	be
used	in	coding	exercises	as	an	actuator.	For	more	information	regarding	the	properties	and
detailed	explanations	of	these	sensors,	you	can	refer	to	previous	chapters.

To	begin	assembly	of	the	hardware	components,	first	attach	the	Ethernet	Shield	on	top	of
the	Arduino	board.	Connect	the	sensors	and	actuators	to	the	appropriate	pins,	as	displayed
in	the	following	figure.	Once	you	have	the	hardware	assembled,	you	can	connect	the
Ethernet	Shield	to	your	home	router	using	the	Ethernet	cable.	You	will	need	to	power	the
board	using	the	USB	cable	to	upload	the	Arduino	code	from	your	computer.	In	case	you
want	to	deploy	the	Arduino	board	to	a	remote	location,	you	will	need	an	external	5V
supply	to	power	Arduino.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

The	IoT	cloud	platforms
The	term	IoT	cloud	platform	is	used	for	the	cloud	platforms	that	provide	very	specific
services,	protocol	support,	and	web-based	tools	for	IoT	applications.	In	more	informal
terms,	these	cloud	IoT	platforms	can	be	used	to	upload	your	sensor	data	and	access	them
from	anywhere	using	the	Internet.	With	these	basic	features,	they	also	provide	tools	to
access,	visualize,	and	process	your	sensor	data	on	various	platforms	such	as	computers
and	smartphones.	Examples	of	similar	IoT	cloud	platforms	include	Xively
(http://www.xively.com),	2lemetry	(http://www.2lemetry.com),	Carriots
(http://www.carriots.com),	ThingSpeak	(http://thingspeak.com),	and	so	on.

The	following	figure	shows	the	architecture	of	an	IoT	system	with	an	Arduino-based
sensor	system	that	is	sending	data	to	a	cloud	platform,	while	a	computation	unit	is
accessing	the	data	remotely	from	the	cloud:

Xively,	being	the	oldest	and	most	popular	IoT	platform,	has	a	large	amount	of	community-
based	online	help	that	is	available	for	beginners.	This	is	one	of	the	major	reasons	why	we
have	chosen	Xively	as	our	platform	of	choice	for	the	upcoming	exercises.	Recently,
Xively	has	changed	their	policy	of	creating	free	developer	accounts	and	a	user	has	to
request	access	to	this	free	account	instead	of	obtaining	one	freely.	In	case	you	want	to	use
another	platform	other	than	Xively,	we	have	briefly	covered	a	few	similar	platforms	at	the
end	of	this	section.

www.it-ebooks.info

http://www.xively.com
http://www.2lemetry.com
http://www.carriots.com
http://thingspeak.com
http://www.it-ebooks.info/

Xively	–	a	cloud	platform	for	the	IoT
Xively	is	one	of	the	very	first	IoT-specific	cloud	platforms	that	was	founded	in	2007	as
Pachube.	It	went	through	multiple	name	changes,	as	it	was	called	Cosm,	but	it	is	currently
known	as	Xively.	Xively	provides	an	IoT	cloud	platform	with	tools	and	services	to
develop	connected	devices,	products,	and	solutions.	As	mentioned	on	its	website,	Xively
is	the	public	cloud	that	is	specifically	built	for	the	IoT.

Setting	up	an	account	on	Xively
Now,	we	can	go	ahead	and	set	up	a	new	user	account	for	the	Xively	platform.	To	set	up	an
account,	you	need	to	execute	following	steps	in	the	given	order:

1.	 To	begin	the	sign	up	process	on	Xively.com,	open	https://xively.com/signup	in	a	web
browser.

2.	 On	the	sign	up	page,	you	will	be	prompted	to	select	the	username	and	the	password,
as	displayed	in	the	following	screenshot:

3.	 On	the	next	page,	you	will	be	asked	to	enter	some	additional	information	that
includes	your	full	name,	organization’s	name,	country,	zip	code,	time	zone,	and	so
on.	Fill	out	the	form	appropriately	and	click	on	the	Sign	Up	button:

www.it-ebooks.info

http://Xively.com
https://xively.com/signup
http://www.it-ebooks.info/

4.	 Xively	will	send	an	activation	e-mail	to	the	e-mail	account	that	you	specified	in	the
form.	Open	the	e-mail	and	click	on	the	activation	link.	Check	your	spam	folder	if	you
don’t	see	the	e-mail	in	your	inbox.

5.	 Once	you	click	on	the	activation	link,	you	will	be	redirected	to	the	welcome	page	on
Xively’s	website.	We	advise	you	to	go	through	the	tutorials	provided	on	the	welcome
page,	as	it	will	help	you	to	get	familiar	with	the	Xively	platform.

6.	 After	completing	the	tutorials,	you	can	come	back	to	the	main	user	screen	from	the
page	using	the	https://xively.com/login	link.

If	you	are	not	already	logged	in,	you	will	require	your	e-mail	address	as	the	username
and	an	appropriate	password	to	log	into	the	Xively	platform.

Working	with	Xively
The	Xively	platform	lets	you	create	cloud	device	instances	that	can	be	connected	to	the
actual	hardware	device,	app,	or	service.	Perform	the	following	steps	in	order	to	work	with
Xively:

1.	 To	begin	working	with	the	Xively	platform,	add	a	device	from	the	main	page,	as

www.it-ebooks.info

https://xively.com/login
http://www.it-ebooks.info/

displayed	in	the	following	screenshot:

2.	 Once	you	click	on	the	Add	Device	button,	it	will	prompt	you	to	the	following
window	where	you	will	be	asked	to	provide	the	device	name,	description,	and
privacy	status	of	the	device	that	you	are	going	to	assign.	In	the	form,	select	a	device
name	that	you	want	your	development	device	to	be	called,	provide	a	brief
description,	and	select	Private	Device	as	the	privacy	status:

www.it-ebooks.info

http://www.it-ebooks.info/

3.	 Once	you	click	the	Add	Device	button,	Xively	will	create	a	device	instance	with
automatically-generated	parameters	and	prompt	you	to	the	development	workbench
environment.	On	the	page	of	the	device	that	you	just	added,	you	can	see	various
identification	and	security	parameters	such	as	Product	ID,	Serial	Number,	Feed	ID,
Feed	URL,	and	API	Endpoint.	From	among	these	parameters,	you	will	frequently
need	the	Feed	ID	information	for	the	upcoming	exercises:

4.	 A	unique	and	secure	API	key	of	the	newly	created	device	is	also	located	in	the	right-
hand	side	bar	of	the	page.	This	API	key	is	very	important	and	needs	to	be	secured
just	like	your	password,	as	anyone	with	the	API	key	can	access	the	device.

www.it-ebooks.info

http://www.it-ebooks.info/

5.	 Now,	to	remotely	access	this	device,	open	the	terminal	and	use	the	cURL	command
to	send	data	to	it.	In	the	following	command,	change	the	<Your_Feed_ID>	and
<Your_API_key>	values	with	the	ones	available	for	your	device:

$	curl	--request	PUT	--data	"0,10"	--header	"X-ApiKey:	<Your_API_key"	

https://api.xively.com/v2/feeds/<Your_Feed_ID>.csv

6.	 As	you	can	see,	the	previous	command	sent	the	value	of	10	on	channel	0	of	your
device	on	Xively.	After	executing	the	previous	command,	you	will	notice	that	the
Xively	workbench	is	updated	with	the	information	that	you	just	sent	using	cURL:

7.	 Try	sending	multiple	values	on	channel	0	using	the	previous	command.	On	the
Xively	workbench,	you	will	be	able	to	see	a	plot	being	generated	by	these	values	in
real	time.	Access	the	plot	by	clicking	on	channel	0	in	the	workbench:

www.it-ebooks.info

http://www.it-ebooks.info/

Using	the	method	that	we	used	in	this	example,	we	can	also	configure	Arduino	to	send
sensor	values	automatically	to	the	Xively	platform.	This	will	enable	the	storage	and
visualization	of	Arduino	data	on	Xively.

www.it-ebooks.info

http://www.it-ebooks.info/

Alternative	IoT	platforms
In	this	section,	we	have	provided	important	links	for	the	ThingSpeak	and	Carriots
platforms.	As	we	are	not	covering	these	platforms	in	detail,	these	links	will	help	you	to
find	similar	examples	to	interface	Arduino	and	Python	with	ThingSpeak	and	Carriots.

ThingSpeak
The	tutorials	in	the	following	links	will	help	you	to	get	familiar	with	the	ThingSpeak
platform	if	you	chose	to	use	it	instead	of	Xively:

The	official	website:	https://thingspeak.com/
Using	Arduino	and	Ethernet	to	update	a	ThingSpeak	channel:
http://community.thingspeak.com/tutorials/arduino/using-an-arduino-ethernet-shield-
to-update-a-thingspeak-channel/
Arduino	examples	for	ThingSpeak:	https://github.com/iobridge/ThingSpeak-
Arduino-Examples
Communicating	with	ThingSpeak	using	Python:
http://www.australianrobotics.com.au/news/how-to-talk-to-thingspeak-with-python-
a-memory-cpu-monitor
Using	Arduino	and	Python	to	talk	to	a	ThingSpeak	channel:
http://vimeo.com/19064691
Series	of	ThingSpeak	tutorials:	http://community.thingspeak.com/tutorials/

ThingSpeak	is	an	open	source	platform	and	you	can	create	your	own	customized	version
of	ThingSpeak	using	the	files	provided.	You	can	obtain	these	files	and	the	associated
guideline	from	https://github.com/iobridge/ThingSpeak.

Carriots
Carriots	also	provides	a	free,	basic	account	for	developers.	If	you	want	to	use	Carriots	as
an	alternative	to	Xively,	use	the	tutorials	in	the	following	links	to	get	started:

The	official	website:	https://www.carriots.com/
Setting	up	an	account	on	Carriots:	https://learn.adafruit.com/wireless-gardening-
arduino-cc3000-wifi-modules/setting-up-your-carriots-account
The	Carriots	library	for	Arduino:	https://github.com/carriots/arduino_library
A	Carriots	example	for	Arduino:	https://github.com/carriots/arduino_examples
Connect	Carriots	to	the	Python	web	application:
http://www.instructables.com/id/Connect-your-Carriots-Device-to-Panics-Status-Boa/

www.it-ebooks.info

https://thingspeak.com/
http://community.thingspeak.com/tutorials/arduino/using-an-arduino-ethernet-shield-to-update-a-thingspeak-channel/
https://github.com/iobridge/ThingSpeak-Arduino-Examples
http://www.australianrobotics.com.au/news/how-to-talk-to-thingspeak-with-python-a-memory-cpu-monitor
http://vimeo.com/19064691
http://community.thingspeak.com/tutorials/
https://github.com/iobridge/ThingSpeak
https://www.carriots.com/
https://learn.adafruit.com/wireless-gardening-arduino-cc3000-wifi-modules/setting-up-your-carriots-account
http://github.com/carriots/arduino_library
https://github.com/carriots/arduino_examples
http://www.instructables.com/id/Connect-your-Carriots-Device-to-Panics-Status-Boa/
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Developing	cloud	applications	using
Python	and	Xively
Now,	you	have	a	basic	idea	about	the	available	commercial	IoT	platforms	and	you	can
select	one	according	to	your	comfort	level	and	requirements.	It	will	be	very	difficult	to
comprehensively	explain	every	cloud	platform	with	practical	examples,	as	the	objective	of
this	chapter	is	to	make	you	familiar	with	integrating	the	cloud	platform	with	Python	and
Arduino.	For	this	reason,	we	are	going	to	use	Xively	as	the	de	facto	IoT	cloud	platform	for
the	rest	of	the	integration	exercises.

Now	that	you	know	how	to	create	an	account	on	Xively	and	work	with	the	Xively
platform,	it	is	time	to	start	interfacing	real	hardware	with	the	Xively	platform.	In	this
section,	we	will	go	through	methods	to	upload	and	download	data	from	Xively.	We	will
combine	the	Arduino	hardware	that	we	built	with	the	Python	programs	to	show	you	basic
methods	of	communicating	with	Xively.

www.it-ebooks.info

http://www.it-ebooks.info/

Interfacing	Arduino	with	Xively
The	first	stage	to	establish	communication	with	Xively	includes	interfacing	the	Arduino
board	with	the	Xively	platform	via	standalone	Arduino	code.	We	have	already	built	the
necessary	hardware	using	the	Arduino	Uno,	Ethernet	Shield,	and	a	few	sensors.	Let’s
connect	it	to	your	computer	using	the	USB	port.	You	also	need	to	connect	the	Ethernet
Shield	to	your	home	router	using	the	Ethernet	cable.

Uploading	Arduino	data	to	Xively
The	Arduino	IDE	has	a	built-in	example	that	can	be	used	to	communicate	with	the	Xively
service.	This	is	known	as	PachubeClient	(Pachube	was	Xively’s	previous	name).

Note
It	is	important	to	note	that	the	reason	behind	using	this	default	example	is	to	give	you	a
jump-start	in	the	interfacing	exercises.	This	particular	sketch	is	rather	old	and	may	get
dropped	as	a	default	exercise	in	the	upcoming	releases	of	the	Arduino	IDE.	In	that	case,
you	can	directly	jump	to	the	next	exercise	or	develop	your	custom	sketch	to	perform	the
same	exercise.

Perform	the	following	steps	to	upload	Arduino	data	to	Xively:

1.	 Open	the	Arduino	IDE	and	then	open	the	PachubeClient	example	by	navigating	to
File	|	Examples	|	Ethernet	|	PachubeClient.

2.	 To	establish	communication	with	Xively,	you	will	need	the	feed	ID	and	the	API	key
of	your	Xively	device,	which	you	obtained	in	the	last	section.

3.	 In	the	opened	Arduino	sketch,	perform	the	following	changes	using	the	obtained	feed
ID	and	API	key.	You	can	specify	any	project	name	for	the	USERAGENT	parameter:

#define	APIKEY								"<Your-API-key>"

#define	FEEDID									<Your-feed-ID>

#define	USERAGENT						"<Your-project-name>"

4.	 In	the	Arduino	sketch,	you	will	also	have	to	change	the	MAC	address	and	the	IP
address	of	your	Ethernet	Shield.	You	should	be	familiar	with	obtaining	these
addresses	from	the	exercise	that	you	performed	in	the	previous	chapter.	Use	these
values	and	modify	the	following	lines	of	code	appropriately:

byte	mac[]	=	{0x90,	0xA2,	0xDA,	0x0D,	0x3F,	0x62};

IPAddress	ip(10,0,0,75);

5.	 As	the	opened	Arduino	example	was	created	for	the	Pachube,	you	need	to	update	the
server	address	to	api.xively.com	as	specified	in	the	following	code	snippet.
Comment	the	IP	address	line	as	we	will	not	need	it	anymore	and	add	the	server[]
parameter:

//IPAddress	server(216,52,233,122);

char	server[]	=	"api.xively.com";

6.	 In	the	sendData()	function,	change	the	channel	name	to	HumidityRaw	as	we	have	our
HIH-4030	humidity	sensor	connected	to	the	analog	port.	We	are	not	performing	any

www.it-ebooks.info

http://www.it-ebooks.info/

relative	humidity	calculations	at	this	stage	and	are	going	to	upload	just	the	raw	data
from	the	sensor:

//	here's	the	actual	content	of	the	PUT	request:

client.print("HumidityRaw,");

client.println(thisData);

7.	 Once	you	have	performed	these	changes,	open	the	XivelyClientBasic.ino	file	from
the	folder	containing	codes	for	this	chapter.	Compare	them	with	your	current	sketch
and	compile/upload	the	sketch	to	the	Arduino	board	if	everything	seems	satisfactory.
Once	you	have	uploaded	the	code,	open	the	Serial	Monitor	window	in	the	Arduino
IDE	to	observe	the	following	output:

8.	 If	you	see	an	output	in	the	Serial	Monitor	window	that	is	similar	to	the	one
displayed	in	the	previous	screenshot,	your	Arduino	is	successfully	connected	to
Xively	and	is	uploading	data	on	the	HumidityRaw	channel.

9.	 Open	your	device	in	Xively’s	website	and	you	will	be	able	to	see	an	output	that	is
similar	to	the	following	screenshot	on	the	web	page.	This	confirms	that	you	have
successfully	uploaded	data	to	an	IoT	cloud	platform	using	your	remotely-located
Arduino:

www.it-ebooks.info

http://www.it-ebooks.info/

Downloading	data	to	Arduino	from	Xively
In	the	previous	coding	exercise,	we	used	a	default	Arduino	example	to	communicate	with
Xively.	However,	Xively	also	provides	a	very	efficient	Arduino	library	with	built-in
functions	for	rapid	programming.	In	the	next	exercise,	we	will	use	an	alternative	method
to	communicate	with	the	Xively	platform	using	the	Xively-Arduino	library.	Although	you
can	use	either	of	these	methods,	we	recommend	that	you	use	the	Xively-Arduino	library
as	it	is	officially	maintained	by	Xively.

In	this	exercise,	we	will	download	digital	values	from	a	channel	called	LED.	Later,	we
will	use	these	digital	values,	0	and	1,	to	switch	an	LED	that	is	connected	to	our	Arduino
board.	As	an	input	to	this	channel,	we	will	alter	the	current	value	of	the	channel	on	the
Xively	platform’s	website	while	letting	the	Arduino	download	that	value	and	perform	the
appropriate	task.

Let’s	begin	by	importing	the	Xively-Arduino	library	and	its	dependencies.	As	you	already
know	how	to	import	libraries	in	the	Arduino	IDE,	visit
https://github.com/amcewen/HttpClient	to	download	and	import	the	HttpClient	library.
This	is	a	dependency	that	is	required	by	the	Xively-Arduino	library	to	function.

Once	you	have	imported	the	HttpClient	library,	download	the	Xively-Arduino	library
from	https://github.com/xively/xively_arduino	and	repeat	the	import	process.

The	Xively-Arduino	library	ships	with	few	examples	so	that	you	can	get	started.	We	will
use	their	example	as	base	code	for	downloading	data	for	our	exercise.

1.	 In	the	Arduino	IDE,	navigate	to	File	|	Examples	|	Xively_arduino	|
DatastreamDownload	and	open	the	DatastreamDownload	example.	Change	the
default	API	key	to	your	own	API	key	that	was	obtained	from	the	device	that	you
created.	As	displayed	in	the	following	code	snippet,	you	need	to	also	identify	your
channel	name,	which	is	LED	in	this	case:

char	xivelyKey[]	=	"<Your-API-key>";

www.it-ebooks.info

https://github.com/amcewen/HttpClient
https://github.com/xively/xively_arduino
http://www.it-ebooks.info/

char	ledId[]	=	"LED";

2.	 The	Xively-Arduino	library	requires	you	to	define	the	XivelyDatastream	variable
as	an	array.	You	can	also	specify	multiple	data	streams	according	to	your	application:

XivelyDatastream	datastreams[]	=	{

		XivelyDatastream(ledId,	strlen(ledId),	DATASTREAM_FLOAT),

};

3.	 You	also	need	to	declare	a	variable	called	feed	using	the	XivelyFeed	function.	As
displayed	in	the	following	line	of	code,	replace	the	default	feed	ID	with	the
appropriate	one.	In	the	initialization	of	the	feed	variable,	the	value	1	represents	the
number	of	datastreams	in	the	XivelyDatastream	array:

XivelyFeed	feed(<Your-feed-ID>,	datastreams,	1);

4.	 In	our	exercise,	we	want	to	periodically	retrieve	the	value	of	the	LED	channel	and
turn	the	actual	LED	on	or	off	accordingly.	In	the	following	code	snippet,	we	obtain
the	float	value	from	feed[0],	where	0	specifies	the	data	stream	located	at	the	0
position	in	the	datastreams	array:

Serial.print("LED	value	is:	");

Serial.println(feed[0].getFloat());

if	(feed[0].getFloat()	>=	1){

			digitalWrite(ledPin,	HIGH);

}

			else{

			digitalWrite(ledPin,	LOW);

}

5.	 As	you	now	know	that	the	parameters	need	to	be	changed	for	this	exercise,	open	the
XivelyLibBasicRetrieveData.ino	Arduino	sketch	from	the	code	folder.	This	sketch
contains	the	exact	code	that	you	need	to	use	for	the	exercise.	Although	this	sketch
includes	the	necessary	modifications,	you	will	still	have	to	change	the	values	for
account-specific	parameters,	that	is,	the	API	key,	feed	ID,	and	so	on.	Before	you	go
ahead	and	upload	this	sketch,	go	to	the	Xively	platform	and	create	a	channel	called
LED	with	Current	Value	as	1,	as	displayed	in	the	following	screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

6.	 Now,	compile	and	upload	the	code	to	your	Arduino.
7.	 Once	you	have	uploaded	the	compiled	code	to	your	Arduino,	open	the	Serial

Monitor	window	and	wait	for	an	output	that	is	similar	to	the	one	displayed	in
following	screenshot.	You	will	notice	that	the	LED	on	the	Arduino	hardware	is
turned	on:

8.	 You	can	go	back	to	the	Xively	LED	channel	and	change	the	Current	Value	field	to
0.	Within	a	few	seconds,	you	will	notice	that	the	LED	on	the	Arduino	hardware	is
turned	off.	With	this	exercise,	you	have	successfully	established	two-way
communication	between	Arduino	and	the	Xively	platform.

Advanced	code	to	upload	and	download	data	using	Arduino
In	the	previous	two	Arduino	exercises,	we	individually	performed	the	uploading	and
downloading	tasks.	In	this	exercise,	we	want	to	create	an	Arduino	program	where	we	can

www.it-ebooks.info

http://www.it-ebooks.info/

upload	data	from	the	connected	sensors	(the	PIR	motion	sensor	and	the	HIH-4030
humidity	sensor)	while	retrieving	the	value	to	control	the	LED.	Open	the	Arduino	sketch,
XivelyLibAdvance.ino,	which	contains	the	code	that	demonstrates	both	the
functionalities.	As	you	can	see	in	the	following	code	snippet,	we	have	defined	three
separate	channels	for	each	component	while	having	independent	XivelyDatastream
objects	for	upload	(datastreaU[])	and	download	(datastreamD[]).	Similarly,	we	have
also	created	two	different	feeds,	feedU	and	feedD.	The	main	reason	behind	delegating	the
upload	and	download	tasks	to	different	objects	is	to	independently	update	the	value	of	the
LED	channel	while	uploading	the	data	stream	for	channels,	HumidityRaw	and	MotionRaw:

char	ledId[]	=	"LED";

char	humidityId[]	=	"HumidityRaw";

char	pirId[]	=	"MotionRaw";

int	ledPin	=	2;

int	pirPin	=	3;

XivelyDatastream	datastreamU[]	=	{

		XivelyDatastream(humidityId,	strlen(humidityId),	DATASTREAM_FLOAT),

		XivelyDatastream(pirId,	strlen(pirId),	DATASTREAM_FLOAT),

};

XivelyDatastream	datastreamD[]	=	{

		XivelyDatastream(ledId,	strlen(ledId),	DATASTREAM_FLOAT),

};

XivelyFeed	feedU(<Your-feed-ID>,	datastreamU,	2);

XivelyFeed	feedD(<Your-feed-ID>,	datastreamD,	1);

In	the	loop()	function	of	the	Arduino	code,	we	periodically	fetch	the	current	value	of	the
LED	channel	from	feedD	and	then	perform	the	LED	action:

int	retD	=	xivelyclient.get(feedD,	xivelyKey);

Serial.print("xivelyclient.get	returned	");

In	the	second	stage	of	the	periodic	function,	we	obtain	the	raw	sensor	values	from	the
analog	and	digital	pins	of	the	Arduino	board	and	then	upload	those	values	using	feedU:

int	humidityValue	=	analogRead(A0);

datastreamU[0].setFloat(humidityValue);

int	pirValue	=	digitalRead(pirPin);

datastreamU[1].setFloat(pirValue);

int	retU	=	xivelyclient.put(feedU,	xivelyKey);

Serial.print("xivelyclient.put	returned	");

Make	the	appropriate	changes	in	the	code	to	accommodate	feed	ID	and	API	key	and	then
upload	the	sketch	to	the	Arduino	board.	Once	you	upload	this	Arduino	sketch	to	your
platform,	you	should	be	able	to	see	the	following	output	on	the	Serial	Monitor	window.
You	can	now	disconnect	your	Arduino	from	the	USB	port	and	connect	the	external	power
supply.	Now	that	you	have	connected	your	Arduino	assembly	to	your	local	network	using
an	Ethernet	cable,	you	can	place	the	Arduino	assembly	at	any	location	in	your	workplace.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Python	–	uploading	data	to	Xively
Similar	to	how	we	interfaced	Arduino	to	Xively,	we	will	now	explore	methods	to	connect
the	Xively	platform	via	Python	and	thus	complete	the	loop.	In	this	section,	we	will	focus
on	different	ways	of	uploading	data	to	Xively	using	Python.	We	will	start	with	a	basic
method	of	communicating	with	Xively	and	extend	it	further	with	web.py	to	implement	the
interface	using	a	web	application.

To	begin	with,	let’s	first	install	Xively’s	Python	library,	xively-python,	on	your	computer
using	the	following	command:

$	sudo	pip	install	xively-python

The	basic	method	for	sending	data
Once	again,	you	will	need	the	API	key	and	feed	ID	of	your	virtual	device	that	you	created
on	the	Xively	platform.	Python,	assisted	by	the	xively-python	library,	provides	very
simple	methods	to	establish	a	communication	channel	with	the	Xively	platform.	From
your	code	folder,	open	the	uploadBasicXively.py	file.	As	specified	in	the	code,	replace
the	FEED_ID	and	API_KEY	variables	with	the	appropriate	feed	ID	and	API	key:

FEED_ID	=	"<Your-feed-ID>"

API_KEY	=	"<Your-API-key>"

Using	the	XivelyAPIClient	method,	create	an	api	instance	and	create	the	feed	variable
by	using	the	api.feeds.get()	method:

api	=	xively.XivelyAPIClient(API_KEY)

feed	=	api.feeds.get(FEED_ID)

Just	as	we	did	in	the	Arduino	exercises,	you	will	need	to	create	data	streams	for	each
channel	from	the	feeds.	As	specified	in	the	following	code	snippet,	try	to	get	the	specified
channel	from	the	feed	or	create	one	if	it	is	not	present	on	the	Xively	virtual	device.	You
can	also	specify	tags	and	other	variables	while	creating	a	new	channel:

try:

		datastream	=	feed.datastreams.get("Random")

except	HTTPError	as	e:

		print	"HTTPError({0}):	{1}".format(e.errno,	e.strerror)

		datastream	=	feed.datastreams.create("Random",	tags="python")

		print	"Creating	'Random'	datastream"

Once	you	have	opened	the	data	stream	for	a	channel,	you	can	specify	the	current	value
using	the	datastream.cuurent_value	method	and	update	the	value,	which	will	upload
this	value	to	the	specified	channel:

datastream.current_value	=	randomValue

datastream.at	=	datetime.datetime.utcnow()

datastream.update()

Once	you	have	performed	the	specified	modifications	to	the	uploadBasicXively.py	file,
execute	it	using	the	following	command:

www.it-ebooks.info

http://www.it-ebooks.info/

$	python	uploadBasicXively.py

Open	your	virtual	device	on	the	Xively	website	to	find	the	Random	channel	populated	with
the	data	that	you	uploaded.	It	will	look	similar	to	the	following	screenshot:

Uploading	data	using	a	web	interface	based	on	web.py
In	the	previous	chapter,	we	worked	with	the	web.py	library	while	developing	templates
and	web	applications.	In	this	exercise,	we	will	utilize	one	of	the	programs	in	which	we
created	the	web.py	forms	with	the	Xively	code	that	we	developed	in	the	previous	exercise.
The	goal	of	this	exercise	is	to	send	data	to	the	LED	channel	using	a	web	application	while
observing	the	LED’s	behavior	on	the	Arduino	hardware.

You	can	find	the	Python	program	for	this	exercise	in	this	chapter’s	folder	with	the	name
uploadWebpyXively.py.	As	you	can	see	in	the	code,	we	are	using	the	web.py	forms	to
obtain	two	inputs,	Channel	and	Value.	We	will	use	these	inputs	to	modify	the	current
value	of	the	LED	channel:

submit_form	=	form.Form(

								form.Textbox('Channel',	description	=	'Channel'),

								form.Textbox('Value',	description	=	'Value'),

								form.Button('submit',	type="submit",	description='submit')

)

The	template	file,	base.html,	is	also	modified	to	accommodate	minor	changes	that	are
required	by	this	exercise.	As	you	can	see	in	the	opened	Python	file,	we	are	using	the	same
code	that	we	used	to	interface	with	Xively	in	the	previous	exercise.	The	only	major
modification	is	done	to	the	datastream.update()	method,	which	is	now	placed	in	the
POST()	function.	This	method	will	be	executed	when	you	submit	the	form.	Once	you
change	the	API	key	and	feed	ID	in	this	file,	execute	the	Python	code	and	open
http://localhost:8080	in	your	web	browser.	You	can	see	the	web	application	running,
as	displayed	in	the	following	screenshot.	Enter	the	value	as	displayed	in	the	figure	to	turn
on	the	LED	on	the	Arduino	board.	You	can	change	the	Value	parameter	to	0	to	turn	off	the
LED.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Python	–	downloading	data	from	Xively
The	process	of	downloading	data	from	Xively	includes	requesting	the	Current	Value
parameter	for	the	specified	channel.	In	the	next	exercise,	we	will	develop	a	reference	code
that	will	be	used	in	the	next	downloading	exercise.	In	that	exercise,	we	will	develop	an
advanced	web	application	to	retrieve	data	from	a	specific	Xively	channel.

As	we	are	using	functions	based	on	the	REST	protocol	to	communicate	with	Xively,
Xively	will	not	simply	notify	you	about	any	new,	available	update,	instead	you	will	have
to	request	it.	At	this	point,	it	is	important	to	note	that	we	will	have	to	periodically	request
data	from	Xively.	However,	Xively	provides	an	alternative	method	called	triggers	to
overcome	this	problem,	which	is	explained	later	in	this	section.

The	basic	method	for	retrieving	data	from	Xively
Just	like	the	uploading	exercises,	the	downloading	exercises	also	require	a	similar	code	to
instantiate	the	XivelyAPIClient()	and	api.feeds.get()	methods.	As	we	are	retrieving
the	data	instead	of	sending	it,	we	will	only	use	the	feed.datastreams.get()	method	and
avoid	the	feed.datastreams.create()	method.	The	download	process	requires	the
channel	to	be	already	present	and	this	is	the	main	reason	why	we	only	have	to	use	the
get()	method:

try:

		datastream	=	feed.datastreams.get("Random")

except	HTTPError	as	e:

		print	"HTTPError({0}):	{1}".format(e.errno,	e.strerror)

		print	"Requested	channel	doesn't	exist"

Once	the	datastream	object	is	initialized,	the	latest	available	value	from	the	channel	can
be	obtained	using	the	datastream.current_value	method:

latestValue	=	datastream.current_value

To	enable	the	complete	code	to	perform	this	exercise,	open	the	downloadXivelyBasic.py
code	and	change	the	values	for	the	feed	ID	and	API	key	to	the	appropriate	ones.	In	this
exercise,	we	are	working	with	the	Random	channel	that	we	created	in	the	uploading
exercise.	Before	you	execute	this	Python	code,	you	need	to	execute	the
uploadXivelyBasic.py	file	that	will	continuously	provide	random	data	to	the	Random
channel.	Now,	you	can	execute	the	downloadXivelyBasic.py	file	that	will	fetch	the
current	value	of	the	Random	channel	periodically	(with	a	delay	specified	by	the	sleep()
function).	As	you	can	see	in	the	following	screenshot,	we	are	getting	a	new	value	for	the
Random	channel	every	10	seconds:

www.it-ebooks.info

http://www.it-ebooks.info/

Retrieving	data	from	the	web.py	web	interface
This	is	an	advanced	exercise	where	we	will	upload	data	to	one	Xively	channel	after
fetching	data	from	another	Xively	channel,	and	process	it	by	using	the	data	entered	via	the
web	form.	As	you	know,	the	analog	pin	on	which	the	HIH-4030	sensor	is	connected
provides	you	with	raw	sensor	value,	whereas	the	relative	humidity	depends	upon	the	value
of	the	current	temperature.	In	this	exercise,	we	will	develop	a	web	application	so	that	the
user	can	manually	enter	the	temperature	value	and	we	will	use	this	to	calculate	relative
humidity	from	the	raw	sensor	data.

Before	we	begin	with	the	details	of	the	code,	let’s	first	open	the	uploadWebpyXively.py
file,	change	the	appropriate	parameters,	and	execute	the	file.	Now,	in	a	web	browser,	open
the	http://localhost:8080	location.	You	will	be	able	to	see	following	web	application,
asking	you	to	provide	it	with	the	current	temperature	value.	Meanwhile,	upload	the
XivelyLibAdvance.ino	sketch	to	the	Arduino	board	after	making	the	appropriate	changes.
With	this	program,	Arduino	will	start	sending	raw	motion	and	humidity	values	to	the
MotionRaw	and	HumidityRaw	channels.	In	the	web	application	that	is	running,	submit	the
form	with	the	custom	temperature	value	and	you	will	be	able	to	see	the	web	application
load	the	current	relative	humidity	in	percentage	units.	Internally,	when	you	submitted	the
form,	the	web	application	retrieved	the	current	raw	humidity	value	from	the	HumidityRaw
channel,	executed	the	relativeHumidity(data,	temperature)	function,	uploaded	the
calculated	humidity	value	to	a	new	channel	called	Humidity,	and	then	displayed	that	value
in	the	web	application.

www.it-ebooks.info

http://www.it-ebooks.info/

If	you	open	your	Xively	platform	page	on	a	web	browser,	you	will	be	able	to	see	a	newly
created	Humidity	channel	with	the	current	value	for	relative	humidity.	You	can	submit
multiple	values	for	temperature	in	the	web	application	to	see	the	results	reflected	on	the
graph	of	the	Humidity	channel,	as	displayed	in	the	following	screenshot.	Although	this
exercise	demonstrates	a	single	use	case,	this	web	application	can	be	extended	in	multiple
ways	to	create	complex	applications.

Triggers	–	custom	notifications	from	Xively
The	Xively	platform	primarily	deploys	services	based	on	the	REST	protocol,	which
doesn’t	have	a	provision	to	automatically	publish	data	when	it	is	updated	with	a	new
value.	In	order	to	overcome	this	limitation,	Xively	implements	the	concept	of	triggers,
which	provide	additional	functionality	beyond	just	publishing	data	when	it	is	changed.

www.it-ebooks.info

http://www.it-ebooks.info/

Through	this,	you	can	basically	create	a	trigger	for	any	channel	to	perform	the	POST
operation	on	the	specified	location	when	conditions	that	are	set	for	that	trigger	get
satisfied	by	the	incoming	data.	For	example,	you	can	set	a	trigger	on	the	Humidity	channel
to	send	you	a	notification	when	the	value	of	humidity	changes,	that	is,	increases	above	or
decrease	below	a	given	threshold.	You	can	create	a	trigger	in	your	Xively	platform
account	by	just	clicking	on	the	Add	Trigger	button,	as	displayed	in	the	following
screenshot:

While	creating	a	trigger,	you	can	specify	the	channel	you	want	to	monitor	and	the
condition	to	trigger	a	notification	on	the	specified	HTTP	POST	URL.	As	shown	in	the
following	screenshot,	complete	the	information	for	Channel,	Condition,	and	HTTP
POST	URL	before	saving	the	trigger.	The	major	drawback	with	this	approach	is	that
Xively	requires	an	actual	URL	to	send	the	POST	notification.	If	your	current	computer
doesn’t	have	a	static	IP	address	or	a	DNS	address,	the	trigger	won’t	be	able	to	send	you
the	notification:

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Your	own	cloud	platform	for	the	IoT
In	the	previous	section,	we	worked	with	a	commercial	IoT	platform	that	also	provides
restricted,	free	access	to	basic	functionalities.	We	also	learned	various	ways	to
communicate	with	Xively	that	is	based	on	the	REST	protocol.	For	any	small	projects	or
prototypes,	Xively	and	other	similar	IoT	platforms	provide	a	sufficient	solution	and	are
therefore	recommended	by	us.	However,	the	limited	free	service	provided	by	Xively	may
not	satisfy	all	of	your	requirements	to	develop	a	full-stack	IoT	product.	The	following	are
a	few	cases	where	you	may	want	to	configure	or	develop	your	own	IoT	platform:

Develop	your	own	commercial	IoT	platform
Develop	custom	features	that	are	exclusive	to	your	product
Add	more	control	features	and	communication	protocols	while	also	securing	your
data
Require	an	inexpensive	solution	for	large-scale	projects

This	section	will	guide	you	through	the	step-by-step	process	of	creating	an	elementary
small-level	IoT	cloud	platform.	The	goal	of	the	section	is	to	make	you	familiar	with	the
requirements	and	the	process	of	creating	an	IoT	platform.	To	develop	a	large-scale,
diverse,	and	feature-rich	platform	such	as	Xively,	you	will	need	a	significant	amount	of
knowledge	and	experience	in	the	domains	of	cloud	and	distributed	computing.
Unfortunately,	cloud	and	distributed	computing	are	out	of	scope	of	this	book	and	we	will
stick	with	the	implementation	of	the	basic	features.

To	develop	a	cloud	platform	that	is	accessible	through	the	Internet,	you	will	at	least
require	a	computational	unit	with	Internet	connection	and	a	static	IP	or	DNS	address.
Today,	the	majority	of	consumer-oriented	Internet	Service	Providers	(ISPs)	do	not
provide	static	IPs	with	their	Internet	service,	making	it	difficult	to	host	a	server	at	home.
However,	various	companies	such	as	Amazon,	Google,	and	Microsoft,	provide	free	or
cost-effective	cloud	computing	services,	which	make	it	easier	to	host	your	cloud	on	their
platforms.	These	services	are	highly	scalable	and	they	are	equipped	with	a	large	amount	of
features	to	satisfy	the	majority	of	consumer	requirements.	In	the	following	section,	you
will	be	creating	your	first	cloud	computing	instance	on	Amazon	Web	Services	(AWS).
Later	in	this	chapter,	we	will	install	and	configure	the	appropriate	software	tools	such	as
Python,	Mosquitto	broker,	and	so	on,	to	utilize	this	Amazon	instance	as	an	IoT	cloud
platform.

Note
The	major	reason	behind	developing	or	configuring	a	personal	cloud	platform	is	to	have
access	to	your	IoT	hardware	through	the	Internet.	Due	to	the	lack	of	a	static	IP	address	for
your	home	network,	you	may	not	be	able	to	access	you	prototypes	or	projects	from	a
remote	location.	A	cloud	platform	can	be	used	as	the	de	facto	computation	unit	for	your
network-based	projects.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting	familiar	with	the	Amazon	AWS	platform
AWS	is	a	collection	of	various	cloud	services	offered	by	Amazon,	which	together	make	up
a	cloud	computing	platform.	One	of	the	original	and	most	popular	services	offered	by
AWS	is	its	Elastic	Computer	Cloud	(EC2)	service.	The	EC2	service	lets	a	user	create
instances	of	a	virtual	machine	with	different	combinations	of	computation	power	and
operating	systems	from	their	large	cloud	infrastructure.	It	is	also	really	easy	to	change	the
computational	properties	of	these	virtual	instances	at	any	time,	making	them	highly
scalable.	When	you	are	trying	to	create	your	own	IoT	platform	using	EC2,	this	scalability
feature	greatly	helps	you	as	you	can	expand	or	compress	the	size	of	your	instances
according	to	demand.	If	you	are	not	familiar	with	the	concept	of	cloud	computing	or	AWS
as	a	particular	product,	you	can	learn	more	about	them	from	http://aws.amazon.com.

The	EC2	cloud	platform	is	different	from	Xively	as	it	provides	general-purpose	cloud
instances,	virtual	machines,	with	computation	power	and	storage	that	can	be	converted	to
any	feature-specific	platform	by	installing	and	configuring	platform-specific	software.	It	is
important	to	note	that	you	really	do	not	have	to	be	an	expert	in	cloud	computing	to	further
advance	in	this	chapter.	The	upcoming	sections	provide	an	intuitive	guide	to	perform	basic
tasks,	such	as	setting	up	an	account,	creating	and	configuring	your	virtual	machines,	and
installing	software	tools	to	create	IoT	platforms.

Setting	up	an	account	on	AWS
Amazon	provides	one	year	of	free	access	to	the	basic	instance	of	the	cloud-based	virtual
machine.	This	instance	includes	750	hours	of	free	usage	time	per	month	and	this	is	greater
than	the	number	of	hours	in	any	month,	thereby	making	it	free	for	the	entire	month.	The
data	storage	capacity	and	bandwidth	of	the	AWS	account	are	sufficient	for	basic	IoT	or
Arudino	projects.	To	create	a	free	account	for	a	year	on	Amazon’s	AWS	cloud	platform,
perform	the	following	steps:

1.	 Open	http://aws.amazon.com	and	click	on	the	button	that	asks	you	to	try	AWS	for
free	or	some	other	similar	text.

2.	 This	action	will	lead	you	to	a	Sign	In	or	Create	an	AWS	Account	page	as	displayed
in	the	following	screenshot.	Enter	the	e-mail	address	that	you	want	to	use	for	this
account	when	you	select	the	I	am	a	new	user.	option	and	click	on	the	Sign	in	using
our	secure	server	button.	If	you	already	have	an	AWS	account	and	you	know	how	to
create	an	account	on	Amazon	AWS,	you	can	use	those	credentials	and	skip	to	the
next	section:

www.it-ebooks.info

http://aws.amazon.com
http://aws.amazon.com
http://www.it-ebooks.info/

Note
Amazon	only	allows	one	free	instance	for	each	account.	If	you	are	an	existing	AWS
user	and	your	free	instance	is	already	occupied	with	another	application,	you	can	use
the	same	instance	to	accommodate	the	MQTT	broker	or	buy	another	instance.

3.	 On	the	next	page,	you	will	be	prompted	to	enter	your	name,	e-mail	address,	and	a
password,	as	displayed	in	the	following	screenshot.	Fill	in	the	information	to
continue	with	the	sign	up	process:

www.it-ebooks.info

http://www.it-ebooks.info/

4.	 You	will	be	asked	to	enter	your	credit	card	information	during	the	sign	up	process.
However,	you	won’t	be	charged	for	using	the	services	included	in	the	free	account.
Your	credit	card	will	be	only	used	if	you	exceed	any	limitations	or	buy	any	additional
services.

5.	 The	next	stage	includes	the	verification	of	your	account	using	your	phone	number.
Follow	the	instructions	that	are	displayed	in	the	following	screenshot	to	complete	the
identity	verification	process:

6.	 Once	you	have	verified	your	identity,	you	will	be	redirected	to	the	page	that	lists	the
available	Amazon	AWS	plans.	Select	the	appropriate	plan	that	you	want	to	subscribe
to	and	continue.	If	you	are	not	sure,	you	can	select	the	Basic	(Free)	plan	option,
which	we	recommend	for	our	purpose.	The	Amazon	Management	Console	page
will	let	you	select	other	plans	if	you	want	to	upgrade	the	current	one.

7.	 Launch	the	Amazon	management	console.

As	you	have	an	Amazon	AWS	account	now,	let’s	create	your	virtual	instance	on	it.

Creating	a	virtual	instance	on	the	AWS	EC2	service
In	order	to	create	a	virtual	instance	on	Amazon’s	EC2	platform,	first	log	in	to	AWS	using
your	credentials	and	open	the	management	console.	Next,	click	on	the	EC2	tab	and
execute	the	following	instructions	step	by	step:

1.	 On	the	EC2	Console	page,	go	to	Create	Instance	and	click	on	the	Launch	Instance
button.	This	will	open	a	wizard	to	create	an	instance	that	will	guide	you	through	the
setup	process:

www.it-ebooks.info

http://www.it-ebooks.info/

2.	 On	the	first	page	of	the	wizard,	you	will	be	prompted	to	select	an	operating	system
for	your	virtual	instance.	Select	Ubuntu	Server	14.04	LTS	as	displayed	in	the	next
screenshot,	which	is	eligible	for	the	free	tier.	To	avoid	any	charges	for	using	an
advanced	instance,	make	sure	that	the	option	you	select	is	eligible	for	the	free	tier:

3.	 In	next	window,	you	will	be	prompted	with	a	list	of	options	that	have	different
configurations	of	computational	capacity.	From	the	General	purpose	family,	select
the	t2.micro	type,	which	is	eligible	for	the	free	tier.	The	computational	capabilities
provided	by	the	t2.micro	tier	are	sufficient	for	the	exercises	that	we	are	going	to
perform	in	the	book	and	for	most	of	the	DIY	projects.	Make	sure	that	you	do	not
select	any	other	tier	unless	you	are	confident	of	your	selection.

4.	 Once	you	have	selected	the	specified	tier,	click	on	the	Review	and	Launch	button	to
review	the	final	configuration	of	the	instance.

5.	 Review	the	configuration	and	make	sure	that	you	have	selected	the	appropriate
options,	as	mentioned	earlier.	You	can	now	click	on	the	Launch	button	to	proceed
further.

6.	 This	will	open	a	pop-up	window	that	will	prompt	you	to	create	a	new	key	pair	that
will	be	used	for	authentication	in	the	upcoming	steps:

www.it-ebooks.info

http://www.it-ebooks.info/

7.	 As	shown	in	the	previous	screenshot,	select	Create	a	new	key	pair	from	the	first
drop-down	menu	while	providing	a	name	for	the	key	pair.	Click	on	the	Download
Key	Pair	button	to	download	the	key.	The	downloaded	key	will	have	the	name	that
you	provided	in	the	previous	option	with	the	.pem	extension.	If	you	already	have	an
existing	key,	you	can	select	the	appropriate	options	from	the	first	drop-down	menu.
You	will	need	this	key	every	time	you	want	to	log	in	to	this	instance.	Save	this	key	in
a	safe	place.

8.	 Once	again,	click	on	the	Launch	Instances	button	to	finally	start	the	instance.	Your
virtual	instance	is	launched	on	AWS	now	and	it	is	running	in	the	EC2.

9.	 Now,	click	on	the	View	Instance	button	that	will	take	you	back	to	the	EC2	console
window.	You	will	be	able	to	see	your	recently	created	t2.micro	instance	in	the	list.

10.	 To	find	out	more	details	about	your	virtual	instance,	select	it	from	the	list.	As	soon	as
you	select	your	instance,	you	will	be	able	to	see	additional	information	in	the	bottom
tab.	This	information	includes	the	public	DNS,	private	DNS,	public	IP	address,	and
so	on.

www.it-ebooks.info

http://www.it-ebooks.info/

11.	 Save	this	information,	as	you	will	need	it	to	log	in	to	your	instance.

Now,	you	have	successfully	created	and	turned	on	a	virtual	cloud	instance	using	Amazon
AWS.	However,	this	instance	is	running	in	the	Amazon	EC2	and	you	will	have	to
remotely	authenticate	into	this	instance	to	access	its	resources.

Logging	into	your	virtual	instance
In	reality,	your	virtual	instance	is	a	virtual	computer	on	a	cloud	with	computation
resources	that	are	similar	to	your	regular	computer.	You	now	need	to	log	in	to	the	running
virtual	instance	to	access	files,	run	scripts,	and	install	additional	packages.	To	establish	a
secure	authentication	and	access	procedure,	you	need	to	use	the	Secure	Shell	(SSH)
protocol	and	there	are	multiple	ways	to	use	SSH	from	your	computer.	If	you	are	using
Mac	OS	X	or	Ubuntu,	an	SSH	client	program	already	exists	within	your	operating	system.
For	Windows,	you	can	download	the	PuTTY	SSH	client	from	http://www.putty.org/.

From	the	EC2	management	window,	retrieve	the	public	IP	address	of	your	instance.	To
use	the	default	SSH	client	in	the	Linux	or	Mac	environment,	open	the	terminal	and
navigate	to	the	folder	where	you	have	saved	your	key	file	with	the	.pem	extension.	In	the
terminal	window,	execute	the	following	command	to	make	your	key	accessible:

$	chmod	400	test.pem

Once	you	have	changed	permission	for	your	key	file,	run	the	following	command	to	log	in
to	the	virtual	instance.	In	the	command,	you	will	have	to	replace	<key-name>	with	the	file
name	of	your	key	and	<public-IP>	with	the	public	IP	that	you	retrieved	from	the
management	console:

$	ssh	–i	<key-name>.pem	ubuntu@<public-IP>

Once	you	execute	this	command,	you	will	be	asked	to	continue	with	the	connection
process	if	you	are	authenticating	the	instance	for	the	very	first	time.	At	the	prompt,	write
yes	and	press	Enter	to	continue.	On	successful	authentication,	you	will	be	able	to	see	the
command	prompt	of	your	virtual	instance	in	the	same	terminal	window.

In	case	you	are	using	the	Windows	operating	system	and	are	not	sure	about	the	status	of
your	SSH	client,	select	your	instance	in	the	EC2	window	and	click	on	the	Connect	button

www.it-ebooks.info

http://www.putty.org/
http://www.it-ebooks.info/

in	the	top	navigation	bar,	which	is	displayed	in	the	following	screenshot:

This	action	will	open	a	pop-up	window	with	a	short	tutorial	that	explains	the	connection
process.	This	tutorial	is	also	linked	to	the	step-by-step	authentication	guide	for	PuTTY.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating	an	IoT	platform	on	the	EC2	instance
As	you	have	successfully	set	up	an	Amazon	EC2	instance,	you	have	a	virtual	computer
that	is	running	in	the	cloud	and	has	a	static	IP	address	to	enable	remote	access.	However,
this	instance	cannot	be	categorized	as	an	IoT	platform,	as	it	only	contains	a	plain	operating
system	(Ubuntu	Linux	in	our	case)	and	lacks	the	necessary	software	packages	and
configurations.

There	are	two	distinct	ways	of	setting	up	a	custom	IoT	cloud	platform	on	your	virtual
instance:

Setting	up	an	open	source	IoT	platform	such	as	ThingSpeak
Separately	installing	and	configuring	the	required	software	tools

Keep	the	following	points	in	mind	when	setting	up	an	open	source	IoT	platform:

ThingSpeak	is	one	of	the	open	source	IoT	platforms	that	provides	supporting	files	to
create	and	host	your	own	replica	of	the	ThingSpeak	platform.
Setting	up	this	platform	on	your	AWS	instance	is	quite	simple	and	you	can	obtain	the
necessary	files	and	guidelines	to	install	it	via
https://github.com/iobridge/ThingSpeak.
Although	this	personalized	version	of	the	ThingSpeak	platform	will	provide
sufficient	tools	to	start	developing	IoT	applications,	the	functionalities	of	the	platform
will	be	confined	to	the	supplied	feature	set.	To	have	complete	control	over
customization,	you	may	have	to	use	the	next	option.

If	you	want	to	separately	install	and	configure	the	necessary	software	tools,	here’s	what
you	need	to	remember:

This	option	includes	furnishing	project-specific	software	tools	such	as	Python	and	the
Mosquitto	broker	with	the	required	Python	libraries	such	as	web.py	and	paho_mqtt.
We	have	already	worked	with	exercises	that	implemented	applications	which	were
based	on	the	Mosquitto	broker	and	web.py.	This	version	of	the	custom	IoT	cloud
platform	can	reduce	the	complexity	of	installing	additional	open	source	platform
tools	and	still	provide	the	necessary	support	to	host	applications.
The	Arduino	program	can	directly	communicate	with	this	custom	platform	using
REST	or	MQTT	protocols.	It	can	also	behave	as	the	remote	computation	unit	to
communicate	with	Xively	or	other	third-party	IoT	cloud	platforms.

In	the	next	section,	we	will	begin	the	platform	deployment	process	by	installing	the
Mosquitto	broker	and	the	necessary	packages	on	your	virtual	instance.	This	will	be
followed	by	the	configuration	of	the	virtual	instance	to	support	the	MQTT	protocol.	Once
your	IoT	cloud	platform	is	up	and	running,	you	can	just	run	the	Python-based	Mosquitto
code	from	the	last	chapter	from	the	instance	with	minor	or	no	modifications.	In	future,	this
IoT	platform	that	contains	the	Mosquitto	broker	and	the	Python	project	can	be	extended	to
accommodate	additional	features,	protocols,	and	extra	security.

Installing	the	necessary	packages	on	AWS

www.it-ebooks.info

https://github.com/iobridge/ThingSpeak
http://www.it-ebooks.info/

Using	the	SSH	protocol	and	the	key	pair,	log	into	your	virtual	instance.	Once	you	are	at
the	Command	Prompt,	the	first	task	that	you	need	to	perform	is	to	update	all	the	outdated
packages	in	Ubuntu,	the	operating	system	of	your	virtual	instance.	Successively	execute
the	following	commands:

$	sudo	apt-get	update

$	sudo	apt-get	upgrade

Ubuntu	already	comes	with	the	latest	version	of	Python.	However,	you	will	still	need	to
install	Setuptools	to	install	the	additional	Python	packages:

$	sudo	apt-get	install	python-setuptools

Ubuntu’s	package	repository	also	hosts	Mosquitto	and	it	can	be	directly	installed	using	the
following	command.	With	this	command,	we	will	install	the	Mosquitto	broker,	Mosquitto
client,	and	all	other	dependencies	together.	During	the	installation,	you	will	be	asked	to
confirm	the	installation	of	additional	packages.	Enter	Yes	at	the	terminal	and	proceed	with
the	installation:

$	sudo	apt-get	install	mosquitto*

Now	you	have	installed	the	Mosquitto	broker	on	your	virtual	instance	and	you	can	run	it
by	executing	the	Mosquitto	command.	To	develop	Python-based	Mosquitto	applications,
we	need	the	Python	Mosquitto	library	on	our	instance.	Let’s	install	the	library	using
Setuptools,	through	the	following	commands:

$	sudo	easy_install	pip

$	sudo	pip	install	paho_mqtt

In	the	previous	chapter,	we	developed	a	web	application	based	on	web.py	that	utilizes	the
paho_mqtt	library	to	support	the	MQTT	protocol.	As	with	the	first	project,	we	are	going	to
deploy	the	same	web	application	on	the	EC2-based	virtual	instance	to	demonstrate	your
custom	IoT	cloud	platform.	As	a	dependency	of	this	project,	you	first	need	the	web.py
Python	library,	which	you	can	install	using	the	following	command:

$	sudo	pip	install	web.py

Now	you	have	all	the	necessary	software	packages	to	run	the	IoT	application.	To	make
your	web	application	accessible	via	the	Internet,	you	need	to	configure	the	security	of	you
virtual	instance.

Configuring	the	security	of	the	virtual	instance
First,	we	will	configure	the	virtual	instance	to	securely	host	the	Mosquitto	broker.	Later,
we	will	go	through	the	methods	to	set	up	basic	security	to	prevent	the	abuse	of	your
Mosquitto	server	by	automated	bots	or	spamming	attempts.

To	change	any	parameters	on	your	virtual	instance,	you	will	have	to	use	the	Security
Groups	tools	from	the	Network	&	Security	section	of	your	AWS	Management	Console
page.	Open	the	Security	Groups	section,	as	displayed	in	the	following	screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Each	virtual	instance	has	a	default	security	group	that	is	generated	automatically	to	allow
access	to	your	instance	through	the	SSH	port	22.	This	security	configuration	is	responsible
for	letting	you	access	your	virtual	instance	through	the	SSH	client	from	your	computer.
The	Mosquitto	broker	uses	the	TCP	port	number	1883	to	establish	communication	with
publishers	and	subscriber	clients.	To	allow	incoming	access	from	this	Mosquitto	port,	you
will	have	to	edit	the	current	inbound	rules	and	add	an	entry	for	port	1883:

Once	you	click	on	the	Edit	button,	the	website	will	open	a	pop-up	window	to	add	new
rules	and	edit	the	existing	rules.	Click	on	the	Add	Rule	button	to	create	an	additional	rule
to	accommodate	the	Mosquitto	broker:

www.it-ebooks.info

http://www.it-ebooks.info/

As	displayed	in	the	following	screenshot,	enter	the	TCP	port’s	number	as	1883	and
complete	the	other	information	in	the	form.	Once	you	have	completed	the	form	with	the
given	values,	save	the	rules	and	exit	the	window:

Now,	with	this	configuration,	port	1883	is	accessible	by	other	devices	and	enables	remote
communication	with	the	Mosquitto	broker.	You	can	use	the	same	method	to	add	a	rule	for
port	8080	to	allow	access	to	Python’s	web	applications	that	were	developed	using	web.py.
In	future,	you	can	add	any	additional	ports	to	allow	access	to	various	services.	Although	it
is	very	easy	to	change	the	security	rules	on	your	virtual	instance,	make	sure	that	you
refrain	from	opening	excessive	ports	to	avoid	any	security	risk.

Testing	your	cloud	platform
In	this	testing	section,	we	will	first	perform	checks	for	the	Mosquitto	broker	from	your
computer	and	then	set	up	authentication	parameters	for	the	Mosquitto	broker.	Later,	we
will	upload	files	and	folders	containing	the	Python	code	to	our	virtual	instance	using	the
SSH	file	transfer	protocol.

Testing	the	Mosquitto	service

The	first	thing	that	we	are	going	to	check	on	our	IoT	platform	is	the	accessibility	of	the
Mosquitto	broker.	Open	the	terminal	on	your	computer	and	execute	the	following
command,	after	replacing	<Public-IP>	with	the	public	IP	or	public	DNS	address	of	your

www.it-ebooks.info

http://www.it-ebooks.info/

virtual	instance:

$	mosquitto_pub	-h	<Public-IP>	-t	test	-m	3

This	command	will	publish	the	message	value	3	for	the	test	topic	for	the	Mosquitto
broker	that	is	specified	at	the	given	IP	address;	in	our	case,	this	is	the	virtual	instance.
Now,	open	a	separate	terminal	window	and	execute	the	following	command	to	subscribe
to	the	test	topic	on	our	broker:

$	mosquitto_sub	-h	<Public-IP>	-t	test

On	the	execution	of	this	command,	you	will	be	able	to	see	the	latest	value	that	is	published
for	this	topic.	Use	the	mosquitto_pub	command	to	post	multiple	messages	and	you	can
see	the	output	of	these	messages	in	the	other	terminal	window	that	is	running	the
mosquitto_sub	command.

Configuring	and	testing	basic	security

As	you	saw	in	the	previous	example,	the	publishing	and	subscribing	commands	just	used
the	IP	address	to	send	and	receive	data	without	using	any	authentication	parameters.	This
is	a	major	security	loophole,	as	anyone	on	the	Internet	can	send	data	to	your	Mosquitto
broker.	To	avoid	unauthorized	access	to	your	broker,	you	have	to	establish	authentication
credentials.	You	can	specify	these	parameters	by	following	these	steps	in	the	given	order:

1.	 If	you	have	not	already	logged	into	your	instance	through	SSH,	open	a	terminal
window	and	log	in	using	SSH.	Once	you	are	logged	in,	navigate	to	the	Mosquitto
directory	and	create	a	new	file	called	passwd	using	the	following	set	of	commands.
We	will	use	this	file	to	store	the	usernames	and	passwords:

$	cd	/etc/mosquitto

$	sudo	nano	passwd

2.	 In	the	file,	enter	the	username	and	password	information	separated	by	using	the	colon
operator	(:).	For	testing	purposes,	we	will	use	the	following	credentials,	which	can	be
changed	any	time	once	you	are	more	familiar	with	the	Mosquitto	configuration:

user:password

3.	 Press	Ctrl	+	X	to	save	and	exit	the	file	from	the	nano	editor.	When	you	are	prompted
to	confirm	the	save	operation,	select	Y	and	press	Enter.

4.	 In	the	same	folder,	open	the	Mosquitto	configuration	file	using	thenano	editor:

$	sudo	nano	mosquitto.conf

5.	 In	the	opened	file,	scroll	down	the	text	content	until	you	reach	the	security	section.	In
this	section,	find	the	#allow_anonymous	true	line	of	the	code	and	replace	it	with
allow_anonymous	false.	Make	sure	that	you	have	removed	the	#	symbol.	With	this
operation,	we	have	disabled	the	anonymous	access	to	the	Mosquitto	broker	and	only
those	clients	with	proper	credentials	can	access	it.

6.	 After	performing	the	previous	changes,	scroll	further	down	in	the	file,	uncomment
the	line	#password_file,	and	replace	it	with	this:

www.it-ebooks.info

http://www.it-ebooks.info/

password_file	/etc/mosquitto/passwd

7.	 Now	that	you	have	configured	the	basic	security	parameters	for	your	broker,	you
must	restart	the	Mosquitto	service	for	the	changes	to	take	effect.	In	Ubuntu,
Mosquitto	is	installed	as	part	of	the	background	service	and	you	can	restart	it	using
the	following	command:

$	sudo	service	mosquitto	restart

8.	 To	test	these	authentication	configurations,	open	another	terminal	window	in	your
computer	and	execute	the	following	command	with	the	public	IP	address	of	your
instance.	If	you	are	able	to	successfully	publish	your	message	without	any	errors,
your	Mosquitto	broker	now	has	a	security	configuration:

$	mosquitto_pub	-u	user	-P	password	-h	<Public-Ip>	-t	test	-m	3

9.	 Also,	check	your	Mosquitto	subscriber	using	the	following	command:

$	mosquitto_sub	-u	user	-P	password	-h	<Public-Ip>	-t	test

Uploading	and	testing	a	project	on	the	instance

As	we	discussed	in	the	previous	chapters,	you	can	always	use	your	computer	for
development	purposes.	Once	you	are	ready	for	deployment,	you	can	utilize	this	newly
configured	virtual	instance	as	the	deployment	unit.	You	can	copy	your	files	from	your
local	computer	to	the	virtual	instance	using	a	utility	called	PuTTY
(https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/putty.html)	or	using	the	SCP
(SSH	copy)	command.

Now	it	is	time	to	upload	the	project	files	from	the	final	coding	exercise	of	the	previous
chapter,	which	implemented	the	MQTT	protocol	using	Python	and	the	Mosquitto	library.
As	a	reminder,	the	final	exercise	is	located	in	the	folder	named	Exercise	4	-	MQTT
gateway	of	the	previous	chapter’s	code	repository.	We	will	be	using	the	SCP	utility	to
upload	these	files	to	your	virtual	instance.	Before	we	use	this	utility,	let’s	first	create	a
directory	on	your	virtual	instance.	Log	in	to	your	virtual	instance	and	go	to	the	user
directory	of	the	virtual	instance	by	using	the	following	command:

$	ssh	–i	<key-name>.pem	ubuntu@<public-ip>

$	cd	~

Using	the	character	tilde	(~)	with	the	cd	command	will	change	the	current	directory	to	the
home	directory,	unless	you	are	planning	to	use	any	other	location	on	your	virtual	instance.
At	this	location,	create	a	new	empty	directory	named	project	by	using	following
command:

$	mkdir	project

Now,	on	the	computer	you	are	working	on	(Mac	OS	X	or	Linux),	open	another	terminal
window	and	use	the	following	command	to	copy	the	entire	directory	to	the	remote
instance:

$	scp	-v	-i	test.pem	-r	<project-folder-path>	ubuntu@<your-ec2-static-

www.it-ebooks.info

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/putty.html
http://www.it-ebooks.info/

ip>:~/project

Once	you	have	successfully	copied	the	files	to	this	location,	you	can	go	back	to	the
terminal	that	is	logged	in	to	your	virtual	instance	and	change	the	directory	to	project:

$	cd	project

Before	running	any	commands,	make	sure	that	you	have	changed	the	appropriate	IP
addresses	in	the	Arduino	sketch	and	the	Python	programs.	You	will	have	to	replace	the
previous	IP	address	with	the	one	of	your	virtual	instance.	Now	that	you	have	made	these
changes,	you	can	execute	the	Python	code	containing	the	Mosquitto	Gateway	and	web
application	to	start	the	program.	Open	your	web	browser	from	the	http://<Public-
Ip>:8080	location	to	see	you	web	application	running	on	the	custom	IoT	platform.	From
now	on,	you	should	be	able	to	access	this	application	from	any	remote	location	through
the	Internet.

Tip
Do	not	forget	to	change	the	IP	address	of	the	Mosquitto	broker	in	the	Arduino	sketch	and
upload	the	sketch	to	the	Arduino	board	again.	You	may	not	be	able	to	obtain	the	sensor
data	if	the	appropriate	IP	address	changes	are	not	applied.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Summary
At	the	end	of	this	chapter,	and	hence	the	end	of	the	contextual	part	of	the	book,	you	should
be	able	to	develop	your	own	Internet	of	Things	projects.	In	this	chapter,	we	used	a
commercial	IoT	cloud	platform	to	handle	your	sensor	data.	We	also	deployed	a	cloud
instance	to	host	open	source	IoT	tools	and	created	our	own	version	of	the	customized	IoT
cloud	platform.	Certainly,	the	content	that	you	learned	is	not	sufficient	to	develop	scalable
and	fully-stacked	commercial	products,	but	it	is	really	helpful	to	get	you	started	with
them.	In	a	large	number	of	cases,	this	material	is	sufficient	to	develop	DIY	projects	and
product	prototypes	that	will	ultimately	lead	you	to	the	final	product.	In	the	next	two
chapters,	we	will	put	the	material	that	we	learned	to	the	test	and	develop	two	complete	IoT
hardware	projects.	We	are	also	going	to	learn	a	project	development	methodology	that	is
specific	to	hardware-based	IoT	products,	which	can	be	applied	to	convert	your	prototypes
into	real	products.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter	10.	The	Final	Project	–	a	Remote
Home	Monitoring	System
It	is	now	time	to	combine	every	topic	that	we	learned	in	the	previous	chapters	into	a
project	that	combines	Arduino	programming,	Python	GUI	development,	MQTT
messaging	protocol,	and	a	Python-based	cloud	application.	As	you	might	have	already
figured	out	from	the	chapter	title,	we	are	going	to	develop	a	remote	home	monitoring
system	using	these	components.

The	first	section	of	the	chapter	covers	the	project	design	process,	including	goals,
requirements,	architecture,	and	UX.	Once	we	are	done	with	the	design	process,	we	will
jump	into	the	actual	development	of	the	project,	which	is	divided	into	three	separate
stages.	Next,	we	will	cover	common	troubleshooting	topics	that	are	usually	faced	while
working	with	large	projects.	In	our	efforts	to	develop	utilizable	DIY	projects,	the	later
section	covers	tips	and	features	to	extend	the	project.	As	this	is	quite	a	large	project
compared	to	other	projects	in	the	book,	we	are	not	going	to	jump	straight	into	the	actual
development	process	without	having	any	strategy.	Let’s	start	by	getting	ourselves	familiar
with	the	standard	design	methodology	for	hardware	projects.

www.it-ebooks.info

http://www.it-ebooks.info/

The	design	methodology	for	IoT	projects
The	process	of	developing	a	complex	product	that	tightly	couples	hardware	devices	with
high-level	software	services	requires	an	additional	level	of	planning.	For	this	project,	we
will	exercise	a	proper	product	development	approach	to	help	you	get	familiar	with	the
process	of	creating	real-world	hardware	projects.	This	method	can	then	be	used	to	plan
your	own	projects	and	take	them	to	the	next	level.	The	following	diagram	describes	a
typical	prototype	development	process,	which	always	begins	by	defining	the	major	goals
that	you	want	to	achieve	with	your	product:

Once	you	have	defined	the	set	of	major	goals,	you	need	to	break	them	down	into	project
requirements	that	include	every	detail	of	the	tasks	that	your	prototype	should	execute	to
achieve	these	goals.	Using	the	project	requirements,	you	need	to	sketch	out	the	overall
architecture	of	the	system.	The	next	step	includes	the	process	of	defining	the	UX	flow	that
will	help	you	to	lay	out	the	user	interaction	points	for	your	system.	At	this	stage,	you	will
be	able	to	identify	any	changes	that	are	required	in	the	system	architecture	and	the
hardware	and	software	components	to	start	the	development.

As	you	have	defined	the	interaction	points,	now	you	need	to	distribute	the	entire	project
development	process	into	multiple	stages	and	delegate	the	tasks	between	these	stages.
Once	you	have	completed	the	development	of	these	stages,	you	will	have	to	interface

www.it-ebooks.info

http://www.it-ebooks.info/

these	stages	with	each	other	according	to	your	architecture	and	debug	the	components	if	it
is	needed.	At	the	end,	you	will	have	to	test	your	project	as	a	whole	system	and
troubleshoot	minor	problems.	In	hardware	projects,	it	is	very	difficult	to	work	on	your
electric	circuits	again	after	the	completion	of	complex	development	processes,	as	the
changes	can	have	recurring	effects	on	all	other	components.	This	process	will	help	you	to
minimize	any	hardware	rework	and	subsequent	software	modifications.

Now	that	you	have	learned	about	the	methodology,	let’s	begin	with	the	actual
development	process	for	our	remote	home	monitoring	system.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Project	overview
The	smart	home	is	one	of	the	most	well-defined	and	popular	subdomains	of	the	IoT.	The
most	important	feature	of	any	smart	home	is	its	capability	to	monitor	the	physical
environment.	Fortunately,	the	exercises	and	projects	that	we	covered	in	the	previous
chapters	include	components	and	features	that	can	be	used	for	the	same	purpose.	In	this
chapter,	we	are	going	to	define	a	project	that	will	utilize	these	existing	components	and
programming	exercises.	In	the	midterm	project	of	Chapter	7,	The	Midterm	Project	–	a
Portable	DIY	Thermostat,	we	created	a	deployable	thermostat	with	the	ability	to	measure
temperature,	humidity,	and	ambient	light.	If	we	want	to	utilize	this	midterm	project,	the
nearest	IoT	project	that	we	can	build	on	top	of	it	is	the	remote	home	monitoring	system.
The	project	will	have	Arduino	as	the	main	point	of	interaction	between	the	physical
environment	and	the	software-based	services.	We	will	have	a	Python	program	as	the
middle	layer,	which	will	bridge	the	sensor	information	coming	from	Arduino	with	the
user-facing	graphical	interface.	Let’s	start	by	defining	the	goals	that	we	want	to	achieve
and	the	project	requirements	to	satisfy	these	goals.

www.it-ebooks.info

http://www.it-ebooks.info/

The	project	goals
The	Nest	thermostat	provides	an	idea	of	the	type	of	features	that	a	properly	designed
remote	monitoring	system	with	professional	features	should	have.	Achieving	this	level	of
system	capabilities	requires	a	lot	of	development	effort	from	a	large	team.	Although	it	will
be	difficult	to	include	each	of	the	features	that	are	supported	by	a	commercial	system	in
our	project,	we	will	still	try	to	implement	the	common	features	that	can	be	incorporated	by
a	prototype	project.

The	top-level	features	that	we	are	planning	to	incorporate	in	this	project	can	be	described
by	the	following	goals.

Observe	the	physical	environment	and	make	it	accessible	remotely
Provide	basic	level	controls	to	the	user	to	interact	with	the	system
Demonstrate	a	primitive	level	of	built-in	situational	awareness

www.it-ebooks.info

http://www.it-ebooks.info/

The	project	requirements
Now	that	we	have	defined	the	major	goals,	let’s	convert	them	into	detailed	system
requirements.	On	the	completion	of	the	project,	the	system	should	be	able	to	satisfy	the
following	requirements:

It	must	be	able	to	observe	physical	phenomenon	such	as	temperature,	humidity,
motion,	and	ambient	light.
It	should	provide	local	access	to	sensor	information	and	control	over	actuators	such
as	a	buzzer,	a	button	switch,	and	an	LED.
The	monitoring	should	be	done	by	a	unit	that	is	developed	using	the	open	source
hardware	platform,	Arduino.
The	monitoring	unit	should	be	limited	to	collect	sensor	information	and	communicate
it	to	the	control	unit.
The	control	unit	should	not	comprise	of	a	desktop	computer	or	laptop.	Instead,	it
should	be	made	deployable	using	a	platform	such	as	a	Raspberry	Pi.
The	control	unit	should	demonstrate	a	primitive	level	of	situation	awareness
capability	by	utilizing	the	collected	sensor	information.
The	control	unit	should	have	a	graphical	interface	to	provide	the	sensor’s	observation
and	the	current	state	of	the	system.
The	system	must	be	accessible	via	the	Internet	using	cloud-based	services.
The	web	application	that	provides	remote	access	should	have	the	capability	to	display
the	sensor’s	observations	through	a	web	browser.
The	system	should	also	provide	basic	control	of	the	actuators	to	complete	the	remote
access	experience	by	using	the	web	application.
As	the	monitoring	unit	can	be	constrained	by	computation	resources,	the	system
should	use	hardware-oriented	messaging	protocols	to	transfer	information.

Although	there	are	many	other	minor	requirements	that	can	be	part	of	our	project,	they
have	been	skipped	in	this	book.	If	you	have	any	additional	plans	for	your	remote	home
monitoring	system,	this	is	the	time	that	you	must	define	these	requirements	before	you
jump	into	designing	the	architecture.	Any	future	changes	to	the	requirements	can
significantly	affect	the	development	stage	and	make	hardware	and	software	modification
difficult.	In	the	last	section	of	the	chapter,	we	have	laid	down	a	number	of	additional
features	that	you	may	want	to	consider	implementing	for	your	future	projects.

www.it-ebooks.info

http://www.it-ebooks.info/

Designing	system	architecture
Continuing	from	project	goals,	first,	you	need	to	sketch	out	a	high-level	architecture	of	the
system.	This	architectural	sketch	should	include	major	components	that	enable	the	system
to	pass	on	information	between	the	sensors	and	the	remote	users.	The	following	figure
shows	an	architectural	sketch	for	our	project:

According	to	the	goals,	the	user	should	be	able	to	access	the	system	using	the	Internet;	this
means	that	we	need	cloud	components	in	the	architecture.	The	system	also	needs	to
monitor	the	physical	environment	using	a	resource-constrained	device,	and	this	can	be
executed	using	Arduino.	The	middle	layer,	which	connects	the	cloud	service	and	the
sensor	system,	can	be	built	using	a	Raspberry	Pi.	In	the	last	project,	we	connected	Arduino
and	the	Raspberry	Pi	using	a	serial	connection,	but	we	want	to	move	away	from	serial
connections	and	start	using	our	home’s	Ethernet	network	to	make	the	system	deployable.
Hence,	the	Arduino-based	unit	is	connected	to	the	network	using	Ethernet	while	the
Raspberry	Pi	uses	Wi-Fi	to	connect	to	the	same	network.

In	order	to	lay	out	the	overall	system	architecture,	let’s	utilize	the	sketch	that	we	designed,
which	can	be	seen	in	the	preceding	figure.	As	you	can	see	in	the	next	figure,	we	have
converted	the	overall	system	into	three	main	architectural	units:

Monitoring	station
Control	center
Cloud	service

In	this	figure,	we	have	addressed	each	and	every	major	component	that	we	are	going	to
utilize	in	the	project	along	with	their	association	to	each	other.	In	the	following	sections,
we	are	going	to	define	these	three	main	units	briefly.	The	comprehensive	description	and
implementation	steps	for	these	units	are	provided	later	in	the	chapter	under	separate
sections.

www.it-ebooks.info

http://www.it-ebooks.info/

The	monitoring	station
We	need	a	resource-constrained	and	robust	unit	that	will	communicate	with	the	physical
environment	periodically.	This	monitoring	unit	can	be	built	using	Arduino	since	low-level
microcontroller	programming	can	provide	uninterrupted	stream	of	sensor	data.	The	usage
of	Arduino	at	this	stage	will	also	help	us	to	avoid	the	direct	interfacing	of	basic	low-level
sensors	with	computers	that	are	running	on	complex	operating	systems.	The	sensors	and
the	actuators	are	connected	to	Arduino	using	digital,	analog,	PWM,	and	I2C	interfaces.

The	control	center
The	control	center	behaves	as	the	main	user	interaction	point	between	the	sensor
information	and	the	user.	It	is	also	responsible	for	conveying	the	sensor	information	from
the	monitoring	station	to	the	cloud	services.	The	control	center	can	be	developed	using
your	regular	computer	or	a	single-board	computer	such	as	a	Raspberry	Pi.	We	are	going	to
utilize	a	Raspberry	Pi	since	it	can	be	easily	deployed	as	a	hardware	unit	and	it	is	also
capable	enough	at	hosting	Python	programs.	We	will	replace	a	computer	screen	with	a
small	TFT	LCD	screen	for	the	Raspberry	Pi	to	display	the	GUI.

The	cloud	services
The	main	purpose	of	the	cloud	services	is	to	provide	an	Internet-based	interface	for	the
control	center	so	that	the	user	can	access	it	remotely.	Before	we	host	a	web	application	to
perform	this	operation,	we	will	need	an	intermediate	data	relay.	This	sensor	data	relay
works	as	a	host	between	the	cloud-based	web	application	and	the	control	center.	In	this
project,	we	will	be	using	Xively	as	the	platform	to	collect	this	sensor	data.	The	web
application	can	be	hosted	on	an	Internet	server;	in	our	case,	we	are	going	to	use	Amazon
AWS	due	to	our	familiarity	with	it.

www.it-ebooks.info

http://www.it-ebooks.info/

Defining	UX	flow
Now,	although	we	know	what	the	architecture	of	the	overall	system	looks	like,	we	haven’t
defined	how	the	user	is	going	to	interact	with	it.	This	process	of	designing	user	interaction
for	our	system	will	also	help	us	to	figure	out	data	flow	between	major	components.

Let’s	begin	with	the	components	that	are	operating	locally	at	your	house,	that	is,	the
monitoring	station	and	the	control	center.	As	you	can	see	from	the	following	figure,	we
have	our	first	user	interaction	point	at	the	control	center.	The	user	can	observe	the
information	or	act	upon	it	if	the	system’s	status	is	an	alert.	The	user	action	to	dismiss	the
alert	prompts	multiple	operations	to	take	place	at	the	control	center	and	the	monitoring
station.	We	recommend	you	thoroughly	examine	the	figure	to	better	understand	the	flow
of	the	system.

Similarly,	the	second	user	interaction	point	is	located	at	the	web	application.	The	web
application	displays	the	observations	and	system’s	status	that	we	calculated	at	the	control
center	and	provides	an	interface	to	dismiss	the	alert.	In	this	scenario,	the	dismiss	action
will	travel	through	Xively	to	the	control	center	where	the	appropriate	actions	for	the
control	center	will	remain	the	same	as	in	the	previous	scenario.	However,	in	the	web

www.it-ebooks.info

http://www.it-ebooks.info/

application,	the	user	has	to	load	the	web	browser	every	time	to	request	the	data,	which	was
happening	automatically	at	the	control	center.	Take	a	look	at	the	following	figure	to
understand	the	UX	flow	for	the	web	application:

www.it-ebooks.info

http://www.it-ebooks.info/

The	list	of	required	components
The	necessary	components	for	the	project	are	derived	using	three	main	criteria:

Ease	of	availability
Compatibility	with	the	Arduino	board
Familiarity	with	the	components	due	to	previous	utilization	in	this	book

This	is	the	list	of	the	components	that	you	will	need	to	start	working	on	the	project.	If	you
have	completed	the	previous	exercises	and	projects,	you	should	already	have	most	of	the
components.	If	you	don’t	want	to	disassemble	the	projects,	you	can	obtain	them	from	the
websites	of	SparkFun,	Adafruit,	or	Amazon,	whose	links	are	provide	in	the	next	table.

The	hardware	components	for	the	monitoring	station	are	as	follows:

Component	(first	stage) Quantity Link

Arduino	Uno 1 https://www.sparkfun.com/products/11021

Arduino	Ethernet	Shield 1 https://www.sparkfun.com/products/9026

Breadboard 1 https://www.sparkfun.com/products/9567

TMP102	temperature	sensor 1 https://www.sparkfun.com/products/11931

HIH-4030	humidity	sensor 1 https://www.sparkfun.com/products/9569

Mini	photocell 1 https://www.sparkfun.com/products/9088

PIR	motion	sensor 1 https://www.sparkfun.com/products/8630

Super-flux	RGB	LED,	common
anode 1 http://www.adafruit.com/product/314

Buzzer 1 http://www.adafruit.com/products/160

Push	button	switch 1 https://www.sparkfun.com/products/97

USB	cable	for	Arduino

(for	development	stage)
1 https://www.sparkfun.com/products/512

Arduino	power	supply

(for	deployment	stage)
1 http://www.amazon.com/Arduino-9V-1A-Power-

Adapter/dp/B00CP1QLSC/

Resistors As
required 220	ohm,	1	kilo-ohm,	and	10	kilo-ohm

Connection	wires As
required

	

The	hardware	components	for	the	control	center	are	as	follows:

www.it-ebooks.info

https://www.sparkfun.com/products/11021
https://www.sparkfun.com/products/9026
https://www.sparkfun.com/products/9567
https://www.sparkfun.com/products/11931
https://www.sparkfun.com/products/9569
https://www.sparkfun.com/products/9088
https://www.sparkfun.com/products/8630
http://www.adafruit.com/product/314
http://www.adafruit.com/products/160
https://www.sparkfun.com/products/97
https://www.sparkfun.com/products/512
http://www.amazon.com/Arduino-9V-1A-Power-Adapter/dp/B00CP1QLSC/
http://www.it-ebooks.info/

Component	(first	stage) Quantity Link

Raspberry	Pi 1 https://www.sparkfun.com/products/11546

TFT	LCD	screen 1 http://www.amazon.com/gp/product/B00GASHVDU/

SD	card	(8	GB) 1 https://www.sparkfun.com/products/12998

Wi-Fi	dongle 1 http://www.amazon.com/Edimax-EW-7811Un-150Mbps-Raspberry-
Supports/dp/B003MTTJOY

Raspberry	Pi	power	supply 1 http://www.amazon.com/CanaKit-Raspberry-Supply-Adapter-
Charger/dp/B00GF9T3I0

Keyboard,	mouse,	USB	hub,
and	monitor

As
required Requried	for	development	and	debugging	stages

www.it-ebooks.info

https://www.sparkfun.com/products/11546
http://www.amazon.com/gp/product/B00GASHVDU/
https://www.sparkfun.com/products/12998
http://www.amazon.com/Edimax-EW-7811Un-150Mbps-Raspberry-Supports/dp/B003MTTJOY
http://www.amazon.com/CanaKit-Raspberry-Supply-Adapter-Charger/dp/B00GF9T3I0
http://www.it-ebooks.info/

Defining	the	project	development	stages
As	per	the	system	architecture,	we	have	three	main	units	that	collaboratively	create	the
remote	home	monitoring	project.	The	overall	hardware	and	software	development	process
is	also	aligned	with	these	three	units	and	can	be	distributed	as	follows:

Monitoring	station	development	stage
Control	center	development	stage
Web	application	development	stage

The	software	development	for	the	monitoring	station	stage	includes	developing	the
Arduino	code	to	monitor	sensors	and	perform	actuator	actions	on	one	side,	while
publishing	this	information	to	the	control	center	on	the	other	side.	The	middle	layer	of	the
development	stage,	that	is,	the	Raspberry	Pi-based	control	center,	hosts	the	Mosquitto
broker.	This	stage	also	contains	the	Python	program	that	contains	the	GUI,	situation
awareness	logic,	and	subroutines	to	communicate	with	the	Xively	cloud	service.	The	last
stage,	the	cloud	services,	includes	two	distinct	components,	sensor	data	relay	and	a	web
application.	We	will	be	using	the	Xively	platform	as	our	sensor	data	relay	and	the	web
application	will	be	developed	in	Python	on	the	Amazon	AWS	cloud	instance.	Now,	let’s
jump	into	the	actual	development	process	and	our	first	stop	will	be	the	Arduino-based
monitoring	station.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Stage	1	–	a	monitoring	station	using
Arduino
As	we	discussed,	the	main	tasks	of	the	monitoring	systems	are	to	interface	sensor
components	and	communicate	the	information	generated	by	these	sensors	to	the	observers.
You	will	be	using	Arduino	Uno	as	the	central	microcontroller	component	to	integrate	these
sensors	and	actuators.	We	also	need	a	means	of	communication	between	the	Arduino	Uno
and	the	control	center	and	we	will	be	utilizing	the	Arduino	Ethernet	Shield	for	this
purpose.	Let’s	discuss	the	hardware	architecture	of	the	monitoring	station	and	its
components.

www.it-ebooks.info

http://www.it-ebooks.info/

Designing	the	monitoring	station
We	already	designed	units	based	on	Arduino	and	the	Ethernet	Shield	in	various	exercises
in	Chapter	8,	Introduction	to	Arduino	Networking,	and	Chapter	9,	Arduino	and	the	Internet
of	Things.	Therefore,	we	have	assumed	that	you	are	familiar	with	interfacing	the	Ethernet
Shield	with	the	Arduino	board.	We	will	connect	various	sensors	and	actuators	with	the
Arduino	board,	as	displayed	in	the	following	diagram.	As	you	can	see	in	this	diagram,	the
sensors	will	provide	the	data	to	the	Arduino	board	while	the	actuators	will	seek	the	data
from	the	Arduino	board.	Although	we	are	automatically	collecting	environment	data	for
these	sensors,	the	data	from	the	button	will	be	collected	from	manual	user	inputs.

Check	out	the	following	Fritzing	diagram	for	the	detailed	connections	in	the	monitoring
station.	As	you	can	see	in	our	hardware	design,	the	temperature	sensor	TMP102	is
connected	through	the	I2C	interface,	which	means	that	we	will	need	the	SDA	and	SCL
lines.	We	will	be	using	analog	pins	5	and	6	of	the	Arduino	board	to	interface	SDA	and
SCL	respectively.	The	humidity	(HIH-4030)	and	ambient	light	sensors	also	provide	analog
output	and	are	connected	to	the	analog	pins	of	the	Arduino	board.	Meanwhile,	the	buzzer,
the	button	switch,	and	the	PIR	motion	sensor	are	connected	through	the	digital	I/O	pins.
The	super-flux	RGB	LED	is	a	common	anode	LED;	this	means	that	it	is	always	powered
using	the	common	anode	pins	and	the	R,	G,	and	B	pins	are	controlled	by	using	the	PWM
pins.

Make	sure	that	you	properly	connect	all	the	components	to	the	pins	that	are	specified	in
the	following	diagram:

www.it-ebooks.info

http://www.it-ebooks.info/

Note
You	can	learn	more	about	the	interfacing	of	RGB	LED	with	Arduino	from	the	tutorial	at
https://learn.adafruit.com/all-about-leds.

If	you	are	using	an	Arduino	board	other	than	Arduino	Uno,	you	will	have	to	adjust	the
appropriate	pin	numbers	in	the	Arduino	code.	In	addition,	make	sure	that	this	Arduino
board	is	compatible	with	the	Ethernet	Shield.

In	terms	of	circuit	connections,	you	can	use	a	breadboard	as	shown	in	the	previous
diagram,	or	if	you	are	comfortable,	you	can	use	a	PCB	prototype	board	and	solder	the
components.	In	our	setup,	we	first	tested	the	components	on	the	breadboard	and	once	they
were	tested,	we	soldered	the	components,	as	shown	in	the	following	figure.	If	you	venture
to	solder	the	PCB	board,	make	sure	that	you	have	the	necessary	components	for	the	job.
The	PCB	prototype	will	yield	a	robust	performance	compared	to	the	breadboard,	but	it

www.it-ebooks.info

https://learn.adafruit.com/all-about-leds
http://www.it-ebooks.info/

will	also	make	it	difficult	for	you	to	debug	and	change	the	components	afterwards.

If	you	are	ready	with	your	circuit	connection,	connect	your	Arduino	to	your	computer
using	the	USB	cable.	Also,	connect	the	Ethernet	Shield	to	your	home	router	using	an
Ethernet	cable.

www.it-ebooks.info

http://www.it-ebooks.info/

The	Arduino	sketch	for	the	monitoring	station
Before	jumping	into	the	coding	stage,	make	sure	that	you	have	collected	the	prebuilt
Arduino	code	for	the	project.	You	can	find	it	in	the	code	folder	of	this	chapter	with	the
filename	Arduino_monitoring_station.ino.	The	code	implements	the	necessary	logic	to
support	the	overall	UX	flow	at	the	monitoring	station,	which	we	discussed	in	the	previous
section.	In	the	following	sections,	we	will	go	through	the	major	areas	of	the	program	so
that	you	can	better	understand	these	code	snippets.	Now,	open	this	sketch	in	the	Arduino
IDE.	You	are	already	familiar	with	setting	up	the	IP	address	for	Arduino.	You	also	learned
how	to	use	the	Arduino	MQTT	library	PubSubClient	in	the	previous	chapter,	which
means	that	your	Arduino	IDE	should	already	have	the	PubSubClient	library	installed	on
it.	At	the	beginning	of	the	code,	we	have	also	declared	few	constants,	such	as	the	IP
addresses	of	the	MQTT	server	and	Arduino	and	the	pin	numbers	of	various	sensor	and
actuators.

Note
You	will	have	to	change	the	IP	address	of	the	monitoring	station	and	the	control	center
according	to	your	network	setup.	Make	sure	that	you	perform	these	modifications	before
uploading	the	Arduino	code.

In	the	code	structure,	we	have	two	mandatory	Arduino	functions,	setup()	and	loop().	In
the	setup()	function,	we	will	set	up	the	Arduino	pin	types	and	the	MQTT	subscriber
channels.	In	the	same	function,	we	will	also	attach	an	interrupt	for	the	press	of	the	button
while	setting	up	the	timer	for	the	publishData()	function.

Publishing	sensor	information
The	publishData()	function	reads	the	sensor	inputs	and	publishes	this	data	to	the
Mosquitto	broker	that	is	located	on	the	control	center.	As	you	can	see	in	the	following
code	snippet,	we	are	measuring	sensors	values	one	by	one	and	publishing	them	to	the
broker	using	the	client.publish()	method:

void	publishData	(){

				Wire.requestFrom(partAddress,2);

				byte	MSB	=	Wire.read();

				byte	LSB	=	Wire.read();

				

				int	TemperatureData	=	((MSB	<<	8)	|	LSB)	>>	4;	

		

				float	celsius	=	TemperatureData*0.0625;

				temperatureC	=	dtostrf(celsius,	5,	2,	message_buff2);

				client.publish("MonitoringStation/temperature",	temperatureC);

				

				float	humidity	=	getHumidity(celsius);

				humidityC	=	dtostrf(humidity,	5,	2,	message_buff2);

				client.publish("MonitoringStation/humidity",	humidityC);

				int	motion	=	digitalRead(MotionPin);

				motionC	=	dtostrf(motion,	5,	2,	message_buff2);

				client.publish("MonitoringStation/motion",	motionC);

www.it-ebooks.info

http://www.it-ebooks.info/

				

				int	light	=	analogRead(LightPin);

				lightC	=	dtostrf(light,	5,	2,	message_buff2);

				client.publish("MonitoringStation/light",	lightC);

}

If	you	check	out	the	setup()	function,	you	will	notice	that	we	have	used	a	library	called
SimpleTimer	to	set	up	a	timer	method	for	this	function.	This	method	executes	the
publishData()	function	periodically	without	interrupting	and	blocking	the	actual	flow	of
the	Arduino	execution	cycle.	In	the	following	code	snippet,	the	number	300000	represents
the	time	delay	in	milliseconds,	that	is,	5	minutes:

timer.setInterval(300000,	publishData);

Note
You	will	need	to	download	and	import	the	SimpleTimer	library	to	compile	and	run	the
code	successfully.	You	can	download	the	library	from
https://github.com/infomaniac50/SimpleTimer.

Subscribing	to	actuator	actions
You	can	see	in	the	setup()	function	that	we	are	initializing	the	code	by	subscribing	to	the
MonitoringStation/led	and	MonitoringStation/buzzer	channels.	The
client.subscribe()	method	will	make	sure	that	whenever	the	Mosquitto	broker	gets	any
updates	for	these	channels,	the	Arduino-based	monitoring	system	gets	notified:

if	(client.connect("MonitoringStation"))	{

				client.subscribe("MonitoringStation/led");

				client.subscribe("MonitoringStation/buzzer");

		}

Programming	an	interrupt	to	handle	the	press	of	a	button
We	have	taken	care	of	the	publishing	and	subscribing	functions	of	the	monitoring	station.
Now,	we	will	need	to	integrate	the	button	switch	that	is	controlled	by	inputs	from	the	user.
In	the	Arduino	programming	routines,	we	run	a	periodic	loop	to	check	the	status	of	the
pins.	However,	this	may	not	be	useful	if	the	button	is	pressed	since	it	requires	immediate
action.	This	action	of	pressing	the	button	is	handled	using	the	Arduino	interrupts,	as
shown	in	the	following	line	of	code:

attachInterrupt(0,	buttonPress,	RISING);

The	preceding	line	of	code	associates	an	interrupt	at	pin	0	(digital	pin	2)	with	the
buttonPress()	function.	This	function	sets	off	the	buzzers	whenever	the	state	of	the
interrupt	is	changed.	In	other	words,	when	the	button	is	pressed	by	the	user,	the	buzzer
will	be	instantaneously	turned	off	irrespective	of	the	current	status	of	the	buzzer:

void	buttonPress(){

				digitalWrite(BUZZER,	LOW);

				Serial.println("Set	buzzer	off");

}

www.it-ebooks.info

https://github.com/infomaniac50/SimpleTimer
http://www.it-ebooks.info/

Testing
The	current	Arduino	code	communicates	with	the	control	center	for	publishing	and
subscribing	the	data,	but	we	haven’t	yet	set	up	the	Mosquitto	broker	to	handle	these
requests.	You	can	still	go	ahead	and	upload	the	Arduino	sketch	to	your	monitoring	station
using	the	USB	cable.	This	will	not	result	in	any	fruitful	actions	from	the	monitoring
station	and	you	will	only	be	able	to	use	the	Serial.prinln()	command	to	print	various
sensor	measurements.	Therefore,	we	will	develop	the	control	center	next	so	that	we	can
start	addressing	communication	requests	from	the	monitoring	station.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Stage	2	–	a	control	center	using	Python
and	the	Raspberry	Pi
In	order	to	deliver	the	status	of	the	system	and	other	sensor	observations	to	the	user,	the
control	center	needs	to	perform	various	operations	that	include	obtaining	raw	sensor	data
from	the	monitoring	station,	calculating	the	status	of	the	system,	reporting	this	data	to	the
cloud	services,	and	displaying	observation	using	GUI.	While	the	control	center	includes
two	major	hardware	components	(the	Raspberry	Pi	and	TFT	LCD	screen),	it	is	also
comprised	of	two	major	software	components	(the	Mosquitto	broker	and	Python	code)	to
handle	the	control	center	logic.

Tip
We	are	using	a	Raspberry	Pi	instead	of	a	regular	computer	as	we	want	the	control	center	to
be	a	deployable	and	portable	unit	that	can	be	mounted	on	a	wall.

You	can	still	use	your	own	computer	to	edit	and	test	the	Python	code	for	development
purposes	instead	of	using	a	Raspberry	Pi	directly.	However,	we	recommend	that	you
switch	back	to	the	Raspberry	Pi	once	you	are	ready	for	deployment.

www.it-ebooks.info

http://www.it-ebooks.info/

The	control	center	architecture
The	Raspberry	Pi	is	the	main	computation	unit	of	the	control	center	and	works	as	the	brain
of	the	entire	system.	Since	the	Raspberry	Pi	is	used	as	a	replacement	for	a	regular
computer,	the	architecture	of	the	control	center	can	interchangeably	use	a	computer	in
place	of	the	Raspberry	Pi.	As	you	can	see	in	the	following	diagram,	the	control	center	is
connected	to	the	home	network	using	Wi-Fi	and	this	will	make	it	accessible	to	the
monitoring	station.	The	control	center	includes	the	Mosquitto	broker;	this	is	used	as	the
communication	point	between	the	monitoring	station	and	the	Python	program	for	the
control	center.	The	Python	program	utilizes	the	Tkinter	library	for	GUI	and	the
paho_mqtt	library	to	communicate	with	the	Mosquitto	broker.	By	utilizing	these	two
libraries,	we	can	convey	sensor	information	from	the	monitoring	station	to	the	user.
However,	we	will	need	a	separate	arrangement	to	establish	communication	between	the
control	center	and	cloud	services.	In	our	overall	system	architecture,	the	control	center	is
designed	to	communicate	with	the	intermediate	data	relay,	Xively.	The	Python	code	uses
the	xively-python	library	to	enable	this	communication.

In	Chapter	8,	Introduction	to	Arduino	Networking,	we	already	provided	you	with	methods
to	install	the	Mosquitto	broker,	the	Python-mosquitto	library,	and	the	xively-python
library.	We	also	learned	the	process	of	setting	up	the	TFT	LCD	screen	with	the	Raspberry
Pi	in	Chapter	7,	The	Midterm	Project	–	a	Portable	DIY	Thermostat.	Please	refer	to	those
tutorials	in	case	you	haven’t	completed	those	exercises	yet.	Assuming	that	you	have
configured	the	Mosquitto	broker	and	the	required	Python	libraries,	you	can	move	on	to	the

www.it-ebooks.info

http://www.it-ebooks.info/

next	section,	which	includes	the	actual	Python	programming.

www.it-ebooks.info

http://www.it-ebooks.info/

The	Python	code	for	the	control	center
Before	you	start	interfacing	these	libraries	in	the	Python	code,	start	your	Mosquitto	broker
first	from	the	command	line	using	this	simple	command:

$	mosquitto

Make	sure	that	you	restart	your	monitoring	station	every	time	you	start	or	restart	the
Mosquitto	broker.	This	action	will	make	sure	that	your	monitoring	station	is	connected	to
the	Mosquitto	broker,	since	the	process	of	establishing	the	connection	only	gets	executed
once	in	our	Arduino	code,	that	is,	at	the	beginning	of	the	setup	process.

The	Python	code	for	the	current	project	is	located	in	the	code	folder	of	this	chapter	with
the	name	controlCenter.py.	Open	this	file	using	your	Python	IDE	and	modify	the	values
of	the	appropriate	parameters	before	executing	it.	These	parameters	include	the	IP	address
of	the	Mosquitto	broker	along	with	the	feed	ID	and	the	API	key	of	the	Xively	virtual
device.	You	should	already	have	the	feed	ID	and	the	API	key	of	your	Xively	virtual	device
from	the	previous	chapter:

cli.connect("10.0.0.18",	1883,	15)

FEED_ID	=	"<feed-id>"

API_KEY	=	"<api-key"

If	you	are	using	a	local	instance	of	the	Mosquitto	broker,	you	can	replace	the	IP	address
with	127.0.0.1.	Otherwise,	replace	the	10.0.0.18	address	with	the	appropriate	IP	address
of	the	computer	that	is	hosting	the	Mosquitto	broker.	Let’s	try	to	understand	the	code	now.

Note
Sometimes	on	Mac	OS	X,	you	won’t	be	able	to	run	Tkinter	window	and	Python	threads
in	parallel	due	to	an	unknown	bug.	You	should	be	able	to	execute	the	program
successfully	in	Windows	and	Linux	environments.	This	program	has	been	tested	with	the
Raspberry	Pi,	which	means	you	won’t	encounter	the	same	bug	while	deploying	the	control
center.

Creating	the	GUI	using	Tkinter
In	the	previous	exercises,	we	always	used	a	single	Python	thread	to	run	the	program.	This
practice	will	not	help	us	to	perform	multiple	tasks	in	parallel	such	as	obtaining	sensor
observation	from	the	monitoring	station	and	simultaneously	updating	the	GUI	with	that
information.	As	a	solution,	we	have	introduced	multithreading	in	this	exercise.	As	we
need	two	separate	loops,	one	each	for	Tkinter	and	paho-mqtt,	we	will	be	running	them
independently	in	separate	threads.	The	main	thread	will	run	methods	that	are	related	to
Mosquitto	and	the	cloud	services,	while	the	second	thread	will	handle	the	Tkinter	GUI.	In
the	following	code	snippet,	you	can	see	that	we	have	initialized	the
controlCenterWindow()	class	with	the	threading.thread	parameter.	Therefore,	when
we	execute	window	=	controlCenterWindow()	in	the	main	program,	it	will	create	another
thread	for	this	class.	Basically,	this	class	creates	the	GUI	window	while	populating	labels
and	other	GUI	components.	The	labels	need	to	be	updated	when	new	sensor	observations

www.it-ebooks.info

http://www.it-ebooks.info/

arrive,	are	declared	as	class	variables,	and	are	accessible	from	the	class	instant.	As	you	can
see	in	the	following	code	snippet,	we	have	declared	the	labels	for	temperature,	humidity,
light,	and	motion	as	class	variables:

class	controlCenterWindow(threading.Thread):

				def	__init__(self):

								#	Tkinter	canvas

								threading.Thread.__init__(self)

								self.start()

				def	callback(self):

								self.top.quit()

				def	run(self):

								self.top	=	Tkinter.Tk()

								self.top.protocol("WM_DELETE_WINDOW",	self.callback)

								self.top.title("Control	Center")

								self.statusValue	=	Tkinter.StringVar()

								self.statusValue.set("Normal")

								self.tempValue	=	Tkinter.StringVar()

								self.tempValue.set('-')

								self.humdValue	=	Tkinter.StringVar()

								self.humdValue.set('-')

								self.lightValue	=	Tkinter.StringVar()

								self.lightValue.set('-')

								self.motionValue	=	Tkinter.StringVar()

								self.motionValue.set('No')

								#	Begin	code	subsection	

								#	Declares	Tkinter	components

								#	Included	in	the	code	sample	of	the	chapter

								#	End	code	subsection

								self.top.mainloop()

The	previous	code	snippet	doesn’t	contain	the	portion	where	we	declared	the	Tkinter
components,	as	it	is	similar	to	what	we	coded	in	the	midterm	project.	If	you	have
questions	regarding	Tkinter-related	issues,	please	refer	to	Chapter	6,	Storing	and	Plotting
Arduino	Data,	and	Chapter	7,	The	Midterm	Project	–	a	Portable	DIY	Thermostat.

Communicating	with	the	Mosquitto	broker
At	the	control	center	level,	we	subscribe	to	topics	that	are	published	from	the	monitoring
station,	that	is,	MonitoringStation/temperature,	MonitoringStation/humidity,	and	so
on.	If	you	have	performed	any	modification	to	the	Arduino	code	to	change	the	MQTT
topics,	you	need	to	reflect	those	changes	in	this	section.	If	the	topics	published	by	the
monitoring	station	do	not	match	the	topics	in	the	control	center’s	code,	you	will	not	get
any	updates.	As	you	can	see	in	the	Python	code,	we	are	associating	the	on_message	and
on_publish	methods	with	very	important	function.	Whenever	a	message	arrives	from	the
subscriber,	the	client	will	call	the	functions	associated	with	the	on_message	method.
However,	every	time	a	message	gets	published	from	the	Python	code,	the	onPublish()
function	will	get	called:

cli	=	mq.Client('ControlCenter')

cli.on_message	=	onMessage

www.it-ebooks.info

http://www.it-ebooks.info/

cli.on_publish	=	onPublish

cli.connect("10.0.0.18",	1883,	15)

cli.subscribe("MonitoringStation/temperature",	0)

cli.subscribe("MonitoringStation/humidity",	0)

cli.subscribe("MonitoringStation/motion",	0)

cli.subscribe("MonitoringStation/light",	0)

cli.subscribe("MonitoringStation/buzzer",	0)

cli.subscribe("MonitoringStation/led",	0)

Calculating	the	system’s	status	and	situation	awareness
The	control	center	is	assigned	with	the	task	of	calculating	the	status	of	the	overall	system.
The	control	center	calculates	the	status	of	the	system	as	Alert,	Caution,	or	Normal	using
the	current	values	of	temperature	and	humidity.	To	calculate	the	status,	the	control	center
executes	the	calculateStatus()	function	every	time	it	gets	an	update	for	the	temperature
or	humidity	from	the	monitoring	station.	According	to	the	current	situation	awareness
logic,	if	the	temperature	is	measured	above	45	degree	Celsius	or	below	5	degree	Celsius,
we	call	the	system’s	status	as	Alert.	Similarly,	you	can	identify	the	range	of	temperature
and	humidity	values	for	Caution	and	Normal	statuses	from	the	following	code	snippet:

def	calculateStatus():

				if	(tempG	>	45):

								if	(humdG	>	80):

												status	=	"High	Temperature,	High	Humidity"

								elif	(humdG	<	20):

												status	=	"High	Temperature,	Low	Humidity"

								else:

												status	=	"High	Temperature"

								setAlert(status)

								

				elif	(tempG	<	5):

								if	(humdG	>	80):

												status	=	"Low	Temperature,	High	Humidity"

								elif	(humdG	<	20):

												status	=	"Low	Temperature,	Low	Humidity"

								else:

												status	=	"Low	Temperature"

								setAlert(status)

				else:

								if	(humdG	>	80):

												status	=	"High	Humidity"

												setCaution(status)

								elif	(humdG	<	20):

												status	=	"Low	Humidity"

												setCaution(status)

								else:

												status	=	"Normal"

												setNormal(status)

Communicating	with	Xively
The	control	center	is	also	required	to	communicate	with	Xively	when	it	receives	a

www.it-ebooks.info

http://www.it-ebooks.info/

message	from	the	subscribed	topics.	We	are	already	familiar	with	the	process	of	setting	up
virtual	devices	and	data	streams	on	Xively.	Open	your	Xively	account	and	create	a	virtual
device	called	ControlCenter.	Note	down	the	feed	ID	and	API	key	for	this	device	and
replace	them	in	the	current	code.	Once	you	have	these	values,	create	the	Temperature,
Humidity,	Light,	Motion,	Buzzer,	and	Status	channels	in	this	virtual	device.

Looking	at	the	Python	code,	you	can	see	that	we	have	declared	the	individual	data	stream
for	each	topic	and	associated	them	with	the	appropriate	Xively	channel.	The	following
code	snippet	shows	the	data	stream	for	just	the	temperature	observation,	but	the	code	also
contains	a	similar	configuration	for	all	the	other	sensor	observations:

try:

		datastreamTemp	=	feed.datastreams.get("Temperature")

except	HTTPError	as	e:

		print	"HTTPError({0}):	{1}".format(e.errno,	e.strerror)

		datastreamTemp	=	feed.datastreams.create("Temperature",	tags="C")

		print	"Creating	new	channel	'Temperature'"

Once	the	control	center	receives	a	message	from	the	monitoring	station,	it	updates	the	data
stream	with	the	latest	values	and	pushes	these	changes	to	Xively.	At	the	same	time,	we
will	also	update	the	appropriate	label	in	the	Tkinter	GUI	using	the	onMessage()	function.
We	will	use	the	same	code	snippet	for	all	the	subscribed	channels:

if	msg.topic	==	"MonitoringStation/temperature":

		tempG	=	float(msg.payload)

		window.tempValue.set(tempG)

		datastreamTemp.current_value	=	tempG

		try:

				datastreamTemp.update()

		except	HTTPError	as	e:

				print	"HTTPError({0}):	{1}".format(e.errno,	e.strerror)

The	control	center	also	implements	the	function	to	set	the	system’s	status	across	the
system,	once	it	is	calculated	using	the	calculateStatus()	function.	There	are	three
different	functions	to	perform	this	task	using	a	method	that	is	similar	to	what	we	described
in	the	previous	code	snippet.	These	functions	include	setAlert(),	setCaution(),	and
setNormal()	and	these	are	associated	with	Alert,	Caution,	and	Normal	respectively.
While	updating	the	system’s	status,	these	functions	also	perform	buzzer	and	LED	actions
by	publishing	the	LED	and	buzzer	values	to	the	Mosquitto	broker:

def	setAlert(status):

				window.statusValue.set(status)

				datastreamStatus.current_value	=	"Alert"

				try:

								datastreamStatus.update()

				except	HTTPError	as	e:

								print	"HTTPError({0}):	{1}".format(e.errno,	e.strerror)

				cli.publish("MonitoringStation/led",	'red')

				cli.publish("MonitoringStation/buzzer",	'ON')

Checking	and	updating	the	buzzer’s	status
In	the	control	center,	we	set	the	buzzer’s	status	to	ON	if	the	system’s	status	is	determined	as

www.it-ebooks.info

http://www.it-ebooks.info/

Alert.	If	you	look	back	at	the	UX	flow,	you	will	notice	that	we	also	want	to	include	a
feature	for	the	user	to	manually	turn	off	the	buzzer.	The	checkBuzzerFromXively()
function	keeps	track	of	the	buzzer’s	status	from	Xively	and	if	the	user	manually	turns	off
the	buzzer	using	the	web	application,	this	function	sets	off	the	buzzer.

To	continue	this	process	independently	from	the	GUI	and	situation	awareness	threads,	we
will	need	to	create	another	thread	for	this	function.	The	timer	on	this	thread	will
automatically	execute	the	function	every	30	seconds:

def	checkBuzzerFromXively():

		try:

				datastreamBuzzer	=	feed.datastreams.get("Buzzer")

				buzzerValue	=	datastreamBuzzer.current_value

				buzzerValue	=	str(buzzerValue)

				cli.publish("MonitoringStation/buzzer",	buzzerValue)

		except	HTTPError	as	e:

				print	"HTTPError({0}):	{1}".format(e.errno,	e.strerror)

				print	"Requested	channel	doesn't	exist"

		threading.Timer(30,	checkBuzzerFromXively).start()

With	this	function	running	in	a	separate	thread	every	30	seconds,	the	control	center	will
check	the	status	of	the	Xively	channel	and	stop	the	buzzer	if	the	status	is	set	to	OFF.	We
will	explain	how	the	user	can	update	the	Xively	channel	for	the	buzzer	in	the	next	section.

www.it-ebooks.info

http://www.it-ebooks.info/

Testing	the	control	center	with	the	monitoring
station
Assuming	your	Mosquitto	broker	is	running,	execute	the	controlCenter.py	code	with	the
changed	parameters.	Then,	start	the	monitoring	station.	After	a	few	moments,	you	will	see
on	the	terminal	that	the	control	center	has	already	started	getting	messages	from	the
publishers	that	are	initialized	on	the	monitoring	station.	The	update	interval	for	the
messages	from	the	publisher	at	the	control	center	depends	upon	the	configured	publishing
interval	at	the	monitoring	station.

Note
The	Arduino	code	executes	the	process	of	connecting	to	the	Mosquitto	broker	only	once
after	powering	on.	If	you	start	your	Mosquitto	broker	after	that,	it	won’t	be	able	to
communicate	with	the	broker.	So,	you	need	to	make	sure	that	you	start	the	Mosquitto
broker	before	powering	on	the	monitoring	station.

If	you	need	to	restart	the	Mosquitto	broker	for	any	reason,	remove	and	restart	the
monitoring	station	first.

On	execution	of	the	program,	you	will	be	able	to	see	a	small	GUI	window,	as	shown	in	the
following	screenshot.	This	window	displays	the	sensor’s	values	for	temperature,	humidity,
ambient	light,	and	motion.	Along	with	these	values,	the	GUI	also	displays	the	status	of	the
system,	which	is	Normal	in	this	screenshot.	You	can	also	observe	that	every	time	the
control	center	gets	updates	from	the	monitoring	station,	the	system’s	status	and	sensor
observations	change	in	real	time:

www.it-ebooks.info

http://www.it-ebooks.info/

If	this	setup	is	working	correctly	on	your	computer,	let’s	move	on	to	deploy	the	control
center	on	the	Raspberry	Pi.

www.it-ebooks.info

http://www.it-ebooks.info/

Setting	up	the	control	center	on	the	Raspberry	Pi
The	process	of	installing	the	Raspbian	operating	system	is	explained	in	Chapter	7,	The
Midterm	Project	–	a	Portable	DIY	Thermostat.	You	can	use	the	same	module	that	you
used	in	the	Midterm	project	or	set	up	a	new	one.	Once	you	have	installed	Raspbian	and
configured	the	TFT	screen,	connect	the	Wi-Fi	dongle	through	a	USB	port.	At	this	stage,
we	assume	that	your	Raspberry	Pi	is	connected	with	a	monitor,	a	keyboard,	and	a	mouse
to	perform	the	basic	changes.	Although	we	won’t	recommend	it,	you	can	also	use	the	TFT
screen	for	the	following	operations,	if	you	are	comfortable	with	it:

1.	 Start	your	Raspberry	Pi	and	log	in.	At	the	command	prompt,	execute	the	following
command	to	enter	the	visual	desktop	mode:

$	startx

2.	 Once	your	graphical	desktop	starts,	you	will	be	able	to	see	the	icon	of	the	WiFi
config	utility.	Double-click	on	this	icon	and	open	the	WiFi	config	utility.	Scan	for
wireless	networks	and	connect	to	the	Wi-Fi	network	that	has	the	monitoring	station.
When	asked,	enter	the	password	of	your	network	in	the	form	window	called	PSK,
and	connect	to	your	network.

3.	 Now,	your	Raspberry	Pi	is	connected	to	the	local	home	network	and	to	the	Internet
through	it.	It’s	time	to	update	the	existing	packages	and	install	the	required	ones.	To
update	the	Raspberry	Pi’s	existing	system,	execute	the	following	commands	in	the
terminal:

$	sudo	apt-get	update

$	sudo	apt-get	upgrade

4.	 Once	your	system	is	updated	with	the	latest	version,	it’s	time	to	install	the	Mosquitto
broker	on	your	Raspberry	Pi.	The	Raspbian	OS	has	Mosquitto	in	the	default
repository,	but	it	doesn’t	have	the	current	version	that	we	need.	To	install	the	latest
version	of	Mosquitto,	execute	following	commands	in	the	terminal:

$	curl	-O	http://repo.mosquitto.org/debian/mosquitto-repo.gpg.key

$	sudo	apt-key	add	mosquitto-repo.gpg.key

$	rm	mosquitto-repo.gpg.key

$	cd	/etc/apt/sources.list.d/

$	sudo	curl	-O	http://repo.mosquitto.org/debian/mosquitto-repo.list

$	sudo	apt-get	update

$	sudo	apt-get	install	mosquitto,	mosquitto-clients

5.	 To	install	other	Python	dependencies,	let’s	first	install	the	Setuptools	package	using
apt-get:

$	sudo	apt-get	install	python-setuptools

6.	 Using	Setuptools,	we	can	now	install	all	the	required	Python	libraries	such	as
paho_mqtt,	xively-python,	and	web.py:

$	sudo	easy_install	pip

$	sudo	pip	install	xively-python	web.py	paho_mqtt

www.it-ebooks.info

http://www.it-ebooks.info/

Now	that	we	have	installed	all	the	necessary	software	tools	that	are	required	to	run	our
control	center	on	the	Raspberry	Pi,	it	is	time	to	configure	the	Raspberry	Pi	so	that	it	can
provide	uninterrupted	operation	for	a	critical	system	such	as	a	remote	home	monitoring
system:

1.	 In	the	current	configuration	of	the	Raspberry	Pi,	the	screen	of	the	Raspberry	Pi	will
go	to	sleep	after	some	time	and	the	Wi-Fi	connection	will	be	terminated	when	this
happens.	To	avoid	this	problem	and	force	the	screen	to	remain	active,	you	will	need
to	perform	the	following	changes.	Open	the	lightdm.conf	file	using	the	following
command:

$	sudo	nano	/etc/lightdm/lightdm.conf

2.	 In	the	file,	navigate	to	the	SetDefaults	section	and	edit	the	following	line:

xserver-command-X	–s	0	dpms

3.	 Now	that	your	Raspberry	Pi	is	set	up,	it	is	time	to	copy	the	program	file	from	your
computer	to	the	Raspberry	Pi.	You	can	use	SCP,	PuTTY,	or	just	a	USB	drive	to
transfer	the	necessary	file	to	the	Raspberry	Pi.

If	you	install	and	configure	everything	as	specified,	your	program	should	run	without	any
errors.	You	can	run	the	Python	program	constantly	in	the	background	using	the	following
command:

$	nohup	python	controlCenter.py	&

The	last	thing	that	we	want	to	set	up	on	the	Raspberry	Pi	is	the	TFT	LCD	screen.	The
installation	and	configuration	processes	of	the	TFT	LCD	screen	are	described	in	Chapter
7,	The	Midterm	Project	–	a	Portable	DIY	Thermostat.	Please	follow	the	steps	in	the	given
order	to	set	up	the	screen.	The	control	center	module	along	with	the	Raspberry	Pi	and	the
TFT	screen	can	now	be	deployed	in	any	part	of	your	house.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Stage	3	–	a	web	application	using	Xively,
Python,	and	Amazon	cloud	service
The	cloud	services	module	of	the	overall	system	enables	remote	access	to	your	monitoring
station	through	the	Internet.	The	unit	interacts	with	the	user	via	a	web	application	as	an
extended	version	of	the	control	center.	With	the	use	of	this	web	application,	the	user	can
observe	the	sensor	information	from	the	monitoring	station	and	the	system’s	status
calculated	by	the	control	center	while	having	remote	control	to	turn	off	the	buzzer.	So,
what	does	the	architecture	of	the	cloud	services	look	like?

www.it-ebooks.info

http://www.it-ebooks.info/

Architecture	of	the	cloud	services
The	architecture	of	the	cloud	services	module	with	its	associated	components	is	displayed
in	the	following	diagram.	In	the	cloud	services	architecture,	we	are	using	Xively	as	the
intermediate	data	relay	between	the	web	application	and	the	control	center.	The	control
center	pushes	the	observations	obtained	from	the	monitoring	station	to	the	Xively
channels.	Xively	stores	and	relays	the	data	to	the	web	application	that	is	hosted	on	the
Amazon	AWS.	The	server	instance	on	the	Amazon	AWS	is	used	to	make	the	web
application	accessible	through	the	Internet.	The	server	instance	runs	the	Ubuntu	operating
system	and	the	web	application	that	is	developed	using	the	web.py	library	in	Python.

In	the	previous	stage,	we	already	covered	the	process	of	setting	up	Xively	and	the
channels	to	accommodate	sensor	data.	In	the	control	center	code,	we	also	explained	how
we	can	push	the	updated	observations	to	the	appropriate	Xively	channels.	Therefore,	we
really	do	not	have	any	ground	to	cover	for	the	Xively	platform	at	this	stage	and	we	can
move	on	to	the	web	application.

www.it-ebooks.info

http://www.it-ebooks.info/

Python	web	application	hosted	on	Amazon	AWS
In	the	previous	chapter,	we	set	up	an	Amazon	AWS	cloud	instance	to	host	a	web
application.	You	can	use	the	same	instance	to	host	the	web	application	for	the	remote
home	monitoring	system	too.	However,	make	sure	that	you	have	installed	the	web.py
library	on	your	server.

1.	 In	your	computer,	open	the	Web_Application	folder	and	then	the
RemoteMonitoringApplication.py	file	in	your	editor.

2.	 In	the	code,	you	will	be	able	to	see	that	we	just	expand	the	web	application	program
that	we	created	in	Chapter	9,	Arduino	and	the	Internet	of	Things.	We	use	the
templates	based	on	web.py	and	the	GET()	and	POST()	functions	to	enable	the	web
application.

3.	 In	the	application,	we	fetch	information	from	each	Xively	channel	and	process	it	via
a	separate	function.	For	example,	the	fetchTempXively()	function	obtains	the
temperature	information	from	Xively.	Every	time	the	POST()	function	is	executed,
the	fetchTempXively()	function	fetches	the	latest	value	of	temperature	reading	from
Xively.	This	also	means	that	the	web	application	does	not	populate	and	refresh	the
latest	information	automatically	and	waits	for	POST()	to	execute	the	appropriate
functions:

def	fetchTempXively():

		try:

				datastreamTemp	=	feed.datastreams.get("Temperature")

		except	HTTPError	as	e:

				print	"HTTPError({0}):	{1}".format(e.errno,	e.strerror)

				print	"Requested	channel	doesn't	exist"

		return	datastreamTemp.current_value

4.	 The	web	application	also	provides	access	to	control	the	buzzer	from	the	user
interface.	The	following	code	snippet	adds	the	Buzzer	Off	button	with	other	Form
components.	When	the	form	is	submitted	after	this	button	is	pressed,	the	web
application	executes	the	setBuzzer()	function:

inputData	=	web.input()

if	inputData.btn	==	"buzzerOff":

				setBuzzer("OFF")

5.	 The	setBuzzer()	function	access	the	Xively	channel,	Buzzer,	and	sends	the	off	value
if	the	Buzzer	Off	button	is	pressed.	The	current	web	application	doesn’t	include	the
Buzzer	On	button,	but	you	can	easily	implement	this	functionality	by	reusing	the
code	that	we	developed	for	the	Buzzer	Off	button.	This	function	provides	the
reference	code	for	other	control	points,	which	you	can	reuse	with	minor
modifications:

def	setBuzzer(statusTemp):

		try:

				datastream	=	feed.datastreams.get("Buzzer")

		except	HTTPError	as	e:

				print	"HTTPError({0}):	{1}".format(e.errno,	e.strerror)

www.it-ebooks.info

http://www.it-ebooks.info/

				datastream	=	feed.datastreams.create("Buzzer",	

																																									tags="buzzer")

				print	"Creating	new	Channel	'Buzzer"

		datastream.current_value	=	statusTemp

		try:

				datastream.update()

		except	HTTPError	as	e:

				print	"HTTPError({0}):	{1}".format(e.errno,	e.strerror)

6.	 In	the	code,	you	will	also	have	to	modify	the	Xively	feed	ID	and	the	API	key	and
replace	them	with	the	values	that	your	obtained	from	your	virtual	device.	Once	you
have	performed	this	modification,	run	the	following	command.	If	everything	goes	as
planned,	you	will	be	able	to	open	the	web	application	in	your	web	browser.

$	python	RemoteMonitoringApplication.py

If	you	are	running	the	Python	code	on	your	computer,	you	can	open
http://127.0.0.1:8080	to	access	the	application.	If	you	are	running	the	application	on
the	cloud	server,	you	need	to	enter	the	IP	address	or	domain	name	of	your	server	to	access
the	web	application,	http://<AWS-IP-address>:8080.	If	the	web	application	is	running
from	the	cloud,	it	can	be	accessed	from	anywhere	using	the	Internet,	which	was	one	of	the
original	project	requirements.	With	this	last	step,	you	have	successfully	completed	the
development	of	the	remote	home	monitoring	system	that	is	based	on	Arduino	and	Python.

www.it-ebooks.info

http://www.it-ebooks.info/

Testing	the	web	application
When	you	open	the	web	application	in	a	browser,	you	will	be	able	to	see	a	similar	output
as	shown	in	the	following	screenshot.	As	you	can	see,	the	web	application	displays	the
temperature,	humidity,	light,	and	motion	values.	The	Refresh	button	fetches	the	sensor
data	from	Xively	again	and	loads	the	application	once	more.	The	Buzzer	Off	button	sets
the	value	of	the	Xively’s	Buzzer	channel	to	OFF,	which	then	get	picked	up	by	the	control
center,	and	it	turns	off	the	buzzer	at	the	monitoring	station	subsequently:

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Testing	and	troubleshooting
Due	to	the	number	of	components	involved	and	complex	programming	associated	with
them,	the	overall	project	is	a	complex	system	to	test	and	debug.	Before	you	jump	into
troubleshooting,	make	sure	that	you	have	properly	followed	the	steps	that	were	described
in	the	previous	sections	in	order.	The	following	are	a	few	solutions	to	possible	problems
that	can	occur	during	the	execution	of	the	project:

Troubleshoot	individual	sensor	performance:

If	your	sensor	measurements	are	way	off	the	expected	values,	the	first	thing	that
you	want	to	evaluate	is	the	connection	of	the	sensor	pins	to	the	Arduino	board.
Make	sure	that	you	have	connected	the	digital,	analog,	and	PWM	pins	correctly.
Check	whether	your	Ethernet	Shield	board	is	properly	connected	to	Arduino
Uno.
Evaluate	the	connections	of	the	5V	power	supply	and	ground	for	each
component.

Avoid	Xively’s	update	limit

Xively	imposes	a	limit	on	the	maximum	number	of	transactions	that	you	can
perform	in	a	limited	amount	of	time.	While	running	your	control	center	code,	if
you	encounter	an	error	for	exceeding	the	limit,	wait	for	5	minutes	before	your
access	limit	gets	lifted.
Increase	the	delay	between	consecutive	Xively	updates	at	the	control	center
level:

threading.Timer(120,	checkBuzzerFromXively).start()

Reduce	the	frequency	of	published	messages	at	the	monitoring	station:

timer.setInterval(600000,	publishData);

You	can	also	combine	various	Xively	channels	by	formatting	data	into	JSON	or
XML.

Working	with	the	maximum	current	draw	limitation	of	Arudino:

The	+5V	power	pin	and	digital	pin	of	Arduino	can	provide	a	maximum	current
of	200	mA	and	40	mA	respectively.	When	running	sensors	directly	from	the
Arduino	board,	make	sure	that	you	do	not	exceed	these	limits.
Make	sure	the	combined	current	requirement	of	all	the	sensors	is	less	than	200
mA.	Otherwise,	the	components	won’t	be	able	to	get	enough	power	to	run	and
this	will	translate	into	faulty	sensor	information.
You	can	provide	external	power	to	the	components	that	require	large	amounts	of
current	and	control	this	power	mechanism	via	Arduino	itself.	You	will	need	a
transistor	that	is	acting	as	a	switch	that	can	then	be	controlled	using	the	digital
pins	of	Arduino.	The	tutorial	at	https://learn.adafruit.com/adafruit-arduino-
lesson-13-dc-motors/transistors	shows	a	similar	example	for	a	DC	motor.

www.it-ebooks.info

https://learn.adafruit.com/adafruit-arduino-lesson-13-dc-motors/transistors
http://www.it-ebooks.info/

Solve	network	problems:

In	some	scenarios,	your	monitoring	station	won’t	be	able	to	communicate	with
the	control	center	due	to	network	problems.
This	problem	can	be	solved	by	using	manual	IP	addresses	for	both,	Arduino	and
the	Raspberry	Pi.	In	our	project,	we	use	a	manual	IP	address	for	the	Arduino,	but
the	Raspberry	Pi	is	connected	using	the	Wi-Fi	network.	In	most	cases,	when	you
are	using	your	home	Wi-Fi	network,	Wi-Fi	routers	are	set	up	to	provide	dynamic
IP	addresses	to	the	device	every	time	they	reconnect	to	the	router.
You	can	solve	this	by	configuring	your	Wi-Fi	router	to	a	fixed	IP	address	for	the
Raspberry	Pi.	As	the	type	and	model	of	the	Wi-Fi	router	is	different	for	every
scenario,	you	will	have	to	use	its	user	manual	or	online	help	forums	for	setting	it
up.

Working	with	buzzer-related	issues:

Sometimes	the	buzzer	sound	can	be	too	loud	or	too	quiet,	depending	upon	the
sensor	that	you	are	using.	You	can	use	PWM	to	configure	the	intensity	of	the
buzzer.	In	our	project,	we	used	the	Arduino	digital	pin	9	to	connect	the	buzzer.
This	pin	also	supports	PWM.	In	your	Arduino	code,	modify	the	line	to	reflect
changes	for	the	PWM	pin.	Replace	the	digitalWrite(BUZZER,	HIGH);	line
with	analogWrite(BUZZER,	127);.
This	routine	will	reduce	the	intensity	of	the	buzzer	by	half	from	the	original
level.	You	can	also	change	the	PWM	value	from	0	to	255	and	set	the	intensity	of
the	buzzer	sound	from	lowest	to	highest.

Control	center	GUI	calibration:

Depending	upon	the	size	of	the	TFT	LCD	screen	that	you	are	using,	you	will
have	to	adjust	the	size	of	the	main	window	of	Tkinter.
First,	run	the	current	code	on	your	Raspberry	Pi	and	if	you	see	that	the	GUI
window	does	not	match	the	screen,	add	the	following	line	of	code	after
initializing	the	main	window:

top.minsize(320,200)

This	code	will	fix	the	problem	with	the	size	for	a	2.8	inch	TFT	LCD	screen.	In
the	previous	code	snippet,	320	and	200	represent	the	pixel	sizes	for	width	and
length	respectively.	For	other	screen	sizes,	change	the	pixel	size	accordingly.

Test	the	LED:

In	current	code	configuration,	the	LED	is	turned	on	only	when	the	system
changes	to	Alert	or	Caution.	That	means	you	won’t	be	able	to	test	the	LEDs
unless	these	situations	occur.	To	check	whether	they	are	working	correctly,
execute	the	following	command	at	the	control	center:

$	mosquitto_pub	–t	"MonitoringStation/led"	–m	"red"

This	command	will	light	up	the	LED	in	red.	To	turn	off	the	LED,	just	use	off

www.it-ebooks.info

http://www.it-ebooks.info/

instead	of	red	in	the	previous	code.
If	nothing	lights	up,	you	should	check	the	connection	wires	of	the	LEDs.	In
addition,	check	for	network-related	issues	as	the	Mosquitto	itself	might	not	be
working.
If	you	see	any	color	other	than	red,	this	means	that	you	haven’t	connected	the
LED	correctly	and	you	need	to	interchange	the	pin	configuration	of	your	LED.
If	you	are	using	an	LED	different	than	super-flux	RGB,	you	should	check	out
the	pin	layout	in	the	datasheet	and	reorganize	the	connections.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Extending	your	remote	home	monitoring
system
To	successfully	create	commercial	products	from	DIY	project	prototypes,	you	will	need	an
additional	layer	of	features	on	top	of	basic	functionalities.	These	features	actually	make
things	convenient	for	a	user	when	they	interact	with	the	system.	The	other	distinguishable
feature	is	the	tangibility	of	the	system,	which	makes	large-scale	production	and	support
possible.	Although	there	are	plenty	of	features	that	you	can	implement,	we	recommend	the
following	major	improvements	to	elevate	the	level	of	the	current	project.

www.it-ebooks.info

http://www.it-ebooks.info/

Utilizing	multiple	monitoring	stations
In	this	project,	we	developed	a	monitoring	station	as	a	prototype	with	a	range	of
functionality	that	is	demonstrated	by	a	remote	home	monitoring	system.	A	remote
monitoring	system	can	have	multiple	numbers	of	monitoring	stations	to	cover	various
geographical	locations,	such	as	different	rooms	inside	a	house,	or	different	office	cubicles.
Basically,	a	large	number	of	monitoring	stations	can	cover	an	extended	area	and	provide
efficient	surveillance	of	the	domain	that	you	are	trying	to	monitor.	If	you	want	to	extend
the	current	project	with	an	array	of	monitoring	stations,	you	will	require	some	of	the
following	modifications:

Each	monitoring	station	can	have	its	own	control	center	or	a	centralized	control
center	for	all	of	them,	depending	upon	the	application	requirements.
You	will	have	to	update	the	Python	code	for	the	control	center	to	accommodate	the
changes.	Examples	of	these	changes	include	modifying	topic	titles	for	MQTT,
coordinating	between	these	monitoring	stations,	updating	data	models	for	Xively
updates,	and	so	on.
The	free	Xively	account	may	not	be	able	to	handle	the	large	amounts	of	data	coming
from	the	monitoring	stations.	In	this	case,	you	can	either	optimize	the	update	rate
and/or	payload	size	or	upgrade	your	Xively	account	to	comply	with	the	requirements.
You	can	also	resort	to	other	free	services	such	as	ThingSpeak,	Dweet.io,	and	Carriots,
but	you	will	have	to	make	substantial	modifications	to	the	existing	code	structure.
You	can	also	update	the	web	application	to	provide	you	with	a	selection	menu	for	the
monitoring	stations	or	display	all	of	them	at	once.	You	will	also	have	to	change	the
code	to	yield	the	modified	data	models.

www.it-ebooks.info

http://www.it-ebooks.info/

Extending	sensory	capabilities
In	term	of	sensors,	we	are	only	interfacing	temperature,	humidity,	ambient	light,	and
motion	sensors.	However,	the	actuation	is	limited	to	the	buzzer	and	LED.	You	can
implement	the	following	changes	to	improve	the	sensory	capabilities	of	the	project.

In	a	real	scenario,	a	remote	home	monitoring	system	should	be	able	to	interface	with
other	existing	sensors	such	as	the	security	system,	monitoring	cameras,	refrigerator
sensors,	door	sensors,	and	garage	sensors	throughout	a	home.
You	can	also	interface	this	project	with	other	appliances	such	as	the	air	conditioner,
heater,	and	security	alarm,	which	can	help	you	to	control	the	environment	that	you
are	already	monitoring.	As	a	trial,	these	components	can	be	interfaced	using	a	set	of
relays	and	switches.
You	can	upgrade	the	current	sensors	at	the	monitoring	station	with	more	powerful,
efficient,	and	accurate	sensors.	However,	the	monitoring	station	with	the	upgraded
sensors	may	require	a	more	powerful	version	of	Arduino	with	more	I/O	pins	and
computation	capabilities.
You	can	also	use	additional	sensors	other	than	those	used	in	this	project	at	the
monitoring	station.	There	are	large	amount	of	heterogeneous,	Arduino-supported	DIY
sensors	that	you	can	buy	off	the	shelf.	Examples	of	these	sensors	include	the	Alcohol
Gas	Sensor	(MQ-3),	LPG	Gas	Sensor	(MQ-6),	Carbon	Monoxide	Sensor	(MQ-7),
Methane	Gas	Sensor	(MQ-4),	and	so	on.	These	sensors	can	be	simply	interfaced	with
the	Arduino	just	like	the	other	sensors	that	we	connected	earlier.
To	accommodate	these	changes,	you	will	be	required	to	change	the	control	center
logic	and	algorithms.	If	you	are	interfacing	a	third-party	component,	you	may	also
have	to	revisit	the	system	architecture	and	adjust	it.
Similarly,	you	will	also	have	to	run	frequent	updates	to	Xively	for	the	additional
number	of	sensors,	making	the	free	version	inadequate.	To	resolve	this,	you	can	pay
for	the	commercial	version	of	a	Xively	account	or	use	a	limited	number	of	requests
using	a	JSON	file	format	similar	to	the	one	displayed	in	the	following	code	snippet:

{

				"version":	"1.0.0",

				"datastreams":	[

								{

												"id":	"example",

												"current_value":	"333"

								},

								{

												"id":	"key",

												"current_value":	"value"

								},

								{

												"id":	"datastream",

												"current_value":	"1337"

								}

]

}

www.it-ebooks.info

http://www.it-ebooks.info/

Improving	UX
When	we	designed	the	user	experience	for	this	project,	our	goal	was	to	demonstrate	the
usefulness	of	a	UX	design	in	developing	the	software	flow.	In	the	current	UX	design,	the
control	center	and	the	web	application	have	limited	control	and	features	for	a	user.	The
following	are	a	few	changes	that	you	need	to	implement	to	improve	the	UX	of	the	project:

Add	tooltips	and	proper	naming	conventions	for	the	various	descriptions.	Implement
a	proper	layout	to	differentiate	between	the	various	information	categories.
Add	buttons	for	the	buzzer	and	the	LED	control	on	the	control	center	GUI.
In	the	web	application,	use	a	JavaScript	and	Ajax-based	interface	to	automatically
refresh	the	changes	in	sensor	values.
Provide	a	UI	mechanism	so	that	the	user	can	change	the	update	interval	at	the	control
center	and	the	web	application.	Once	these	changes	are	made,	propagate	them
through	each	program	so	that	the	monitoring	station	can	start	publishing	messages	at
the	new	interval.

www.it-ebooks.info

http://www.it-ebooks.info/

Expanding	cloud-based	features
In	the	current	setup,	we	are	using	two	stages	to	provide	cloud-based	capabilities	and
enable	remote	monitoring.	We	have	Xively	as	a	data	relay	and	Amazon	AWS	to	host	the
web	application.	If	you	are	working	on	a	commercial-grade	product	and	want	to	reduce
the	complexity	of	the	architecture,	you	can	implement	the	following	changes:

You	can	develop	your	own	data	relay	on	your	cloud	instance	using	open	source	tools
such	as	ThingSpeak.	Your	control	center	will	then	communicate	directly	to	your
server	and	eliminate	dependency	on	third-party	IoT	services.
If	Xively	is	your	platform,	you	can	also	use	additional	features,	such	as	graphs	on
your	smart	phone,	which	are	provided	by	Xively.	Once	your	phone	is	paired	with
Xively,	you	can	access	this	feature	directly.
Alternatively,	you	can	use	other	cloud	services	such	as	Microsoft	Azure	and	Google
App	engine	instead	of	Amazon	AWS.	You	can	also	set	up	your	own	cloud	server,
depending	upon	your	familiarity	with	cloud	computing.	Although	having	your	own
cloud	will	give	you	complete	control	of	the	server,	third-party	services	such	as
Amazon	can	be	more	cost	effective	and	require	less	maintenance	compared	to	self-
hosted	servers.
If	you	are	planning	to	develop	a	large-scale	system	that	is	based	on	the	current
architecture,	you	can	increase	the	computing	capability	of	your	existing	cloud
instance.	You	can	also	implement	a	distributed	server	system	to	accommodate	the
large	number	of	remote	monitoring	systems	that	can	be	accessed	by	an	even	greater
number	of	users.

www.it-ebooks.info

http://www.it-ebooks.info/

Improving	intelligence	for	situation	awareness
In	this	project,	we	have	used	four	different	sensors	to	monitor	the	physical	environment—
each	sensor	obtains	user	inputs	with	two	types	of	actuators	for	notification.	Although	we
are	using	a	good	amount	of	information	sources,	our	situation	awareness	algorithm	is
limited	to	identifying	out-of-range	temperature	and	humidity	values.	You	can	implement	a
few	extended	features	to	make	your	system	more	versatile	and	useful:

Implement	different	logic	for	day	and	night	scenarios,	which	can	help	you	to	avoid
unwarranted	false	alarms	at	night.
Implement	an	intruder	detection	algorithm	using	the	motion	sensor	for	when	you	are
not	at	home.
Utilize	a	combination	of	ambient	light	sensor	values	with	motion	sensors	to	identify
energy	wastage.	For	example,	a	scenario	in	which	more	light	is	recorded	during	the
night	when	the	motions	are	significantly	low	explains	that	you	may	have	forgotten	to
turn	off	the	lights	during	the	night.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating	an	enclosure	for	hardware	components
Just	like	software-based	features,	the	hardware	components	also	require	a	major	revamp	if
you	develop	a	commercial-grade	product.	Nowadays,	3D	printers	have	become	viable	and
it	is	really	easy	to	design	and	print	plastic	3D	components.	You	can	also	use	professional
3D	printing	services	such	as	Shapeways	(http://www.shapeways.com),	Sculpteo
(http://www.sculpteo.com),	or	makexyz	(http://www.makexyz.com)	for	your	enclosures.
You	can	even	use	a	laser	cutter	or	other	means	of	model	making	to	create	the	hardware
enclosures.	These	are	a	few	hardware	improvements	that	you	can	implement:

The	sensor	and	actuators	that	are	assembled	on	a	prototype	board	can	be	organized	on
a	PCB	and	permanently	fixed	for	stable	and	robust	operation.
A	hardware	enclosure	for	the	monitoring	station	can	make	it	portable	and	easily
deployable	in	any	environment.	When	designing	this	enclosure,	you	should	also
consider	the	proper	placement	of	the	motion	sensor	and	the	ambient	light	sensor,
along	with	a	button	to	make	them	accessible	to	the	user.
The	Raspberry	Pi	and	TFT	LCD	screen,	which	make	up	the	control	center	hardware,
can	also	be	enclosed	in	a	mountable	package.
Adding	touch	screen	capabilities	to	the	TFT	LCD	screen	can	enable	additional
control	over	the	system,	expanding	the	UX	use	cases.

www.it-ebooks.info

http://www.shapeways.com
http://www.sculpteo.com
http://www.makexyz.com
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Summary
In	this	chapter,	we	developed	a	working	prototype	of	a	remote	home	monitoring	system
and	also	learned	the	process	of	hardware	product	development	simultaneously.	In	the
project,	we	utilized	most	of	the	hardware	components	and	software	tools	that	we	used
throughout	the	book.	We	began	by	designing	the	system	architecture	so	that	we	could
coordinate	the	utilization	of	these	tools.	Later,	we	ventured	into	the	actual	development
stages,	which	included	designing	the	hardware	units	and	developing	programs	to	run	these
units.	In	the	end,	we	provided	a	list	of	improvements	to	make	this	prototype	into	a	real
commercial	product.	You	are	welcome	to	use	this	methodology	to	develop	your	future
projects	and	products,	as	you	now	have	experience	working	with	this	one.

In	the	last	chapter,	we	are	going	to	utilize	the	same	project	development	methodology	to
create	an	interesting	project	that	utilizes	your	messages	from	a	social	network	website	to
give	you	control	over	your	hardware.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter	11.	Tweet-a-PowerStrip
Smart	power	management	units	or	strips	are	part	of	some	of	the	most	popular	IoT
subdomains,	smart	homes	and	smart	grids.	Nowadays,	smart	power	strips	are
commercially	available	and	provide	a	large	number	of	features,	such	as	remote	access,
smart	power	usage,	and	power	management.	In	this	project,	we	are	going	to	create	a	smart
DIY	power	strip	that	can	be	controlled	remotely	using	status	messages	posted	on	Twitter,
the	popular	social	media	website	(http://www.twitter.com).	These	messages	are	also
known	as	tweets.	Basically,	just	like	you	can	control	sensors	remotely	using	a	web
browser,	you	can	control	them	by	sending	a	tweet.	We’ve	already	worked	with	low-power
sensors	in	the	previous	project,	so	let’s	work	with	AC	appliances	in	this	project.	We	will
be	implementing	the	same	project	development	methods	that	we	utilized	in	the	previous
project.	This	chapter	avoids	additional	explanations	about	the	process	and	sticks	only	to
the	details	associated	with	the	project.

www.it-ebooks.info

http://www.twitter.com
http://www.it-ebooks.info/

Project	overview
This	project	requires	the	development	of	a	smart	power	strip	using	Arduino	and	Python,
while	the	control	inputs	to	the	strips	are	tweets.	Although	we	are	only	enabling	remote
access	to	the	power	strip,	there	are	a	large	number	of	additional	features	that	can	be
implemented	in	future	to	elevate	this	DIY	project	to	a	commercial	product.

The	major	goals	we	want	to	achieve	in	this	project	are	as	follows:

The	user	should	be	able	to	turn	the	individual	power	ports	on	and	off	using
customized	tweets
The	user	should	be	able	to	check	the	status	of	the	power	ports	using	Twitter

www.it-ebooks.info

http://www.it-ebooks.info/

Project	requirements
Here	are	the	initial	project	requirements,	derived	from	the	goals:

The	system	should	have	110V	(or	220V)	AC	power	ports	interfaced	with	relays.
An	Arduino-based	unit	should	be	able	to	control	these	relays,	ultimately	controlling
the	appliance	connected	through	the	power	ports.
The	system	should	be	able	to	decode	the	tweets	sent	by	the	user	and	convert	them
into	appropriate	control	messages	for	Arduino.
The	Python-based	program	that	processes	the	tweets	should	then	publish	these
messages	so	that	Arduino	can	complete	those	actions	using	the	relays.
To	sum	up,	the	relays	should	be	controlled	in	a	near	real-time	manner	using	the
tweets	sent	by	the	user.
The	system	should	also	understand	keywords	to	check	the	status	of	the	relays	and
automatically	tweet	the	status.	The	system	should	process	a	tweet	only	once	and
should	be	able	to	remember	the	last	tweet	processed.

Note
110V	versus	220V	AC	power

Depending	on	the	country,	your	AC	power	supply	may	have	voltage	ratings	of
110/120V	or	220/240V.	Although	the	circuit	diagram	used	by	this	project	mentions	a
110V	AC	power	supply,	the	same	circuit	should	also	work	for	a	220V	power	supply.
If	you	are	using	a	220V	supply,	check	out	the	following	notes	before	moving
forward:

Ensure	that	the	appliances	you	are	trying	to	operate,	such	as	fans,	lights,	and	so
on,	are	rated	for	similar	AC	power
You	have	to	ensure	that	the	relays	used	by	the	project	are	compatible	with	your
AC	power	supply
Arduino	works	on	a	DC	power	supply,	and	it	is	not	affected	by	any	variation	in
AC	power

www.it-ebooks.info

http://www.it-ebooks.info/

System	architecture
From	the	preceding	requirements,	let’s	sketch	the	architecture	of	the	Tweet-a-PowerStrip
system.	The	system	architecture	tries	to	utilize	the	hardware	components	and	software
tools	you	learned	in	the	previous	chapters,	while	having	a	relay	component	as	the	only
exceptional	component.	As	you	can	see	in	the	architecture	in	the	following	diagram,	we
are	employing	the	relay	to	control	various	home	appliances.	These	appliances	are	usually
powered	by	a	common	110V	AC	power	supply	available	in	each	home.	Instead	of
controlling	a	single	appliance,	we	are	implementing	a	four-channel	relay	to	control	at	least
four	appliances,	such	as	a	lamp,	a	fan,	a	toaster,	and	a	coffee	machine.

The	relay	is	controlled	using	the	digital	pins	of	the	Arduino	Uno	board,	which	utilizes	the
Ethernet	Shield	to	connect	to	your	home	network.	A	computation	unit	that	may	consist	of
a	computer,	a	Raspberry	Pi,	or	a	server,	uses	Python	and	its	supporting	libraries	to	access
tweets.	The	computation	unit	also	deploys	a	Mosquitto	broker.	This	broker	handles	the
topics	from	the	Python	program	and	Arduino	to	control	the	relays.	The	user	can	post
tweets	containing	keywords	from	any	platform,	such	as	a	phone	or	a	browser,	and	the
tweets	are	ultimately	captured	by	the	computation	unit.

www.it-ebooks.info

http://www.it-ebooks.info/

Required	hardware	components
This	project	will	require	the	following	hardware	components	throughout	the	development
and	the	deployment	stages:

Component Amount Website/note

Arduino	Uno 1 https://www.sparkfun.com/products/11021

Arduino	Ethernet	Shield 1 https://www.sparkfun.com/products/9026

Relay	(four-channel,	Arduino-
compatible) 1 http://www.amazon.com/JBtek-Channel-Module-Arduino-

Raspberry/dp/B00KTEN3TM/

PowerSwitch	Tail 4
http://www.powerswitchtail.com/

Alternative	to	relay

Power	strip Optional 	

Breadboard 1 For	development	stage

USB	cable	for	Arduino 1 For	development	stage

Arduino	power	supply 1 For	deployment	stage

Electric	tape As	per
requirements

	

Connection	wires As	per
requirements

	

Relays
As	you	can	see	in	the	following	image,	we	are	introducing	a	new	hardware	component
that	was	not	utilized	in	any	of	the	previous	chapters—a	relay:

www.it-ebooks.info

https://www.sparkfun.com/products/11021
https://www.sparkfun.com/products/9026
http://www.amazon.com/JBtek-Channel-Module-Arduino-Raspberry/dp/B00KTEN3TM/
http://www.powerswitchtail.com/
http://www.it-ebooks.info/

This	is	an	electromagnetic	device	that	uses	electricity	to	be	operated	as	a	switch.	A	typical
relay	contains	three	contacts	on	the	high-power	side,	normally	connected	(NC),	common
(C),	and	normally	open	(NO).	The	other	side	(the	control	side)	of	the	relay	requires	an
activation	voltage	to	toggle	the	connection	from	common-NC	to	common-NO.	This	action
demonstrates	the	switch	functionalities	for	the	connection	on	the	high-power	side.	We’ll
use	Arduino-compatible	relays	from	manufacturers	such	as	Keyes	or	SainSmart.	These
relays	are	available	in	single-,	two-	or	four-channel	configurations.	On	the	high-power
side,	the	relays	support	up	to	250V,	10A	AC	power	or	30V,	10A	DC	power.	The	relays	are
controlled	using	5V	DC	on	the	low-power	side,	which	is	provided	using	the	digital	I/O
pins	of	the	Arduino	board.

PowerSwitch	Tail
Working	with	AC	power	can	be	hazardous	if	you	haven’t	dealt	with	it	previously	or	if	you
are	not	familiar	with	the	necessary	precautions	and	measurements.	If	you	are	not
comfortable	with	working	with	open	relays	or	connecting	AC	power	to	them,	there	is
another	device	that	you	can	use	to	replace	the	relay—the	PowerSwitch	Tail,	a	safely
enclosed	box	that	contains	optically	isolated	solid-state	relays	and	provides	a	convenient
way	to	interface	your	AC	appliance	with	the	Arduino	board.	The	following	is	an	image	of
the	PowerSwitch	Tail,	which	can	be	obtained	from	its	official	website
(http://www.powerswitchtail.com/):

www.it-ebooks.info

http://www.powerswitchtail.com/
http://www.it-ebooks.info/

Note
If	you	are	dealing	with	a	220V/240V	power	supply,	the	PowerSwitch	Tail	website	also
provides	an	assembly	kit	for	200V	to	240V	power	supply,	at
http://www.powerswitchtail.com/Pages/PowerSwitchTail240vackit.aspx.

It	is	really	easy	to	assemble	the	kit	from	the	guidelines	provided	at
http://www.powerswitchtail.com/Documents/PSSRTK%20Instructions.pdf.

For	this	project,	you	will	need	four	of	these	devices	to	replace	the	four-channel	relay	that
we	are	going	to	use.	As	you	can	see	in	the	following	diagram,	one	end	of	the	Tail	goes	into
the	regular	power	port,	while	you	need	to	connect	your	appliance	to	the	other	port.
Meanwhile,	you	can	use	the	three	control	inputs	to	control	the	relay.	We	are	using	one	of
the	digital	I/O	pins	of	the	Arduino	board	to	send	the	control	signal	to	the	Tail.	When	going
ahead	with	the	Tails	instead	of	the	relays,	make	sure	that	you	make	necessary	amendments
to	the	upcoming	hardware	design.

www.it-ebooks.info

http://www.powerswitchtail.com/Pages/PowerSwitchTail240vackit.aspx
http://www.powerswitchtail.com/Documents/PSSRTK%20Instructions.pdf
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

User	experience	flow
From	the	system	architecture	we	have	created,	what	should	the	user	experience	(UX)
flow	while	working	with	the	Tweet-a-PowerStrip	be?	We	have	divided	the	UX	into	two
separate	sections:	controlling	the	power	to	the	appliances,	and	checking	the	status	of	the
power	strip.

In	the	first	UX	flow	design,	as	displayed	in	the	following	diagram,	the	user	begins	by
sending	a	tweet	containing	the	name	of	the	appliance	(#fan,	#lamp,	#toaster,	or	#coffee)
and	the	control	command	(#on	or	#off).	The	system	should	be	able	to	handle	the	tweet
from	the	point	of	parsing	until	the	appliance	has	behaved	as	asked	for.	The	system	should
also	provide	a	hassle-free	experience	for	the	user,	where	the	user	doesn’t	have	to	perform
any	further	actions	than	simply	sending	tweets.

Similarly,	the	user	should	be	able	to	post	#status	#check	tweets	and	simply	obtain	the
status	report	posted	back	by	the	system.	The	system	should	handle	checking	the	status	of
the	power	ports,	publishing	it	to	the	computation	unit,	and	posting	a	tweet	with	the
message	without	any	additional	input	from	the	user.

www.it-ebooks.info

http://www.it-ebooks.info/

The	following	diagram	shows	the	UX	flow	for	checking	the	system	status:

www.it-ebooks.info

http://www.it-ebooks.info/

Development	and	deployment	stages
According	to	the	architecture,	we	require	two	main	development	stages	to	complete	the
project.	The	first	stage,	which	interacts	with	the	appliance	through	the	relays,	is	developed
using	Arduino.	This	unit	subscribes	to	the	topics	associated	with	the	appliances,	and	once
it	receives	an	appropriate	message,	it	executes	the	action	on	the	relay	level.	In	the	second
stage,	we	deal	with	the	individual	tweets,	where	we	parse	the	tweets	from	the	Twitter
account,	check	for	duplicates,	decode	actions	from	the	messages,	and	also	post	tweets	with
status	reports.	During	these	development	stages,	we	are	going	to	use	a	breadboard	and
jumper	wires	to	test	the	Arduino	and	Python	programs.	At	this	stage,	the	project	is	still	not
ready	to	deploy	as	a	portable	unit	for	daily	usage.

The	deployment	stage	contains	tasks	of	creating	a	PCB	for	the	breadboard	connections
and	insulating	wires	to	avoid	any	electric	hazard.	You	can	also	buy	or	create	an	enclosure
box	to	isolate	the	open	hardware	from	physical	contact.	As	the	development	stage	contains
everything	that	is	required	to	convert	the	project	into	its	working	state,	we	are	not	going	to
dive	deep	into	the	deployment	stage.	You	can	perform	addition	deployment	tasks
according	to	your	personal	requirements.

Let’s	start	from	the	hardware	design	stage	and	develop	the	physical	section	of	the	smart
power	strip	using	Arduino.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Stage	1	–	a	smart	power	strip	with
Arduino	and	relays
The	hardware	of	Tweet-a-PowerStrip	contains	Arduino	as	the	main	controller	unit	that
interfaces	with	the	relays	and	the	Ethernet	Shield	to	communicate	with	the	computation
unit.	The	Arduino	code	implements	the	MQTT	client,	using	the	PubSubClient	library	to
publish	and	subscribe	to	the	topics.	Although	we	are	using	some	example	appliances	to
control	the	use	of	the	relay,	you	can	select	any	other	appliance	you	own.	You	can	also	use
a	commercial	power	strip	instead	of	an	individual	power	plug.

www.it-ebooks.info

http://www.it-ebooks.info/

Hardware	design
While	assembling	the	hardware	components,	as	displayed	in	the	following	diagram,	make
sure	you	are	precise	in	connecting	the	appliances	with	the	AC	power	plugs.	One	wire	of
the	AC	plug	is	directly	connected	to	the	appliance,	while	the	other	is	connected	between
the	C	and	NO	ports	of	the	relay.	We	have	connected	the	control	side	of	the	relay	to	the
digital	pin	of	our	Arduino.	As	we	are	using	a	four-channel	relay,	we	will	have	to	utilize
four	digital	IO	pins	from	the	Arduino	board.	Complete	the	remaining	connections	as
shown	here:

Connecting	the	hardware	unit	is	fairly	simple,	but	requires	a	lot	of	precision	because	it
involves	high-power	AC	connections.

Tip
You	should	cover	the	open	110V	AC	power	cords	going	to	the	relay	and	the	appliance
with	electric	tape	to	avoid	any	type	of	electrical	hazard.	Keeping	these	live	wires	open	can
be	really	dangerous	due	to	the	large	amount	of	current	being	carried	by	them.	In	the
deployment	stage,	a	plastic	cover	or	a	box	around	the	relay	unit	can	also	be	helpful	in
covering	the	live	power	wires.

Once	you	are	ready	with	the	connections,	connect	the	Arduino	board	to	your	computer

www.it-ebooks.info

http://www.it-ebooks.info/

using	a	USB	port,	as	shown	in	the	following	image:

www.it-ebooks.info

http://www.it-ebooks.info/

The	Arduino	code
The	Arduino	sketch	for	this	section	is	located	in	the	folder	containing	the	chapter	code
with	the	Arduino_powerstrip.ino	filename.	You	can	open	the	file	in	the	Arduino	IDE	to
explore	the	code.	As	usual,	you	will	have	to	change	the	IP	addresses	of	the	device	and	the
Mosquitto	server	to	the	appropriate	IP	addresses,	while	also	changing	the	MAC	address	of
the	Ethernet	Shield.	The	following	code	snippet	shows	the	declaration	of	the	Arduino	pins
and	their	roles	in	the	main	function,	setup().	Make	sure	that	you	are	using	the	same	pin
numbers	that	you	have	used	to	connect	the	relay.	Alternatively,	you	can	change	the
appliance	name	to	that	of	the	appliance	you	are	using.	Also,	make	sure	whatever	changes
you	make	in	the	variable	names	should	be	reflected	in	the	entire	code	to	avoid	any
compilation	errors:

		pinMode(FAN,	OUTPUT);

		pinMode(LAMP,	OUTPUT);

		pinMode(TOASTER,	OUTPUT);

		pinMode(COFFEEMAKER,	OUTPUT);

		fanStatus	=	false;

		lampStatus	=	false;

		toasterStatus	=	false;

		coffeemakerStatus	=	false;

		digitalWrite(FAN,	LOW);

		digitalWrite(LAMP,LOW);

		digitalWrite(TOASTER,	LOW);

		digitalWrite(COFFEEMAKER,	LOW);

In	the	setup()	function,	the	code	also	subscribes	to	the	appropriate	MQTT	channels	so
that	it	can	receive	messages	from	the	Mosquitto	broker	as	soon	as	they	are	available.	As
you	can	see,	we	are	also	subscribing	to	the	PowerStrip/statuscheck	channel	to	deal	with
the	status	report:

		if	(client.connect("PowerStrip"))	{

				client.subscribe("PowerStrip/fan");

				client.subscribe("PowerStrip/lamp");

				client.subscribe("PowerStrip/toaster");

				client.subscribe("PowerStrip/coffeemaker");

				client.subscribe("PowerStrip/statuscheck");

		}

In	the	callback()	function,	we	use	the	if	statement	to	match	the	topic	with	the
appropriate	digitalWrite()	action.	As	you	can	see,	we	are	setting	up	HIGH	and	LOW
statuses	for	the	digital	pin	when	the	program	receives	on	and	off	messages,	respectively
(for	that	appliance).	With	this	action,	we	are	also	changing	the	state	of	the	Boolean
variable	associated	with	the	appliance,	which	will	be	helpful	in	retrieving	the	status	of	the
port.	The	same	process	is	then	repeated	for	all	appliances:

		if(topicS	==	"PowerStrip/fan"){

				if	(payloadS.equalsIgnoreCase("on"))	{

						digitalWrite(FAN,	HIGH);

						fanStatus	=	true;

				}

www.it-ebooks.info

http://www.it-ebooks.info/

				if	(payloadS.equalsIgnoreCase("off")){

						digitalWrite(FAN,	LOW);

						fanStatus	=	false;

				}

		}

When	the	system	receives	a	get	message	that	is	associated	with	the	status	check,	the
program	creates	a	message	using	the	Boolean	variables	that	we	toggled	earlier.	The
program	then	publishes	the	status	to	the	PowerStrip/statusreport	channel:

if(topicS.equals("PowerStrip/statuscheck")){

				if	(payloadS.equalsIgnoreCase("get"))	{

								String	report	=	"";

								if	(fanStatus)	report	+=	"Fan:on,";

								else	report	+=	"Fan:off,";

								if	(lampStatus)	report	+=	"Lamp:on,";

								else	report	+=	"Lamp:off,";

								if	(toasterStatus)	report	+=	"Toaster:on,";

								else	report	+=	"Toaster:off,";

								if	(coffeemakerStatus)	report	+=	"Coffeemaker:on";

								else	report	+=	"Coffeemaker:off";

								report.toCharArray(reportChar,	100);

								client.publish("PowerStrip/statusreport",	reportChar);

				}

		}

Just	as	we	did	in	the	previous	project,	you	can	set	up	the	code	to	periodically	send	keep
alive	messages	to	avoid	the	termination	of	the	connection	with	the	Mosquitto	broker.
Once	you	are	ready	with	the	code,	connect	the	Ethernet	cable,	compile	the	code,	and	then
upload	it	to	your	Arduino.	Your	Arduino	should	be	in	receiving	mode	now,	and	it	will	wait
for	the	message	from	the	subscribed	channels.	As	we	discussed	in	the	previous	the	project,
you	need	to	ensure	that	your	Mosquitto	broker	is	running	on	the	server	IP	address	you
specified	in	the	Arduino	code.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Stage	2	–	the	Python	code	to	process
tweets
As	the	user	is	interacting	with	the	system	at	the	level	of	the	Twitter	application,	we	do	not
require	a	deployable	computation	or	control	unit	for	this	project.	Due	to	this,	we	can	just
use	any	computer	capable	of	hosting	Python	and	Mosquitto	as	the	computation	unit.	You
still	need	to	ensure	that	the	unit	is	always	on	and	connected	to	the	Internet,	otherwise	the
system	will	not	work	as	expected.	For	simplicity,	you	can	deploy	the	system	on	the
Raspberry-Pi-based	control	center	that	you	developed	in	the	previous	project,	or	even	on
the	Amazon	AWS	server.	For	the	development	stage,	let’s	start	with	the	regular	computer
that	you	have	been	using	all	along.	We	are	assuming	that	this	computer	has	the	Mosquitto
broker	installed	and	running.	Note	down	the	IP	address	of	this	unit,	as	you	will	need	it	in
the	Arduino	code	that	you	developed	in	the	previous	section.

www.it-ebooks.info

http://www.it-ebooks.info/

Python	software	flow
The	Python	code	deals	with	two	services	during	execution,	the	Twitter	API	to	get	or	post
tweets	and	the	Mosquitto	broker	to	relay	messages	to	the	hardware	unit.	The	program
begins	by	parsing	the	latest	tweet	from	the	user	account	and	checking	whether	it	has	been
utilized	in	the	previous	action	or	not.	This	avoids	any	command	duplication,	as	the
frequency	of	new	tweets	is	significantly	lower	than	the	frequency	of	the	program	loop.
Once	the	code	finds	a	new	tweet	with	the	appropriate	keywords	to	perform	operations	on
the	appliance	(or	appliances),	it	publishes	the	message	to	the	Mosquitto	broker.	If	the
tweet	contains	a	message	to	check	the	status,	the	code	requests	the	status	from	your
Arduino	and	posts	a	new	tweet	with	the	status	after	receiving	it.

The	following	diagram	shows	the	detailed	program	flow	of	the	computation	unit:

You	can	change	the	program	flow	to	accommodate	any	other	feature	you	want	to	add	at
the	Python	level.	The	logic	behind	identifying	and	toggling	the	appliance	can	be
improvised	to	accommodate	more	complex	tweet	text.

www.it-ebooks.info

http://www.it-ebooks.info/

Setting	up	the	Twitter	application
We	are	assuming	that	you	have	a	Twitter	account	by	now.	If	you	don’t,	you	can	create	a
new	account	just	for	this	project	to	avoid	changes	to	your	own	profile.	With	the
introduction	of	the	latest	APIs,	Twitter	requires	you	to	authenticate	using	OAuth	before
accessing	any	information	from	your	account.	To	do	that,	you	will	have	to	create	a	Twitter
app	using	your	account.	Execute	the	following	steps	in	order	to	create	a	new	Twitter	app
for	this	project:

1.	 Log	in	to	your	Twitter	account	and	open	the	https://apps.twitter.com	address	in	your
web	browser.

2.	 Click	on	the	Create	New	App	icon	on	the	page,	and	you	will	be	directed	to	a	page
asking	for	your	application	details,	as	displayed	in	the	following	screenshot:

3.	 Fill	in	all	the	required	details	(marked	with	red	asterisks)	and	continue	to	the	next
page.	Ensure	that	your	application	name	is	unique,	as	Twitter	asks	for	a	unique
application	name.

4.	 Once	your	application	is	created,	you	can	click	on	the	API	Keys	tab	and	find	the
consumer	key	(API	key)	and	consumer	secret	(API	secret)	for	your	app.	Save	this
information	in	a	safe	place,	as	you	will	need	them	to	authenticate	with	the	Twitter
API.

www.it-ebooks.info

https://apps.twitter.com
http://www.it-ebooks.info/

5.	 As	the	UX	of	the	Tweet-a-PowerStrip	project	requires	the	system	to	automatically
send	the	system	status,	we	need	read-and-write	access	to	our	application.	Go	to	the
Permissions	tab,	select	the	Read	and	Write	option,	and	save	it	for	the	changes	to
take	effect.

6.	 Once	you	are	done	with	setting	up	the	permissions	for	the	application,	go	back	to	the
API	keys	tab	and	click	on	the	Create	Access	Token	icon	to	generate	a	new	access
token	for	this	application.	After	a	while,	you	should	be	able	to	see	the	access	token
on	the	same	page,	as	displayed	in	this	screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

7.	 Save	the	Access	token	and	Access	token	secret	information.	Your	application	is	now
ready	for	use	and	can	help	you	to	authenticate	with	the	Twitter	API.

Now	let’s	move	on	to	the	Python	code.

www.it-ebooks.info

http://www.it-ebooks.info/

The	Python	code
Before	you	jump	into	the	code,	you	are	required	to	install	the	Twitter	library	for	Python.
Use	the	Setuptools	or	pip	to	install	the	library	using	the	following	command.	We	are
assuming	that	you	already	have	the	latest	paho_mqtt	library	installed	on	your	computer:

$	sudo	pip	install	python-twitter

The	Python	code	for	this	section	is	located	in	the	code	folder	with	the
PythonTweetAPowerStrip.py	filename.	Open	the	code	in	your	IDE	and	start	exploring	it.
The	code	contains	two	parallel	threads	to	handle	the	tweets	and	the	Mosquitto	library
separately.

As	you	can	see	in	the	following	code	snippet,	we	are	using	the	Api	class	from	the	python-
twitter	library	to	establish	a	connection	with	the	Twitter	API.	We	are	using	the	consumer
key,	consumer	secret,	access	token	key,	and	access	token	secret	values	for	this
authentication.	Once	the	authentication	is	established,	the	Api	class	can	be	used	to	get	the
latest	status	from	the	timeline	using	the	GetHomeTimeline()	function	call,	and	to	post	the
new	status	using	the	PostUpdate()	function	call.	The	GetHomeTimeline()	function	gives
an	array	of	statuses	from	the	user;	we	need	the	latest	status,	which	can	be	fetched	using
statuses[0]	(the	first	element	of	the	array):

api	=	twitter.Api(consumer_key='<consumer-key>',

																		consumer_secret='<consumer-secret>',

																		access_token_key='<access-token-key>',

																		access_token_secret='access-token-secret>')

Once	we	have	retrieved	the	latest	tweet,	we	need	to	make	sure	that	we	haven’t	used	that
tweet	already.	So	we	save	the	latest	tweet	ID	in	a	global	variable,	as	well	as	in	a	file	in
case	we	need	to	run	the	code	again:

with	open('lastTweetID.txt',	'w+')	as	fh:

		lastTweetId	=	fh.readline()

		print	"Initializing	with	ID:	"	+	lastTweetId

We	retrieve	the	ID	of	the	previous	tweet	from	the	lastTweetID.txt	file	to	match	with	the
latest	ID.	If	it	doesn’t	match,	we	update	the	lastTweetID.txt	file	with	the	latest	ID	for
the	next	loop:

if	lastTweetId	!=	str(currentStatus.id):

		lastTweetId	=	str(currentStatus.id)

		print	"Updated	file	with	ID:	"	+	lastTweetId

		with	open('lastTweetID.txt',	'w+')	as	fh:

				fh.write(lastTweetId)

				currentStatusText	=	currentStatus.text

				print	currentStatusText

Once	we	have	identified	the	latest	unique	tweet,	we	use	the	Python	string	operation	to
decode	the	keywords	for	the	appliance	and	power	commands.	As	you	can	see	in	the
following	code	snippet,	the	keyword	we	are	looking	for	in	the	tweeted	text	to	access	the
fan	is	#fan.	Once	we	have	identified	that	the	message	is	directed	to	the	fan,	we	check	for

www.it-ebooks.info

http://www.it-ebooks.info/

action	keywords	such	as	#on	and	#off,	and	then	take	the	associated	action	of	publishing
the	message	to	the	Mosquitto	broker.	We	repeat	this	action	for	all	the	appliances	connected
to	the	system.	Your	Arduino	takes	an	action	using	the	published	message,	and	completes
the	UX	flow	for	the	controlled	appliances:

if	"#fan"	in	currentStatusText.lower():

		if	"#on"	in	currentStatusText.lower():

				cli.publish("PowerStrip/fan",	"on")

		if	"#off"	in	currentStatusText.lower():

				cli.publish("PowerStrip/fan",	"off")

Similarly,	when	the	code	receives	an	update	from	the	PowerStrip/statusreport	topic,	it
obtains	the	status	from	the	message	payload	and	posts	it	as	a	new	tweet	to	the	user
timeline	of	that	Twitter	account.	This	completes	the	UX	flow	for	the	status	check	using
Twitter:

def	onMessage(mosq,	obj,	msg):

				if	msg.topic	==	"PowerStrip/statusreport":

								print	msg.payload

								api.PostUpdate(msg.payload)

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Testing	and	troubleshooting
Testing	can	simply	be	performed	by	posting	the	#fan	#on	status	to	the	Twitter	account
used	in	this	project.	You	should	be	able	to	see	the	fan	turning	on	by	using	the	command
shown	here:

Similarly,	send	the	#fan	#off	status	to	turn	off	the	fan.	You	may	find	some	lagging,	as	the
loop	used	to	retrieve	the	tweets	is	set	with	a	delay	of	a	minute.

To	access	the	status	of	the	system,	post	the	#status	#get	status	to	the	account,	and	you
will	be	able	to	see	the	system	status	automatically	posted	by	the	computation	unit.

The	tweet	shown	in	the	following	screenshot	is	generated	using	the	Tweet-a-PowerStrip
unit.	It	displays	the	status	of	all	the	connected	appliances.

While	working	with	the	system,	you	will	want	to	either	avoid	the	following	scenarios	or
troubleshoot	them:

'Twitter	rate	limit	exceed'	error:	Twitter	imposes	a	limit	on	the	number	of
requests	you	can	make	to	their	public	API.	If	you	are	requesting	the	API	too	often

www.it-ebooks.info

http://www.it-ebooks.info/

(this	often	occurs	when	you	reduce	the	sleep	time	between	consecutive	queries),	your
application	will	exit	with	an	exception.	To	avoid	this,	set	a	longer	sleep	time	in	the
Python	program	loop	before	requesting	the	API	again.	There	is	a	trade-off	between
the	frequency	of	requests	and	the	response	time	of	your	appliances.	You	can	learn
about	this	limitation	at	http://dev.twitter.com/rest/public/rate-limiting	and	adjust	your
request	interval	accordingly.	Once	you	have	received	this	error,	you	will	have	to	wait
for	some	time	(approximately	10	to	15	minutes)	before	making	requests	to	the
Twitter	API	again.
'Read-only	application	cannot	post'	error:	This	error	will	only	occur	if	you
forgot	to	change	the	permissions	on	your	application	to	Read	and	Write	from	Read
only.	Make	sure	that	you	have	performed	this	change.	Also,	Twitter	takes	some	time
for	the	changes	to	take	effect.

www.it-ebooks.info

http://dev.twitter.com/rest/public/rate-limiting
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Extending	the	project	with	additional
features
The	current	system	can	be	expanded	to	include	multiple	features:

You	can	start	saving	the	time	duration	in	which	a	particular	appliance	was	on	or	off,
and	then	provide	a	detailed	analysis	to	the	user.	You	can	also	use	this	information	to
calculate	the	energy	being	expended	by	these	appliances.
You	can	utilize	the	current	measurement	sensors	to	calculate	the	power	load	at	each
port.	Combining	it	with	the	time	the	device	was	on,	you	can	calculate	very
comprehensive	power	usage	to	further	improve	power	management.
You	can	use	the	system	clock	with	the	motion	sensor	to	intelligently	turn	off	the
appliance	during	nights	and	periods	of	no	activity.
The	Tweet-a-PowerStrip	project	can	be	interfaced	with	the	remote	home	monitoring
system	that	we	developed	in	the	previous	project,	in	order	to	obtain	useful
information	from	other	sensors	being	used	in	the	same	house.
One	of	the	modifications	you	can	easily	implement	is	to	utilize	Twitter’s	private
messages	instead	of	its	tweets	to	control	the	appliances.	This	will	extend	the	access
permissions	of	your	system	to	other	trusted	Twitter	accounts.	For	security	reasons,
you	should	tighten	the	access	level	and	only	let	approved	people	post	such	messages
to	your	account.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Summary
You	have	now	successfully	completed	two	different	IoT	projects	using	just	two	base
technologies,	Arduino	and	Python.	With	the	current	project,	it	is	obvious	that	it	is	very
easy	to	interface	any	other	technology,	tool,	or	API	with	Arduino	and	Python.	The	project
development	methodology	we	used	in	these	two	projects	will	also	help	you	with	your	DIY
projects	and	other	future	products.	Happy	prototyping!	And	happy	coding!

www.it-ebooks.info

http://www.it-ebooks.info/

Index
A

Amazon	AWS	platform
about	/	Getting	familiar	with	the	Amazon	AWS	platform
URL	/	Getting	familiar	with	the	Amazon	AWS	platform
account,	setting	up	/	Setting	up	an	account	on	AWS

analog	digital	buzzer
URL	/	Buzzer	–	generating	sound	alarm	pattern

architecture,	IoT	web	applications
about	/	Architecture	of	IoT	web	applications
physical	layer	/	Architecture	of	IoT	web	applications
computation	layer	/	Architecture	of	IoT	web	applications
interfacing	layer	/	Architecture	of	IoT	web	applications

Arduino
about	/	Introduction	to	Arduino
history	/	History
objectives	/	Why	Arduino?
variants	/	Arduino	variants
Uno	board	/	The	Arduino	Uno	board
URL,	for	installation	on	Linux	/	Linux
interfacing,	with	Python	/	Prototyping
computer	networking	/	Arduino	and	the	computer	networking

Arduino,	interfacing	with	Xively
about	/	Interfacing	Arduino	with	Xively
Arduino	data,	uploading	/	Uploading	Arduino	data	to	Xively
data,	downloading	to	Arduino	/	Downloading	data	to	Arduino	from	Xively
advanced	code,	for	data	upload	and	download	/	Advanced	code	to	upload	and
download	data	using	Arduino

Arduino	board
StandardFirmata	sketch,	uploading	/	Uploading	a	Firmata	sketch	to	the	Arduino
board
setting	up,	pyFirmata	methods	used	/	Setting	up	the	Arduino	board

Arduino	board	connection
establishing	/	Connecting	the	Arduino	board
establishing,	on	Linux	/	Linux
establishing,	on	Mac	OS	X	/	Mac	OS	X
establishing,	on	Windows	/	Windows
troubleshooting	/	Troubleshooting

Arduino	code,	Tweet-a-PowerStrip	/	The	Arduino	code
Arduino	data

storing,	in	CSV	file	/	Storing	Arduino	data	in	a	CSV	file
plotting,	from	CSV	file	/	Plotting	data	from	a	CSV	file

www.it-ebooks.info

http://www.it-ebooks.info/

Arduino	Ethernet	library
about	/	Arduino	Ethernet	library
URL	/	Arduino	Ethernet	library
Ethernet	class	/	The	Ethernet	class
IPAddress	class	/	The	IPAddress	class
Server	class	/	The	Server	class
Client	class	/	The	Client	class

Arduino	Ethernet	Shield
about	/	Arduino	Ethernet	Shield
URL	/	Arduino	Ethernet	Shield

Arduino	IDE
about	/	Arduino	variants,	Getting	started	with	the	Arduino	IDE
installing	/	Installing	the	Arduino	IDE
installing,	on	Linux	/	Linux
URL,	for	installation	on	Ubuntu	/	Linux
URL,	for	installation	on	Fedora	/	Linux
installing,	on	Mac	OS	X	/	Mac	OS	X
installing,	on	Windows	/	Windows
URL,	for	setup	file	/	Windows
sketch	/	What	is	an	Arduino	sketch?
libraries	/	Working	with	libraries
examples,	using	/	Using	Arduino	examples
URL,	for	built-in	examples	/	Using	Arduino	examples
sketch,	compiling	/	Compiling	and	uploading	sketches
sketch,	uploading	/	Compiling	and	uploading	sketches
serial	monitor,	using	/	Using	the	Serial	Monitor	window

Arduino	interrupts
about	/	Using	Arduino	interrupts
using	/	Using	Arduino	interrupts
reference	link	/	Using	Arduino	interrupts

Arduino	pins
configuring	/	Configuring	Arduino	pins
configuring,	with	direct	method	/	The	direct	method
pin	modes,	assigning	/	Assigning	pin	modes
working	with	/	Working	with	pins
data,	reporting	/	Reporting	data
monitoring	/	Manual	operations
write()	method,	using	/	The	write()	method
read()	method,	using	/	The	read()	method

Arduino	programming
about	/	Introduction	to	Arduino	programming
comments	/	Comments
variables	/	Variables
constants	/	Constants

www.it-ebooks.info

http://www.it-ebooks.info/

data	types	/	Data	types
conversion	functions	/	Conversions
statements	/	Functions	and	statements
functions	/	Functions	and	statements

Arduino	sketch,	monitoring	station
about	/	The	Arduino	sketch	for	the	monitoring	station
sensor	information,	publishing	/	Publishing	sensor	information
actuator	actions,	subscribing	to	/	Subscribing	to	actuator	actions
interrupt,	programming	/	Programming	an	interrupt	to	handle	the	press	of	a
button

Arduino	WiFi	Shield
about	/	Arduino	WiFi	Shield
URL	/	Arduino	WiFi	Shield

Arduino	Yún
about	/	Arduino	Yún
URL	/	Arduino	Yún

array	data	type
about	/	Data	types

www.it-ebooks.info

http://www.it-ebooks.info/

B
BH1750	light	sensor

interfacing,	Arduino	used	/	Arduino	coding	for	the	BH1750	light	sensor
interfacing,	PyMata	library	used	/	Interfacing	BH1750	using	PyMata

boolean	data	type
about	/	Data	types

breadboard
using	/	Working	with	the	breadboard
URL	/	Working	with	the	breadboard
history	/	Working	with	the	breadboard
reference	link	/	Working	with	the	breadboard

broker
about	/	MQTT	–	A	lightweight	messaging	protocol

built-in	functions
about	/	Built-in	functions
conversion	methods	/	Conversions
math	operations	/	Math	operations
string	operations	/	String	operations
URL	/	String	operations

built-in	types
about	/	Python	operators	and	built-in	types,	Built-in	types
data	structures	/	Data	structures

Button()	widget
about	/	Learning	Tkinter	for	GUI	design,	The	Button()	widget	–	interfacing	GUI
with	Arduino	and	LEDs
using	/	The	Button()	widget	–	interfacing	GUI	with	Arduino	and	LEDs

buzzer
using	/	Buzzer	–	generating	sound	alarm	pattern
connections	/	Connections
Python	code	/	The	Python	code

byte	data	type
about	/	Data	types

www.it-ebooks.info

http://www.it-ebooks.info/

C
callback

about	/	The	Label()	widget	–	monitoring	I/O	pins
Carriots

about	/	Carriots
char	data	type

about	/	Data	types
Checkbox()	widget

about	/	Learning	Tkinter	for	GUI	design
Checkbutton()	widget

about	/	The	Checkbutton()	widget	–	selecting	LEDs
used,	for	selecting	LEDs	/	The	Checkbutton()	widget	–	selecting	LEDs

Client	class
about	/	The	Client	class

close()	method
used,	for	closing	file	/	The	close()	method

comments
about	/	Comments
block	comment	/	Comments
single-line	or	inline	comment	/	Comments

computer	networking
about	/	Arduino	and	the	computer	networking
IP	address,	obtaining	/	Obtaining	the	IP	address	of	your	computer
networking	extensions,	for	Arduino	/	Networking	extensions	for	Arduino
Arduino	Ethernet	library	/	Arduino	Ethernet	library
web	server,	building	with	Arduino	/	Exercise	1	–	a	web	server,	your	first
Arduino	network	program

constants
about	/	Constants

control	center,	remote	home	monitoring	system
about	/	Stage	2	–	a	control	center	using	Python	and	the	Raspberry	Pi
architecture	/	The	control	center	architecture
Python	code	/	The	Python	code	for	the	control	center
GUI,	creating	with	Tkinter	/	Creating	the	GUI	using	Tkinter
Mosquitto	broker,	communicating	with	/	Communicating	with	the	Mosquitto
broker
system	status,	calculating	/	Calculating	the	system’s	status	and	situation
awareness
Xively,	communicating	with	/	Communicating	with	Xively
buzzer	status,	checking	/	Checking	and	updating	the	buzzer’s	status
buzzer	status,	updating	/	Checking	and	updating	the	buzzer’s	status
testing,	with	monitoring	station	/	Testing	the	control	center	with	the	monitoring
station

www.it-ebooks.info

http://www.it-ebooks.info/

setting	up,	on	Raspberry	Pi	/	Setting	up	the	control	center	on	the	Raspberry	Pi
conversion	functions

char()	/	Conversions
byte()	/	Conversions
int()	/	Conversions
float()	/	Conversions
about	/	Conversions

CSV	file
about	/	Using	CSV	files	to	store	data
used,	for	storing	data	/	Using	CSV	files	to	store	data
Arduino	data,	storing	/	Storing	Arduino	data	in	a	CSV	file
data,	plotting	/	Plotting	data	from	a	CSV	file

custom	cloud	platform,	IoT
configuring	/	Your	own	cloud	platform	for	the	IoT
Amazon	AWS	platform	/	Getting	familiar	with	the	Amazon	AWS	platform

cyber-physical	systems	/	Architecture	of	IoT	web	applications

www.it-ebooks.info

http://www.it-ebooks.info/

D
data	structures

about	/	Data	structures
list	/	Lists
tuples	/	Tuples
sets	/	Sets
dictionaries	/	Dictionaries
URL	/	Dictionaries

data	types
about	/	Data	types
void	/	Data	types
boolean	/	Data	types
byte	/	Data	types
int	/	Data	types
float	/	Data	types
char	/	Data	types
array	/	Data	types

DC	motors
using	/	DC	motor	–	controlling	motor	speed	using	PWM
connections	/	Connections
Python	code	/	The	Python	code

deployment	stage,	Tweet-a-PowerStrip
about	/	Development	and	deployment	stages

design	methology,	IoT	projects
about	/	The	design	methodology	for	IoT	projects

development	stage,	Tweet-a-PowerStrip
about	/	Development	and	deployment	stages

development	stages,	remote	home	monitoring	system
defining	/	Defining	the	project	development	stages

do-it-yourself	(DIY)	projects
about	/	Introduction	to	Arduino

Dual	in-line	Package	(DIP)
about	/	Working	with	the	breadboard

Dynamic	Host	Control	Protocol	(DHCP)
about	/	The	Ethernet	class

www.it-ebooks.info

http://www.it-ebooks.info/

E
EC2	service

about	/	Getting	familiar	with	the	Amazon	AWS	platform
electronic	components

interfacing,	with	Arduino	/	Prototyping
End	of	Line	(EOL)

about	/	Playing	with	a	pySerial	example
Entry()	widget

about	/	Learning	Tkinter	for	GUI	design,	The	Entry()	widget	–	providing	manual
user	inputs
used,	for	providing	manual	user	inputs	/	The	Entry()	widget	–	providing	manual
user	inputs

Ethernet	class
about	/	The	Ethernet	class

ez_setup.py	file
URL,	for	downloading	/	Windows,	Mac	OS	X

www.it-ebooks.info

http://www.it-ebooks.info/

F
Fedora/Red	Hat	Linux

Python,	installing	/	Fedora	and	Red	Hat
files

working	with	/	Working	with	files	in	Python
manipulating,	with	open()	method	/	The	open()	method
write()	method,	using	/	The	write()	method
closing,	close()	method	used	/	The	close()	method
read()	method,	using	/	The	read()	method
with	statement,	using	/	The	with	statement	–	Python	context	manager

Firmata
about	/	Introducing	the	Firmata	protocol
URL	/	What	is	Firmata?,	Testing	the	Firmata	protocol
StandardFirmata	sketch,	uploading	to	Arduino	board	/	Uploading	a	Firmata
sketch	to	the	Arduino	board
testing	/	Testing	the	Firmata	protocol
and	pySerial	library,	bridging	/	Bridging	pySerial	and	Firmata

Firmata	libraries
disadvantages	/	Useful	pySerial	commands

float	data	type
about	/	Data	types

formatting	tool,	SD	card
URL,	for	downloading	/	Preparing	an	SD	card

for	statement
about	/	The	for	statement

Fritzing
about	/	Testing	the	Firmata	protocol
using	/	Introducing	Fritzing	–	a	hardware	prototyping	software
URL	/	Introducing	Fritzing	–	a	hardware	prototyping	software

functions
about	/	Functions	and	statements
setup()	function	/	The	setup()	function
loop()	function	/	The	loop()	function
pinMode()	function	/	The	pinMode()	function

functions,	pins
digitalWrite()	function	/	Working	with	pins
digitalRead()	function	/	Working	with	pins
analogRead()	function	/	Working	with	pins
analogWrite()	function	/	Working	with	pins

www.it-ebooks.info

http://www.it-ebooks.info/

G
general-purpose	input/output	(GPIO)	pins

about	/	Hardware	design
graphical	user	interfaces	(GUIs)

about	/	Why	we	use	Python
Grid

about	/	The	Pack	geometry	manager
Grid	geometry	manager

about	/	The	Grid	geometry	manager
GUI,	thermostat

designing	/	Designing	the	GUI	and	plot	in	Python
pySerial,	used	for	streaming	sensor	data	/	Using	pySerial	to	stream	sensor	data
in	your	Python	program
designing,	Tkinter	used	/	Designing	the	GUI	using	Tkinter
percentage	humidity,	plotting	with	matplotlib	/	Plotting	percentage	humidity
using	matplotlib
button	interrupts,	using	/	Using	button	interrupts	to	control	the	parameters
button	interrupts,	used	for	changing	temperature	unit	/	Changing	the	temperature
unit	by	pressing	a	button
button	interrupts,	used	for	swapping	between	GUI	and	plot	/	Swapping	between
the	GUI	and	the	plot	by	pressing	a	button

www.it-ebooks.info

http://www.it-ebooks.info/

H
hardware	components,	Raspberry	Pi

Raspberry	Pi	/	What	do	you	need	to	begin	using	the	Raspberry	Pi?
power	cable	/	What	do	you	need	to	begin	using	the	Raspberry	Pi?
display	cable	/	What	do	you	need	to	begin	using	the	Raspberry	Pi?
SD	card	/	What	do	you	need	to	begin	using	the	Raspberry	Pi?
mouse	/	What	do	you	need	to	begin	using	the	Raspberry	Pi?
keyboard	/	What	do	you	need	to	begin	using	the	Raspberry	Pi?
USB	hub	(optional)	/	What	do	you	need	to	begin	using	the	Raspberry	Pi?

hardware	components,	remote	home	monitoring	system
about	/	The	list	of	required	components

hardware	components,	Tweet-a-PowerStrip
about	/	Required	hardware	components
relays	/	Relays
PowerSwitch	Tail	/	PowerSwitch	Tail

hardware	design,	IoT
about	/	Hardware	design,	The	IoT	cloud	platforms

hardware	design,	Tweet-a-PowerStrip
about	/	Hardware	design

hardware	system	design,	motion-triggered	LEDs
Fritzing,	using	/	Introducing	Fritzing	–	a	hardware	prototyping	software
breadboard,	using	/	Working	with	the	breadboard
hardware	prototype,	designing	/	Designing	the	hardware	prototype

help()	function
about	/	Plotting	random	numbers	using	matplotlib

HIH-4030	humidity	sensor
using	/	The	list	of	required	components

home	area	network	(HAN)
about	/	Networking	fundamentals

Homebrew
URL,	/	Mac	OS	X
installing	/	Mac	OS	X

www.it-ebooks.info

http://www.it-ebooks.info/

I
I2C	protocol

reference	link	/	Prototyping	with	the	I2C	protocol
if	statement

about	/	The	if	statement
input/output	(I/O)	pins

about	/	Arduino	variants
installation,	Arduino	IDE

on	Linux	/	Linux
on	Mac	OS	X	/	Mac	OS	X
on	Windows	/	Windows

installation,	paho-mqtt	library	/	Installing	paho-mqtt
installation,	pip

about	/	Installing	pip
installation,	PubSubClient	library	/	Installing	the	PubSubClient	library
installation,	pySerial	library

about	/	Installing	pySerial
installation,	Python

about	/	Installing	Python	and	Setuptools
on	Linux	/	Linux
on	Ubuntu	/	Ubuntu
on	Fedora/Red	Hat	Linux	/	Fedora	and	Red	Hat
on	Windows	/	Windows
on	Mac	OS	X	/	Mac	OS	X

installation,	Python	packages
about	/	Installing	Python	packages

installation,	Setuptools
about	/	Installing	Setuptools
on	Linux	/	Linux
on	Windows	/	Windows
on	Mac	OS	X	/	Mac	OS	X

installation,	web.py
about	/	Installing	web.py

int	data	type
about	/	Data	types

integrated	circuit	(IC)
about	/	Prototyping	with	the	I2C	protocol

integrated	development	environment	(IDE)
about	/	Installing	the	Arduino	IDE

integrated	development	environment	(IDLE)
about	/	The	fundamentals	of	Python	programming

Internet	of	Things	(IoT)	applications
about	/	Why	we	use	Python

www.it-ebooks.info

http://www.it-ebooks.info/

Internet	Protocol	(IP)
about	/	Networking	fundamentals

IoT
getting	started	process	/	Getting	started	with	the	IoT
hardware	design	/	Hardware	design,	The	IoT	cloud	platforms
cloud	applications,	developing	with	Python	and	Xively	/	Developing	cloud
applications	using	Python	and	Xively
custom	cloud	platform	/	Your	own	cloud	platform	for	the	IoT

IoT	cloud	platform,	on	EC2	instance
creating	/	Creating	an	IoT	platform	on	the	EC2	instance
necessary	packages,	installing	on	AWS	/	Installing	the	necessary	packages	on
AWS
virtual	instance	security,	configuring	/	Configuring	the	security	of	the	virtual
instance
testing	/	Testing	your	cloud	platform
Mosquitto	service,	testing	/	Testing	the	Mosquitto	service
basic	security,	configuring	/	Configuring	and	testing	basic	security
basic	security,	testing	/	Configuring	and	testing	basic	security
project,	uploading	on	instance	/	Uploading	and	testing	a	project	on	the	instance
project,	testing	on	instance	/	Uploading	and	testing	a	project	on	the	instance

IoT	cloud	platforms
Xively	/	The	IoT	cloud	platforms,	Xively	–	a	cloud	platform	for	the	IoT
2lemetry	/	The	IoT	cloud	platforms
Carriots	/	The	IoT	cloud	platforms,	Carriots
ThingSpeak	/	The	IoT	cloud	platforms,	ThingSpeak

IoT	projects
design	methodology	/	The	design	methodology	for	IoT	projects

IoT	web	applications
architecture	/	Architecture	of	IoT	web	applications

IP	address
about	/	Networking	fundamentals
obtaining	/	Obtaining	the	IP	address	of	your	computer
obtaining,	for	Windows	/	Windows
obtaining,	for	Mac	OS	X	/	Mac	OS	X
obtaining,	for	Linux	/	Linux

IPAddress	class
about	/	The	IPAddress	class

www.it-ebooks.info

http://www.it-ebooks.info/

L
Label()	widget

about	/	Learning	Tkinter	for	GUI	design,	The	Label()	widget,	The	Label()
widget	–	monitoring	I/O	pins
used,	for	monitoring	I/O	pins	/	The	Label()	widget	–	monitoring	I/O	pins

least	significant	bit	(LSB)
about	/	Arduino	coding	for	the	TMP102	temperature	sensor

LED
brightness,	controlling	with	PWM	/	LED	–	controlling	LED	brightness	using
PWM
connections	/	Connections
Python	code	/	The	Python	code

libraries,	Arduino	IDE
about	/	Working	with	libraries
URL	/	Working	with	libraries

Line	feed	+	Carriage	Return	(LF	+	CR)
about	/	Playing	with	a	pySerial	example

Linux
Python,	installing	/	Linux
Setuptools,	installing	/	Linux
Arduino	IDE,	installing	/	Linux
Arduino	board	connection,	establishing	/	Linux
IP	address,	obtaining	/	Linux

Listbox()	widget
about	/	The	Checkbutton()	widget	–	selecting	LEDs
URL	/	The	Checkbutton()	widget	–	selecting	LEDs

local	area	network	(LAN)
about	/	Networking	fundamentals

localhost	IP	address
about	/	Networking	fundamentals

loop()	function
about	/	The	loop()	function
using	/	The	loop()	function

www.it-ebooks.info

http://www.it-ebooks.info/

M
Mac	OS	X

Python,	installing	/	Mac	OS	X
Setuptools,	installing	/	Mac	OS	X
Arduino	IDE,	installing	/	Mac	OS	X
Arduino	board	connection,	establishing	/	Mac	OS	X
matplotlib,	configuring	/	Configuring	matplotlib	on	Mac	OS	X
SD	card,	preparing	/	Preparing	an	SD	card
IP	address,	obtaining	/	Mac	OS	X

matplotlib
about	/	Getting	started	with	matplotlib
URL	/	Getting	started	with	matplotlib,	Configuring	matplotlib	on	Windows
configuring,	on	Windows	/	Configuring	matplotlib	on	Windows
configuring,	on	Mac	OS	X	/	Configuring	matplotlib	on	Mac	OS	X
upgrading	/	Upgrading	matplotlib
installation	errors,	troubleshooting	/	Troubleshooting	installation	errors
reference	link	/	Troubleshooting	installation	errors
setting	up,	on	Ubuntu	/	Setting	up	matplotlib	on	Ubuntu
used,	for	plotting	random	numbers	/	Plotting	random	numbers	using	matplotlib

media	access	control	(MAC)	address
about	/	Networking	fundamentals

monitoring	station,	remote	home	monitoring	system
defining	/	Stage	1	–	a	monitoring	station	using	Arduino,	Designing	the
monitoring	station
Arduino	sketch	/	The	Arduino	sketch	for	the	monitoring	station

Mosquitto
about	/	Mosquitto	–	an	open	source	MQTT	broker
URL	/	Mosquitto	–	an	open	source	MQTT	broker
setting	up	/	Setting	up	Mosquitto
initialization	/	Getting	familiar	with	Mosquitto

most	significant	bit	(MSB)
about	/	Arduino	coding	for	the	TMP102	temperature	sensor

motion-triggered	LEDs
developing	/	Motion-triggered	LEDs	–	the	project	description
project	goals	/	The	project	goal
examples	/	The	project	goal
online	resources	/	The	project	goal
software	flow	design	/	The	software	flow	design
hardware	system	design	/	The	hardware	system	design
hardware	connections,	testing	/	Testing	hardware	connections

motion-triggered	LEDs,	components
PIR	sensors	/	The	list	of	components
LEDs	/	The	list	of	components

www.it-ebooks.info

http://www.it-ebooks.info/

wires	/	The	list	of	components
resistors	/	The	list	of	components
breadboard	/	The	list	of	components
Arduino	board	/	The	list	of	components
USB	cable	/	The	list	of	components
computer	/	The	list	of	components

motion-triggered	LEDs,	using	Arduino	sketch
developing	/	Method	1	–	using	a	standalone	Arduino	sketch
project	setup	/	The	project	setup
coding	/	The	Arduino	sketch
setup()	function,	using	/	The	setup()	function
loop()	function,	using	/	The	loop()	function
custom	Arduino	functions,	using	/	Working	with	custom	Arduino	functions
testing	/	Testing
troubleshooting	/	Troubleshooting

motion-triggered	LEDs,	using	Python	and	Firmata
developing	/	Method	2	–	using	Python	and	Firmata
project	setup	/	The	project	setup
Python	executable	files,	using	/	Working	with	Python	executable	files
coding	/	The	Python	code
pyFirmata	methods,	using	/	Working	with	pyFirmata	methods
Python	functions,	using	/	Working	with	Python	functions
testing	/	Testing
troubleshooting	/	Troubleshooting

MQTT
about	/	MQTT	–	A	lightweight	messaging	protocol
URL	/	Introduction	to	MQTT
Mosquitto	/	Mosquitto	–	an	open	source	MQTT	broker

MQTT,	on	Arduino
PubSubClient	library,	using	/	MQTT	on	Arduino	using	the	PubSubClient	library
Arduino	MQTT	client,	developing	/	Developing	the	Arduino	MQTT	client

MQTT,	on	Python
paho-mqtt	library,	using	/	MQTT	on	Python	using	paho-mqtt,	Using	the	paho-
mqtt	Python	library

MQTT	Gateway
developing,	for	Arduino	/	Exercise	4	–	MQTT	Gateway	for	Arduino
Arduino	developing,	as	MQTT	client	/	Developing	Arduino	as	the	MQTT	client
developing,	Mosquitto	used	/	Developing	the	MQTT	Gateway	using	Mosquitto
extending,	web.py	used	/	Extending	the	MQTT	Gateway	using	web.py
testing	/	Testing	your	Mosquitto	Gateway

www.it-ebooks.info

http://www.it-ebooks.info/

N
Nest	Thermostat

URL	/	Thermostat	–	the	project	description
networking

fundamentals	/	Networking	fundamentals
local	area	network	(LAN)	/	Networking	fundamentals
home	area	network	(HAN)	/	Networking	fundamentals
wide	area	network	(WAN)	/	Networking	fundamentals
protocols	/	Networking	fundamentals
media	access	control	(MAC)	address	/	Networking	fundamentals
Internet	Protocol	(IP)	/	Networking	fundamentals
IP	address	/	Networking	fundamentals
localhost	IP	address	/	Networking	fundamentals

networking	extensions,	for	Arduino
about	/	Networking	extensions	for	Arduino
Arduino	Ethernet	Shield	/	Arduino	Ethernet	Shield
Arduino	WiFi	Shield	/	Arduino	WiFi	Shield
Arduino	Yún	/	Arduino	Yún

newline	character
about	/	Playing	with	a	pySerial	example
URL	/	Playing	with	a	pySerial	example

New	Out	Of	Box	Software	(NOOBS)
about	/	Preparing	an	SD	card

NumPy	package
URL	/	Configuring	matplotlib	on	Windows

www.it-ebooks.info

http://www.it-ebooks.info/

O
open()	method

used,	for	manipulating	files	/	The	open()	method
modes	/	The	open()	method

operators
about	/	Python	operators	and	built-in	types,	Operators

www.it-ebooks.info

http://www.it-ebooks.info/

P
Pack	geometry	manager

about	/	The	Pack	geometry	manager
paho-mqtt	library

about	/	MQTT	on	Python	using	paho-mqtt
installing	/	Installing	paho-mqtt
using	/	Using	the	paho-mqtt	Python	library

passive	infrared	(PIR)	sensor
about	/	The	project	goal
using	/	The	list	of	components
URL	/	The	list	of	components

PEP-8
URL	/	Operators

physical	systems	/	Getting	started	with	the	IoT
pinMode()	function

about	/	The	pinMode()	function
pip

installing	/	Installing	pip
plot()	function

about	/	Plotting	random	numbers	using	matplotlib
portable	TFT	LCD	display

using	/	Using	a	portable	TFT	LCD	display	with	the	Raspberry	Pi
connecting,	GPIO	used	/	Connecting	the	TFT	LCD	using	GPIO
configuring,	with	Raspberry	Pi	OS	/	Configuring	the	TFT	LCD	with	the
Raspberry	Pi	OS
GUI,	optimizing	/	Optimizing	the	GUI	for	the	TFT	LCD	screen

potentiometer
connections	/	Connections
Python	code	/	The	Python	code

PowerSwitch	Tail
URL	/	PowerSwitch	Tail

Processing
about	/	Introduction	to	Arduino	programming

protocols
about	/	Networking	fundamentals

prototyping
about	/	Prototyping

prototyping,	thermostat
about	/	Stage	1	–	prototyping	the	thermostat
Arduino	sketch	/	The	Arduino	sketch	for	the	thermostat
temperature	sensor,	interfacing	/	Interfacing	the	temperature	sensor
humidity	sensor,	interfacing	/	Interfacing	the	humidity	sensor
light	sensor,	interfacing	/	Interfacing	the	light	sensor

www.it-ebooks.info

http://www.it-ebooks.info/

troubleshooting	/	Troubleshooting
prototyping,	with	I2C	protocol

about	/	Prototyping	with	the	I2C	protocol
Arduino	examples	/	Arduino	examples	for	I2C	interfacing
TMP102	temperature	sensor,	using	Arduino	/	Arduino	coding	for	the	TMP102
temperature	sensor
BH1750	light	sensor,	using	Arduino	/	Arduino	coding	for	the	BH1750	light
sensor
PyMata	library,	using	/	PyMata	for	quick	I2C	prototyping
TMP102	temperature	sensor,	using	PyMata	library	/	Interfacing	TMP102	using
PyMata
BH1750	light	sensor,	using	PyMata	library	/	Interfacing	BH1750	using	PyMata
pySerial	commands,	using	/	Useful	pySerial	commands

prototyping	templates,	using	Firmata
about	/	Prototyping	templates	using	Firmata
potentiometer	/	Potentiometer	–	continuous	observation	from	an	analog	input
buzzer,	using	/	Buzzer	–	generating	sound	alarm	pattern
DC	motor,	using	/	DC	motor	–	controlling	motor	speed	using	PWM
LED	/	LED	–	controlling	LED	brightness	using	PWM
servomotors,	using	/	Servomotor	–	moving	the	motor	to	a	certain	angle

PubSubClient	library
using	/	MQTT	on	Arduino	using	the	PubSubClient	library
installing	/	Installing	the	PubSubClient	library
URL	/	Installing	the	PubSubClient	library

pulse-width	modulation	(PWM)
about	/	The	Arduino	Uno	board

push	button	switch
using	/	The	list	of	required	components

pyFirmata	methods
working	with	/	Working	with	pyFirmata	methods
used,	for	setting	up	Arduino	board	/	Setting	up	the	Arduino	board
used,	for	configuring	Arduino	pins	/	Configuring	Arduino	pins
used,	for	working	with	Arduino	pins	/	Working	with	pins
servo_config(pin,min_pulse=544,max_pulse=2400,angle=0)	/	Additional
functions
pass_time(seconds)	/	Additional	functions
get_firmata_version()	/	Additional	functions
exit()	/	Additional	functions
pulseIn/pulseOut	/	Upcoming	functions
shiftIn/shiftOut	/	Upcoming	functions

PyPI
URL	/	Why	we	use	Python,	Installing	Python	packages
about	/	Why	we	use	Python

pyplot	framework

www.it-ebooks.info

http://www.it-ebooks.info/

about	/	Plotting	random	numbers	using	matplotlib
figure()	function	/	Plotting	random	numbers	using	matplotlib
show()	method	/	Plotting	random	numbers	using	matplotlib

pySerial	commands
using	/	Useful	pySerial	commands
used,	for	connecting	with	serial	port	/	Connecting	with	the	serial	port
used,	for	reading	a	line	from	port	/	Reading	a	line	from	the	port
used,	for	flushing	port	to	avoid	buffer	overflow	/	Flushing	the	port	to	avoid
buffer	overflow
used,	for	closing	port	/	Closing	the	port

pySerial	library
about	/	Getting	started	with	pySerial
installing	/	Installing	pySerial
URL	/	Installing	pySerial
example	/	Playing	with	a	pySerial	example
and	Firmata,	bridging	/	Bridging	pySerial	and	Firmata

Python
about	/	Introduction	to	Python
benefits	/	Why	we	use	Python
usage	considerations	/	When	do	we	use	other	languages
URL	/	When	do	we	use	other	languages
installing	/	Installing	Python	and	Setuptools
installing,	on	Linux	/	Linux
installing,	on	Ubuntu	/	Ubuntu
installing,	on	Fedora/Red	Hat	Linux	/	Fedora	and	Red	Hat
installing,	on	Windows	/	Windows
URL,	for	downloading	/	Windows,	Mac	OS	X
installing,	on	Mac	OS	X	/	Mac	OS	X
pip,	installing	/	Installing	pip
URL,	for	documentation	/	Controlling	the	flow	of	your	program

Python	code,	Tweet-a-PowerStrip
about	/	The	Python	code

Python	context	manager
reference	link	/	The	with	statement	–	Python	context	manager

Python	data,	downloading	to	Xively
about	/	Python	–	downloading	data	from	Xively
basic	method,	for	retrieving	data	/	The	basic	method	for	retrieving	data	from
Xively
data	retrieving,	from	web.py	web	interface	/	Retrieving	data	from	the	web.py
web	interface
custom	notifications,	from	Xively	/	Triggers	–	custom	notifications	from	Xively
triggers	/	Triggers	–	custom	notifications	from	Xively

Python	data,	uploading	to	Xively
about	/	Python	–	uploading	data	to	Xively

www.it-ebooks.info

http://www.it-ebooks.info/

basic	method,	for	sending	data	/	The	basic	method	for	sending	data
web	interface	used	/	Uploading	data	using	a	web	interface	based	on	web.py

Python	executable	files
using	/	Working	with	Python	executable	files

Python	functions
using	/	Working	with	Python	functions
def	keyword	/	Working	with	Python	functions

Python	GUI
Tkinter	/	Learning	Tkinter	for	GUI	design
first	program	/	Your	first	Python	GUI	program
Python-Arduino	project,	remaking	/	Remaking	your	first	Python-Arduino
project	with	a	GUI

Python	packages
installing	/	Installing	Python	packages
installing,	$	pip	install	*PackageName>=version*	command	used	/	Installing
Python	packages

Python	programming
fundamentals	/	The	fundamentals	of	Python	programming
operators	/	Python	operators	and	built-in	types,	Operators
built-in	types	/	Python	operators	and	built-in	types,	Built-in	types
comments	/	Python	operators	and	built-in	types
program	flow,	controlling	/	Controlling	the	flow	of	your	program
if	statement	/	The	if	statement
for	statement	/	The	for	statement
while	statement	/	The	while	statement

Python	software	flow,	Tweet-a-PowerStrip
about	/	Python	software	flow

Python	threading	library
URL	/	Using	the	paho-mqtt	Python	library

Python	tutorials
URL	/	The	fundamentals	of	Python	programming,	The	while	statement

www.it-ebooks.info

http://www.it-ebooks.info/

R
Radiobutton()	widget

about	/	The	Checkbutton()	widget	–	selecting	LEDs
URL	/	The	Checkbutton()	widget	–	selecting	LEDs

Raspberry	Pi
about	/	What	is	a	Raspberry	Pi?
Raspbian	/	What	is	a	Raspberry	Pi?
versions	/	What	is	a	Raspberry	Pi?
configuring	/	Installing	the	operating	system	and	configuring	the	Raspberry	Pi
operating	system,	installing	/	Installing	the	operating	system	and	configuring	the
Raspberry	Pi
hardware	components	/	What	do	you	need	to	begin	using	the	Raspberry	Pi?
URL	/	What	do	you	need	to	begin	using	the	Raspberry	Pi?,	Preparing	an	SD
card
SD	card,	preparing	/	Preparing	an	SD	card
setup	process	/	The	Raspberry	Pi	setup	process

read()	method
using	/	The	read()	method

real-time	Arduino	data
plotting	/	Plotting	real-time	Arduino	data

remote	home	monitoring	system
project	overview	/	Project	overview
project	goals	/	The	project	goals
project	requirements	/	The	project	requirements
system	architecture,	designing	/	Designing	system	architecture
UX	flow,	defining	/	Defining	UX	flow
hardware	components	/	The	list	of	required	components
development	stages,	defining	/	Defining	the	project	development	stages
monitoring	station,	Arduino	used	/	Stage	1	–	a	monitoring	station	using	Arduino
testing	/	Testing,	Testing	and	troubleshooting
control	center,	using	/	Stage	2	–	a	control	center	using	Python	and	the	Raspberry
Pi
web	application	/	Stage	3	–	a	web	application	using	Xively,	Python,	and
Amazon	cloud	service
troubleshooting	/	Testing	and	troubleshooting
extending	/	Extending	your	remote	home	monitoring	system
multiple	monitoring	stations,	utilizing	/	Utilizing	multiple	monitoring	stations
sensory	capabilities,	extending	/	Extending	sensory	capabilities
UX,	improving	/	Improving	UX
cloud-based	features,	expanding	/	Expanding	cloud-based	features
improved	intelligence,	for	situation	awareness	/	Improving	intelligence	for
situation	awareness
hardware	enclosures,	creating	/	Creating	an	enclosure	for	hardware	components

www.it-ebooks.info

http://www.it-ebooks.info/

Representation	State	Transfer	(REST)
about	/	Python	web	framework	–	web.py

RESTful	web	applications
developing,	with	Arduino	and	Python	/	RESTful	web	applications	with	Arduino
and	Python
designing	/	Designing	REST-based	Arduino	applications
GET	request,	implementing	/	Working	with	the	GET	request	from	Arduino
GET	request,	generating	/	The	Arduino	code	to	generate	the	GET	request
GET	request,	handling	with	web.py	/	The	HTTP	server	using	web.py	to	handle
the	GET	request
POST	request,	implementing	/	Working	with	the	POST	request	from	Arduino
POST	request,	generating	/	The	Arduino	code	to	generate	the	POST	request
POST	request,	handling	with	web.py	/	The	HTTP	server	using	web.py	to	handle
the	POST	request
architecture	/	Exercise	3	–	a	RESTful	Arduino	web	application
Arduino	sketch	/	The	Arduino	sketch	for	the	exercise
web.py	web	application	/	The	web.py	application	to	support	REST	requests
resource-constrained	messaging	protocol,	using	/	Why	do	we	need	a	resource-
constrained	messaging	protocol?

www.it-ebooks.info

http://www.it-ebooks.info/

S
Scale()	widget

about	/	Learning	Tkinter	for	GUI	design,	The	Scale()	widget	–	adjusting	the
brightness	of	an	LED
used,	for	adjusting	brightness	of	LED	/	The	Scale()	widget	–	adjusting	the
brightness	of	an	LED

SD	card
reference	link	/	What	do	you	need	to	begin	using	the	Raspberry	Pi?,	Preparing
an	SD	card
preparing	/	Preparing	an	SD	card
preparing,	from	Windows	/	Preparing	an	SD	card
preparing,	from	Mac	OS	X	/	Preparing	an	SD	card
preparing,	from	Ubuntu	Linux	/	Preparing	an	SD	card

Secure	Shell	(SSH)	protocol	/	Logging	into	your	virtual	instance
Serial	Clock	Line	(SCL)

about	/	Prototyping	with	the	I2C	protocol
Serial	Data	Line	(SDA)

about	/	Prototyping	with	the	I2C	protocol
serial	monitor

using	/	Using	the	Serial	Monitor	window
serial	peripheral	interface	(SPI)

about	/	Prototyping
Server	class

about	/	The	Server	class
servomotors

using	/	Servomotor	–	moving	the	motor	to	a	certain	angle
connections	/	Connections
Python	code	/	The	Python	code

setup()	function
using	/	The	setup()	function

Setuptools
installing	/	Installing	Setuptools
about	/	Installing	Setuptools
installing,	on	Linux	/	Linux
installing,	on	Windows	/	Windows
installing,	on	Mac	OS	X	/	Mac	OS	X

sketch
about	/	What	is	an	Arduino	sketch?
compiling	/	Compiling	and	uploading	sketches
uploading	/	Compiling	and	uploading	sketches

sketchbook
about	/	What	is	an	Arduino	sketch?

slicing

www.it-ebooks.info

http://www.it-ebooks.info/

about	/	Lists
StandardFirmata	firmware

using	/	Prototyping
statements

about	/	Functions	and	statements,	Statements
subnetwork/subnet

about	/	Exercise	1	–	a	web	server,	your	first	Arduino	network	program
reference	link	/	Exercise	1	–	a	web	server,	your	first	Arduino	network	program

system	architecture,	remote	home	monitoring	system
designing	/	Designing	system	architecture
monitoring	station	/	The	monitoring	station
control	center	/	The	control	center
cloud	services	/	The	cloud	services

system	architecture,	Tweet-a-PowerStrip
about	/	System	architecture

www.it-ebooks.info

http://www.it-ebooks.info/

T
Templetor

about	/	Templates
URL	/	Templates

thermostat
building	/	Thermostat	–	the	project	description
project	description	/	Thermostat	–	the	project	description
project	background	/	Project	background
project	stages	/	Project	goals	and	stages
project	goals	/	Project	goals	and	stages
required	components,	identifying	/	The	list	of	required	components
hardware	design	/	Hardware	design
software	flow,	for	user	experience	design	/	Software	flow	for	user	experience
design
prototyping	/	Stage	1	–	prototyping	the	thermostat
GUI,	designing	/	Designing	the	GUI	and	plot	in	Python
plot,	designing	/	Designing	the	GUI	and	plot	in	Python
deploying,	Raspberry	Pi	used	/	Stage	2	–	using	a	Raspberry	Pi	for	the	deployable
thermostat

thermostat,	prototyping
Arduino	interrupts,	using	/	Using	Arduino	interrupts

thermostat,	using	Raspberry	Pi
deploying	/	Stage	2	–	using	a	Raspberry	Pi	for	the	deployable	thermostat
portable	TFT	LCD	display,	using	/	Using	a	portable	TFT	LCD	display	with	the
Raspberry	Pi
TFT	LCD	connection,	using	GPIO	/	Connecting	the	TFT	LCD	using	GPIO
TFT	LCD,	configuring	/	Configuring	the	TFT	LCD	with	the	Raspberry	Pi	OS
GUI,	optimizing	for	TFT	LCD	screen	/	Optimizing	the	GUI	for	the	TFT	LCD
screen
troubleshooting	/	Troubleshooting

thin-film	transistor	liquid-crystal	display	(TFT	LCD)
about	/	Hardware	design

ThingSpeak
about	/	ThingSpeak

Tk()	widget
about	/	Learning	Tkinter	for	GUI	design,	The	root	widget	Tk()	and	the	top-level
methods

Tkinter
about	/	Learning	Tkinter	for	GUI	design
Pack	geometry	manager	/	The	Pack	geometry	manager
Grid	geometry	manager	/	The	Grid	geometry	manager
plots,	integrating	/	Integrating	plots	in	the	Tkinter	window

Tkinter,	widgets

www.it-ebooks.info

http://www.it-ebooks.info/

Tk()	/	Learning	Tkinter	for	GUI	design
Label()	/	Learning	Tkinter	for	GUI	design
Button()	/	Learning	Tkinter	for	GUI	design
Entry()	/	Learning	Tkinter	for	GUI	design
Scale()	/	Learning	Tkinter	for	GUI	design
Checkbox()	/	Learning	Tkinter	for	GUI	design

Tkinter	class
about	/	The	Label()	widget	–	monitoring	I/O	pins
BooleanVar()	method	/	The	Label()	widget	–	monitoring	I/O	pins
update_idletasks	method	/	The	Label()	widget	–	monitoring	I/O	pins
update	method	/	The	Label()	widget	–	monitoring	I/O	pins

TMP102	temperature	sensor
interfacing,	Arduino	used	/	Arduino	coding	for	the	TMP102	temperature	sensor
interfacing,	PyMata	library	used	/	Interfacing	TMP102	using	PyMata

transistor	terminals
reference	link	/	Connections

troubleshooting
Tweet-a-PowerStrip	/	Testing	and	troubleshooting

troubleshooting,	Arduino	board	connection
about	/	Troubleshooting

Tweet-a-PowerStrip
project	overview	/	Project	overview
project	requirements	/	Project	requirements
system	architecture	/	System	architecture
hardware	components	/	Required	hardware	components
user	experience	flow	/	User	experience	flow
development	stage	/	Development	and	deployment	stages
deployment	stage	/	Development	and	deployment	stages
smart	power	strip	with	Arduino	/	Stage	1	–	a	smart	power	strip	with	Arduino	and
relays
hardware	design	/	Hardware	design
Arduino	code	/	The	Arduino	code
Python	code	/	Stage	2	–	the	Python	code	to	process	tweets,	The	Python	code
Python	software	flow	/	Python	software	flow
Twitter	application,	setting	up	/	Setting	up	the	Twitter	application
testing	/	Testing	and	troubleshooting
troubleshooting	/	Testing	and	troubleshooting
multiple	features,	adding	/	Extending	the	project	with	additional	features

Twitter	application,	Tweet-a-PowerStrip
setting	up	/	Setting	up	the	Twitter	application

www.it-ebooks.info

http://www.it-ebooks.info/

U
Ubuntu

Python,	installing	/	Ubuntu
matplotlib,	setting	up	/	Setting	up	matplotlib	on	Ubuntu

Ubuntu	Linux
SD	card,	preparing	/	Preparing	an	SD	card

Universal	Serial	Bus	(USB)
about	/	Using	the	Serial	Monitor	window

Uno	board
about	/	The	Arduino	Uno	board

user	experience	(UX)	flow,	Tweet-a-PowerStrip
about	/	User	experience	flow

www.it-ebooks.info

http://www.it-ebooks.info/

V
variables

about	/	Variables
virtual	instance,	on	AWS	EC2	service

creating	/	Creating	a	virtual	instance	on	the	AWS	EC2	service
logging	into	/	Logging	into	your	virtual	instance

void	data	type
about	/	Data	types

www.it-ebooks.info

http://www.it-ebooks.info/

W
web.py

used,	for	developing	web	applications	/	Python	web	framework	–	web.py
installing	/	Installing	web.py
basic	concepts	/	Essential	web.py	concepts	for	developing	complex	web
applications
URL,	handling	/	Handling	URLs
GET	methods	/	The	GET	and	POST	methods
POST	methods	/	The	GET	and	POST	methods
templates	/	Templates
forms	/	Forms
with	Arduino	serial	interface	/	Exercise	2	–	playing	with	web.py	concepts	using
the	Arduino	serial	interface

web	application,	remote	home	monitoring	system
about	/	Stage	3	–	a	web	application	using	Xively,	Python,	and	Amazon	cloud
service
architecture	/	Architecture	of	the	cloud	services
Python	web	application,	hosted	on	Amazon	AWS	/	Python	web	application
hosted	on	Amazon	AWS
testing	/	Testing	the	web	application,	Testing	and	troubleshooting

web	applications
developing,	with	Python	/	Developing	web	applications	using	Python
developing,	web.py	used	/	Python	web	framework	–	web.py
implementing,	web.py	used	/	Your	first	Python	web	application

while	statement
about	/	The	while	statement

wide	area	network	(WAN)
about	/	Networking	fundamentals

Windows
Python,	installing	/	Windows
Setuptools,	installing	/	Windows
Arduino	IDE,	installing	/	Windows
Arduino	board	connection,	establishing	/	Windows
matplotlib,	configuring	/	Configuring	matplotlib	on	Windows
SD	card,	preparing	/	Preparing	an	SD	card
IP	address,	obtaining	/	Windows

Wire	library
about	/	Prototyping	with	the	I2C	protocol
URL	/	Prototyping	with	the	I2C	protocol

Wiring
about	/	Introduction	to	Arduino	programming

with	statement
using	/	The	with	statement	–	Python	context	manager

www.it-ebooks.info

http://www.it-ebooks.info/

World	Wide	Web	(WWW)
about	/	RESTful	web	applications	with	Arduino	and	Python

write()	method
used,	for	working	with	files	/	The	write()	method

www.it-ebooks.info

http://www.it-ebooks.info/

X
Xively	/	Architecture	of	the	cloud	services
Xively,	IoT	cloud	platforms

about	/	Xively	–	a	cloud	platform	for	the	IoT
account,	setting	up	/	Setting	up	an	account	on	Xively
working	with	/	Working	with	Xively
Adruino,	interfacing	with	/	Interfacing	Arduino	with	Xively

www.it-ebooks.info

http://www.it-ebooks.info/

	1. Getting Started with Python and Arduino
	Introduction to Python
	Why we use Python
	When do we use other languages
	Installing Python and Setuptools
	Installing Python
	Linux
	Ubuntu
	Fedora and Red Hat
	Windows
	Mac OS X
	Installing Setuptools
	Linux
	Windows
	Mac OS X
	Installing pip
	Installing Python packages
	The fundamentals of Python programming
	Python operators and built-in types
	Operators
	Built-in types
	Data structures
	Lists
	Tuples
	Sets
	Dictionaries
	Controlling the flow of your program
	The if statement
	The for statement
	The while statement
	Built-in functions
	Conversions
	Math operations
	String operations
	Introduction to Arduino
	History
	Why Arduino?
	Arduino variants
	The Arduino Uno board
	Installing the Arduino IDE
	Linux
	Mac OS X
	Windows
	Getting started with the Arduino IDE
	What is an Arduino sketch?
	Working with libraries
	Using Arduino examples
	Compiling and uploading sketches
	Using the Serial Monitor window
	Introduction to Arduino programming
	Comments
	Variables
	Constants
	Data types
	Conversions
	Functions and statements
	The setup() function
	The loop() function
	The pinMode() function
	Working with pins
	Statements
	Summary
	2. Working with the Firmata Protocol and the pySerial Library
	Connecting the Arduino board
	Linux
	Mac OS X
	Windows
	Troubleshooting
	Introducing the Firmata protocol
	What is Firmata?
	Testing the Firmata protocol
	Getting started with pySerial
	Installing pySerial
	Playing with a pySerial example
	Bridging pySerial and Firmata
	Uploading a Firmata sketch to the Arduino board
	Summary

	3. The First Project – Motion-triggered LEDs
	Motion-triggered LEDs – the project description
	The project goal
	The list of components
	The software flow design
	The hardware system design
	Introducing Fritzing – a hardware prototyping software
	Working with the breadboard
	Designing the hardware prototype
	Testing hardware connections
	Method 1 – using a standalone Arduino sketch
	The project setup
	The Arduino sketch
	The setup() function
	The loop() function
	Working with custom Arduino functions
	Testing
	Troubleshooting
	Method 2 – using Python and Firmata
	The project setup
	Working with Python executable files
	The Python code
	Working with pyFirmata methods
	Working with Python functions
	Testing
	Troubleshooting
	Summary

	4. Diving into Python-Arduino Prototyping
	Prototyping
	Working with pyFirmata methods
	Setting up the Arduino board
	Configuring Arduino pins
	The direct method
	Assigning pin modes
	Working with pins
	Reporting data
	Manual operations
	The write() method
	The read() method
	Additional functions
	Upcoming functions
	Prototyping templates using Firmata
	Potentiometer – continuous observation from an analog input
	Connections
	The Python code
	Buzzer – generating sound alarm pattern
	Connections
	The Python code
	DC motor – controlling motor speed using PWM
	Connections
	The Python code
	LED – controlling LED brightness using PWM
	Connections
	The Python code
	Servomotor – moving the motor to a certain angle
	Connections
	The Python code
	Prototyping with the I2C protocol
	Arduino examples for I2C interfacing
	Arduino coding for the TMP102 temperature sensor
	Arduino coding for the BH1750 light sensor
	PyMata for quick I2C prototyping
	Interfacing TMP102 using PyMata
	Interfacing BH1750 using PyMata
	Useful pySerial commands
	Connecting with the serial port
	Reading a line from the port
	Flushing the port to avoid buffer overflow
	Closing the port
	Summary

	5. Working with the Python GUI
	Learning Tkinter for GUI design
	Your first Python GUI program
	The root widget Tk() and the top-level methods
	The Label() widget
	The Pack geometry manager
	The Button() widget – interfacing GUI with Arduino and LEDs
	The Entry() widget – providing manual user inputs
	The Scale() widget – adjusting the brightness of an LED
	The Grid geometry manager
	The Checkbutton() widget – selecting LEDs
	The Label() widget – monitoring I/O pins
	Remaking your first Python-Arduino project with a GUI
	Summary

	6. Storing and Plotting Arduino Data
	Working with files in Python
	The open() method
	The write() method
	The close() method
	The read() method
	The with statement – Python context manager
	Using CSV files to store data
	Storing Arduino data in a CSV file
	Getting started with matplotlib
	Configuring matplotlib on Windows
	Configuring matplotlib on Mac OS X
	Upgrading matplotlib
	Troubleshooting installation errors
	Setting up matplotlib on Ubuntu
	Plotting random numbers using matplotlib
	Plotting data from a CSV file
	Plotting real-time Arduino data
	Integrating plots in the Tkinter window
	Summary

	7. The Midterm Project – a Portable DIY Thermostat
	Thermostat – the project description
	Project background
	Project goals and stages
	The list of required components
	Hardware design
	Software flow for user experience design
	Stage 1 – prototyping the thermostat
	The Arduino sketch for the thermostat
	Interfacing the temperature sensor
	Interfacing the light sensor
	Interfacing the humidity sensor
	Using Arduino interrupts
	Designing the GUI and plot in Python
	Using pySerial to stream sensor data in your Python program
	Designing the GUI using Tkinter
	Plotting percentage humidity using matplotlib
	Using button interrupts to control the parameters
	Changing the temperature unit by pressing a button
	Swapping between the GUI and the plot by pressing a button
	Troubleshooting

	Stage 2 – using a Raspberry Pi for the deployable thermostat
	What is a Raspberry Pi?
	Installing the operating system and configuring the Raspberry Pi
	What do you need to begin using the Raspberry Pi?
	Preparing an SD card
	The Raspberry Pi setup process
	Using a portable TFT LCD display with the Raspberry Pi
	Connecting the TFT LCD using GPIO
	Configuring the TFT LCD with the Raspberry Pi OS
	Optimizing the GUI for the TFT LCD screen
	Troubleshooting

	Summary

	8. Introduction to Arduino Networking
	Arduino and the computer networking
	Networking fundamentals
	Obtaining the IP address of your computer
	Windows
	Mac OS X
	Linux
	Networking extensions for Arduino
	Arduino Ethernet Shield
	Arduino WiFi Shield
	Arduino Yún
	Arduino Ethernet library
	The Ethernet class
	The IPAddress class
	The Server class
	The Client class
	Exercise 1 – a web server, your first Arduino network program
	Developing web applications using Python
	Python web framework – web.py
	Installing web.py
	Your first Python web application
	Essential web.py concepts for developing complex web applications
	Handling URLs
	The GET and POST methods
	Templates
	Forms

	Exercise 2 – playing with web.py concepts using the Arduino serial interface
	RESTful web applications with Arduino and Python
	Designing REST-based Arduino applications
	Working with the GET request from Arduino
	The Arduino code to generate the GET request
	The HTTP server using web.py to handle the GET request
	Working with the POST request from Arduino
	The Arduino code to generate the POST request
	The HTTP server using web.py to handle the POST request

	Exercise 3 – a RESTful Arduino web application
	The Arduino sketch for the exercise
	The web.py application to support REST requests
	Why do we need a resource-constrained messaging protocol?
	MQTT – A lightweight messaging protocol
	Introduction to MQTT
	Mosquitto – an open source MQTT broker
	Setting up Mosquitto
	Getting familiar with Mosquitto
	Getting started with MQTT on Arduino and Python
	MQTT on Arduino using the PubSubClient library
	Installing the PubSubClient library
	Developing the Arduino MQTT client
	MQTT on Python using paho-mqtt
	Installing paho-mqtt
	Using the paho-mqtt Python library

	Exercise 4 – MQTT Gateway for Arduino
	Developing Arduino as the MQTT client
	Developing the MQTT Gateway using Mosquitto
	Extending the MQTT Gateway using web.py
	Testing your Mosquitto Gateway

	Summary

	9. Arduino and the Internet of Things
	Getting started with the IoT
	Architecture of IoT web applications
	Hardware design
	The IoT cloud platforms
	Xively – a cloud platform for the IoT
	Setting up an account on Xively
	Working with Xively
	Alternative IoT platforms
	ThingSpeak
	Carriots
	Developing cloud applications using Python and Xively
	Interfacing Arduino with Xively
	Uploading Arduino data to Xively
	Downloading data to Arduino from Xively
	Advanced code to upload and download data using Arduino
	Python – uploading data to Xively
	The basic method for sending data
	Uploading data using a web interface based on web.py
	Python – downloading data from Xively
	The basic method for retrieving data from Xively
	Retrieving data from the web.py web interface
	Triggers – custom notifications from Xively
	Your own cloud platform for the IoT
	Getting familiar with the Amazon AWS platform
	Setting up an account on AWS
	Creating a virtual instance on the AWS EC2 service
	Logging into your virtual instance
	Creating an IoT platform on the EC2 instance
	Installing the necessary packages on AWS
	Configuring the security of the virtual instance
	Testing your cloud platform
	Testing the Mosquitto service
	Configuring and testing basic security
	Uploading and testing a project on the instance
	Summary

	10. The Final Project – a Remote Home Monitoring System
	The design methodology for IoT projects
	Project overview
	The project goals
	The project requirements
	Designing system architecture
	The monitoring station
	The control center
	The cloud services
	Defining UX flow
	The list of required components
	Defining the project development stages
	Stage 1 – a monitoring station using Arduino
	Designing the monitoring station
	The Arduino sketch for the monitoring station
	Publishing sensor information
	Subscribing to actuator actions
	Programming an interrupt to handle the press of a button
	Testing

	Stage 2 – a control center using Python and the Raspberry Pi
	The control center architecture
	The Python code for the control center
	Creating the GUI using Tkinter
	Communicating with the Mosquitto broker
	Calculating the system's status and situation awareness
	Communicating with Xively
	Checking and updating the buzzer's status
	Testing the control center with the monitoring station
	Setting up the control center on the Raspberry Pi

	Stage 3 – a web application using Xively, Python, and Amazon cloud service
	Architecture of the cloud services
	Python web application hosted on Amazon AWS
	Testing the web application
	Testing and troubleshooting
	Extending your remote home monitoring system
	Utilizing multiple monitoring stations
	Extending sensory capabilities
	Improving UX
	Expanding cloud-based features
	Improving intelligence for situation awareness
	Creating an enclosure for hardware components

	Summary

	11. Tweet-a-PowerStrip
	Project overview
	Project requirements
	System architecture
	Required hardware components
	Relays
	PowerSwitch Tail
	User experience flow
	Development and deployment stages
	Stage 1 – a smart power strip with Arduino and relays
	Hardware design
	The Arduino code

	Stage 2 – the Python code to process tweets
	Python software flow
	Setting up the Twitter application
	The Python code
	Testing and troubleshooting
	Extending the project with additional features

	Summary

	Index

