
V1.0

 1

1 Language Reference

Language Reference

Arduino programs can be divided in three main

parts: structure, values (variables and constants), and functions.

Structure

setup()

loop()

setup()

The setup() function is called when a sketch starts. Use it to initialize variables,

pin modes, start using libraries, etc. The setup function will only run once,

after each powerup or reset of the Arduino board.

Example

int buttonPin = 3;

void setup()

{

 Serial.begin(9600);

 pinMode(buttonPin, INPUT);

}

void loop()

{

 // ...

}

loop()

After creating a setup() function, which initializes and sets the initial values,

the loop() function does precisely what its name suggests, and loops

consecutively, allowing your program to change and respond. Use it to actively

control the Arduino board.

Example

int buttonPin = 3;

http://127.0.0.1:800/Default/arduino.cc/en/Reference/Setup
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Loop

V1.0

 2

2 Language Reference

// setup initializes serial and the button pin

void setup()

{

 beginSerial(9600);

 pinMode(buttonPin, INPUT);

}

// loop checks the button pin each time,

// and will send serial if it is pressed

void loop()

{

 if (digitalRead(buttonPin) == HIGH)

 serialWrite('H');

 else

 serialWrite('L');

 delay(1000);

 }

Control Structures

if

if...else

for

switch case

while

do... while

break

continue

return

goto

http://127.0.0.1:800/Default/arduino.cc/en/Reference/If
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Else
http://127.0.0.1:800/Default/arduino.cc/en/Reference/For
http://127.0.0.1:800/Default/arduino.cc/en/Reference/SwitchCase
http://127.0.0.1:800/Default/arduino.cc/en/Reference/While
http://127.0.0.1:800/Default/arduino.cc/en/Reference/DoWhile
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Break
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Continue
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Return
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Goto

V1.0

 3

3 Language Reference

if (conditional) and ==, !=, <, > (comparison operators)

if, which is used in conjunction with a comparison operator, tests whether a certain

condition has been reached, such as an input being above a certain number. The

format for an if test is:

if (someVariable > 50)

{

 // do something here

}

The program tests to see if someVariable is greater than 50. If it is, the program takes

a particular action. Put another way, if the statement in parentheses is true, the

statements inside the brackets are run. If not, the program skips over the code.

The brackets may be omitted after an if statement. If this is done, the next line

(defined by the semicolon) becomes the only conditional statement.

if (x > 120) digitalWrite(LEDpin, HIGH);

if (x > 120)

digitalWrite(LEDpin, HIGH);

if (x > 120){ digitalWrite(LEDpin, HIGH); }

if (x > 120){

 digitalWrite(LEDpin1, HIGH);

 digitalWrite(LEDpin2, HIGH);

} // all are correct

The statements being evaluated inside the parentheses require the use of one or more

operators:

Comparison Operators:

 x == y (x is equal to y)

 x != y (x is not equal to y)

 x < y (x is less than y)

 x > y (x is greater than y)

 x <= y (x is less than or equal to y)

 x >= y (x is greater than or equal to y)

Warning:

Beware of accidentally using the single equal sign (e.g. if (x = 10)). The single

equal sign is the assignment operator, and sets x to 10 (puts the value 10 into the

variable x). Instead use the double equal sign (e.g. if (x == 10)), which is the

comparison operator, and tests whether x is equal to 10 or not. The latter statement

is only true if x equals 10, but the former statement will always be true.

This is because C evaluates the statement if (x=10) as follows: 10 is assigned to x

(remember that the single equal sign is the assignment operator), so x now contains

http://127.0.0.1:800/Default/arduino.cc/en/Reference/Assignment

V1.0

 4

4 Language Reference

10. Then the 'if' conditional evaluates 10, which always evaluates to TRUE, since any

non-zero number evaluates to TRUE. Consequently, if (x = 10) will always

evaluate to TRUE, which is not the desired result when using an 'if' statement.

Additionally, the variable x will be set to 10, which is also not a desired action.

if can also be part of a branching control structure using the if...else] construction.

Reference Home

if / else

if/else allows greater control over the flow of code than the basic if statement, by

allowing multiple tests to be grouped together. For example, an analog input could be

tested and one action taken if the input was less than 500, and another action taken if

the input was 500 or greater. The code would look like this:

if (pinFiveInput < 500)

{

 // action A

}

else

{

 // action B

}

else can proceed another if test, so that multiple, mutually exclusive tests can be run

at the same time.

Each test will proceed to the next one until a true test is encountered. When a true

test is found, its associated block of code is run, and the program then skips to the

line following the entire if/else construction. If no test proves to be true, the default

else block is executed, if one is present, and sets the default behavior.

Note that an else if block may be used with or without a terminating else block and

vice versa. An unlimited number of such else if branches is allowed.

if (pinFiveInput < 500)

{

 // do Thing A

}

else if (pinFiveInput >= 1000)

{

 // do Thing B

}

else

{

 // do Thing C

}

Another way to express branching, mutually exclusive tests, is with the switch case

statement.

http://127.0.0.1:800/Default/arduino.cc/en/Reference/Else
http://127.0.0.1:800/Default/arduino.cc/en/Reference/HomePage
http://127.0.0.1:800/Default/arduino.cc/en/Reference/SwitchCase

V1.0

 5

5 Language Reference

for statements

Desciption

The for statement is used to repeat a block of statements enclosed in curly braces. An

increment counter is usually used to increment and terminate the loop. The for

statement is useful for any repetitive operation, and is often used in combination with

arrays to operate on collections of data/pins.

There are three parts to the for loop header:

for (initialization; condition; increment) {

//statement(s);

}

The initialization happens first and exactly once. Each time through the loop, the

condition is tested; if it's true, the statement block, and the increment is executed,

then the condition is tested again. When the condition becomes false, the loop

ends.

Example

// Dim an LED using a PWM pin

int PWMpin = 10; // LED in series with 470 ohm resistor on pin 10

void setup()

{

 // no setup needed

}

void loop()

{

 for (int i=0; i <= 255; i++){

 analogWrite(PWMpin, i);

 delay(10);

 }

}

V1.0

 6

6 Language Reference

Coding Tips

The C for loop is much more flexible than for loops found in some other computer

languages, including BASIC. Any or all of the three header elements may be omitted,

although the semicolons are required. Also the statements for initialization,

condition, and increment can be any valid C statements with unrelated variables, and

use any C datatypes including floats. These types of unusual for statements may

provide solutions to some rare programming problems.

For example, using a multiplication in the increment line will generate a logarithmic

progression:

for(int x = 2; x < 100; x = x * 1.5){

println(x);

}

Generates: 2,3,4,6,9,13,19,28,42,63,94

Another example, fade an LED up and down with one for loop:

void loop()

{

 int x = 1;

 for (int i = 0; i > -1; i = i + x){

 analogWrite(PWMpin, i);

 if (i == 255) x = -1; // switch direction at peak

 delay(10);

 }

}

switch / case statements

Like if statements, switch...case controls the flow of programs by allowing

programmers to specify different code that should be executed in various conditions.

In particular, a switch statement compares the value of a variable to the values

specified in case statements. When a case statement is found whose value matches

that of the variable, the code in that case statement is run.

The break keyword exits the switch statement, and is typically used at the end of

each case. Without a break statement, the switch statement will continue executing

the following expressions ("falling-through") until a break, or the end of the switch

statement is reached.

Example

 switch (var) {

 case 1:

 //do something when var equals 1

 break;

 case 2:

 //do something when var equals 2

 break;

 default:

 // if nothing else matches, do the default

V1.0

 7

7 Language Reference

 // default is optional

 }

Syntax

switch (var) {

 case label:

 // statements

 break;

 case label:

 // statements

 break;

 default:

 // statements

}

Parameters

var: the variable whose value to compare to the various cases

label: a value to compare the variable to

while loops

Description

while loops will loop continuously, and infinitely, until the expression inside the

parenthesis, () becomes false. Something must change the tested variable, or the

while loop will never exit. This could be in your code, such as an incremented

variable, or an external condition, such as testing a sensor.

Syntax

while(expression){

 // statement(s)

}

Parameters

expression - a (boolean) C statement that evaluates to true or false

Example

var = 0;

while(var < 200){

 // do something repetitive 200 times

 var++;

}

do - while

The do loop works in the same manner as the while loop, with the exception that the

condition is tested at the end of the loop, so the do loop will always run at least once.

do

{

V1.0

 8

8 Language Reference

 // statement block

} while (test condition);

Example

do

{

 delay(50); // wait for sensors to stabilize

 x = readSensors(); // check the sensors

} while (x < 100);

break

break is used to exit from a do, for, or while loop, bypassing the normal loop

condition. It is also used to exit from a switch statement.

Example

for (x = 0; x < 255; x ++)

{

 digitalWrite(PWMpin, x);

 sens = analogRead(sensorPin);

 if (sens > threshold){ // bail out on sensor detect

 x = 0;

 break;

 }

 delay(50);

}

continue

The continue statement skips the rest of the current iteration of a loop (do, for, or

while). It continues by checking the conditional expression of the loop, and

proceeding with any subsequent iterations.

Example

for (x = 0; x < 255; x ++)

{

 if (x > 40 && x < 120){ // create jump in values

 continue;

 }

 digitalWrite(PWMpin, x);

 delay(50);

}

V1.0

 9

9 Language Reference

return

Terminate a function and return a value from a function to the calling function, if

desired.

Syntax:

return;

return value; // both forms are valid

Parameters

value: any variable or constant type

Examples:

A function to compare a sensor input to a threshold

 int checkSensor(){

 if (analogRead(0) > 400) {

 return 1;

 else{

 return 0;

 }

}

The return keyword is handy to test a section of code without having to "comment

out" large sections of possibly buggy code.

void loop(){

// brilliant code idea to test here

return;

// the rest of a dysfunctional sketch here

// this code will never be executed

}

goto

Transfers program flow to a labeled point in the program

Syntax

label:

goto label; // sends program flow to the label

Tip

The use of goto is discouraged in C programming, and some authors of C

programming books claim that the goto statement is never necessary, but used

judiciously, it can simplify certain programs. The reason that many programmers

frown upon the use of goto is that with the unrestrained use of goto statements, it is

easy to create a program with undefined program flow, which can never be debugged.

With that said, there are instances where a goto statement can come in handy, and

simplify coding. One of these situations is to break out of deeply nested for loops, or

if logic blocks, on a certain condition.

V1.0

 10

10 Language Reference

Example

for(byte r = 0; r < 255; r++){

 for(byte g = 255; g > -1; g--){

 for(byte b = 0; b < 255; b++){

 if (analogRead(0) > 250){ goto bailout;}

 // more statements ...

 }

 }

}

bailout:

Further Syntax

; (semicolon)

{} (curly braces)

// (single line comment)

/* */ (multi-line comment)

#define

#include

; semicolon

Used to end a statement.

Example

int a = 13;

Tip

Forgetting to end a line in a semicolon will result in a compiler error. The error text

may be obvious, and refer to a missing semicolon, or it may not. If an impenetrable or

seemingly illogical compiler error comes up, one of the first things to check is a

http://127.0.0.1:800/Default/arduino.cc/en/Reference/SemiColon
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Braces
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Comments
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Comments
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Define
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Include

V1.0

 11

11 Language Reference

missing semicolon, in the immediate vicinity, preceding the line at which the

compiler complained

{} Curly Braces

Curly braces (also referred to as just "braces" or as "curly brackets") are a major part

of the C programming language. They are used in several different constructs,

outlined below, and this can sometimes be confusing for beginners.

An opening curly brace "{" must always be followed by a closing curly brace "}". This

is a condition that is often referred to as the braces being balanced. The Arduino IDE

(integrated development environment) includes a convenient feature to check the

balance of curly braces. Just select a brace, or even click the insertion point

immediately following a brace, and its logical companion will be highlighted.

At present this feature is slightly buggy as the IDE will often find (incorrectly) a brace

in text that has been "commented out."

Beginning programmers, and programmers coming to C from the BASIC language

often find using braces confusing or daunting. After all, the same curly braces replace

the RETURN statement in a subroutine (function), the ENDIF statement in a

conditional and the NEXT statement in a FOR loop.

Because the use of the curly brace is so varied, it is good programming practice to

type the closing brace immediately after typing the opening brace when inserting a

construct which requires curly braces. Then insert some carriage returns between

your braces and begin inserting statements. Your braces, and your attitude, will never

become unbalanced.

Unbalanced braces can often lead to cryptic, impenetrable compiler errors that can

sometimes be hard to track down in a large program. Because of their varied usages,

braces are also incredibly important to the syntax of a program and moving a brace

one or two lines will often dramatically affect the meaning of a program.

The main uses of curly braces

Functions

 void myfunction(datatype argument){

 statements(s)

 }

Loops

 while (boolean expression)

 {

 statement(s)

 }

V1.0

 12

12 Language Reference

 do

 {

 statement(s)

 } while (boolean expression);

 for (initialisation; termination condition; incrementing expr)

 {

 statement(s)

 }

Conditional statements

 if (boolean expression)

 {

 statement(s)

 }

 else if (boolean expression)

 {

 statement(s)

 }

 else

 {

 statement(s)

 }

Comments

Comments are lines in the program that are used to inform yourself or others about

the way the program works. They are ignored by the compiler, and not exported to

the processor, so they don't take up any space on the Atmega chip.

Comments only purpose are to help you understand (or remember) how your

program works or to inform others how your program works. There are two different

ways of marking a line as a comment:

Example

 x = 5; // This is a single line comment. Anything after the slashes

is a comment

 // to the end of the line

/* this is multiline comment - use it to comment out whole blocks of

code

V1.0

 13

13 Language Reference

if (gwb == 0){ // single line comment is OK inside a multiline

comment

x = 3; /* but not another multiline comment - this is

invalid */

}

// don't forget the "closing" comment - they have to be balanced!

*/

Tip

When experimenting with code, "commenting out" parts of your program is a

convenient way to remove lines that may be buggy. This leaves the lines in the code,

but turns them into comments, so the compiler just ignores them. This can be

especially useful when trying to locate a problem, or when a program refuses to

compile and the compiler error is cryptic or unhelpful.

Comments

Comments are lines in the program that are used to inform yourself or others about

the way the program works. They are ignored by the compiler, and not exported to

the processor, so they don't take up any space on the Atmega chip.

Comments only purpose are to help you understand (or remember) how your

program works or to inform others how your program works. There are two different

ways of marking a line as a comment:

Example

 x = 5; // This is a single line comment. Anything after the slashes

is a comment

 // to the end of the line

/* this is multiline comment - use it to comment out whole blocks of

code

if (gwb == 0){ // single line comment is OK inside a multiline

comment

x = 3; /* but not another multiline comment - this is

invalid */

}

// don't forget the "closing" comment - they have to be balanced!

*/

Tip

When experimenting with code, "commenting out" parts of your program is a

convenient way to remove lines that may be buggy. This leaves the lines in the code,

but turns them into comments, so the compiler just ignores them. This can be

V1.0

 14

14 Language Reference

especially useful when trying to locate a problem, or when a program refuses to

compile and the compiler error is cryptic or unhelpful.

#Define

#define is a useful C component that allows the programmer to give a name to a

constant value before the program is compiled. Defined constants in arduino don't

take up any program memory space on the chip. The compiler will replace references

to these constants with the defined value at compile time.

This can have some unwanted side effects though, if for example, a constant name

that had been #defined is included in some other constant or variable name. In that

case the text would be replaced by the #defined number (or text).

In general, the const keyword is preferred for defining constants and should be used

instead of #define.

Arduino defines have the same syntax as C defines:

Syntax

#define constantName value

Note that the # is necessary.

Example

#define ledPin 3

// The compiler will replace any mention of ledPin with the value 3

at compile time.

Tip

There is no semicolon after the #define statement. If you include one, the compiler

will throw cryptic errors further down the page.

#define ledPin 3; // this is an error

Similarly, including an equal sign after the #define statement will also generate a

cryptic compiler error further down the page.

#define ledPin = 3 // this is also an error

#include

#include is used to include outside libraries in your sketch. This gives the

programmer access to a large group of standard C libraries (groups of pre-made

functions), and also libraries written especially for Arduino.

The main reference page for AVR C libraries (AVR is a reference to the Atmel chips

on which the Arduino is based) is here.

http://127.0.0.1:800/Default/arduino.cc/en/Reference/Const
http://127.0.0.1:800/Default/www.nongnu.org/avr-libc/user-manual/modules.html

V1.0

 15

15 Language Reference

Note that #include, similar to #define, has no semicolon terminator, and the

compiler will yield cryptic error messages if you add one.

Example

This example includes a library that is used to put data into the program space flash

instead of ram. This saves the ram space for dynamic memory needs and makes large

lookup tables more practical.

#include <avr/pgmspace.h>

prog_uint16_t myConstants[] PROGMEM = {0, 21140, 702 , 9128, 0,

25764, 8456,

0,0,0,0,0,0,0,0,29810,8968,29762,29762,4500};

Arithmetic Operators

= (assignment operator)

+ (addition)

- (subtraction)

* (multiplication)

/ (division)

% (modulo)

= assignment operator (single equal sign)

Stores the value to the right of the equal sign in the variable to the left of the equal

sign.

The single equal sign in the C programming language is called the assignment

operator. It has a different meaning than in algebra class where it indicated an

equation or equality. The assignment operator tells the microcontroller to evaluate

whatever value or expression is on the right side of the equal sign, and store it in the

variable to the left of the equal sign.

http://127.0.0.1:800/Default/arduino.cc/en/Reference/Assignment
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Arithmetic
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Arithmetic
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Arithmetic
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Arithmetic
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Modulo

V1.0

 16

16 Language Reference

Example

 int sensVal; // declare an integer variable named

sensVal

 senVal = analogRead(0); // store the (digitized) input voltage

at analog pin 0 in SensVal

Programming Tips

The variable on the left side of the assignment operator (= sign) needs to be able to

hold the value stored in it. If it is not large enough to hold a value, the value stored in

the variable will be incorrect.

Don't confuse the assignment operator [=] (single equal sign) with the comparison

operator [==] (double equal signs), which evaluates whether two expressions are

equal

Addition, Subtraction, Multiplication, & Division

Description

These operators return the sum, difference, product, or quotient (respectively) of the

two operands. The operation is conducted using the data type of the operands, so, for

example, 9 / 4 gives 2 since 9 and 4 are ints. This also means that the operation can

overflow if the result is larger than that which can be stored in the data type (e.g.

adding 1 to an int with the value 32,767 gives -32,768). If the operands are of

different types, the "larger" type is used for the calculation.

If one of the numbers (operands) are of the type float or of type double, floating

point math will be used for the calculation.

Examples

y = y + 3;

x = x - 7;

i = j * 6;

r = r / 5;

Syntax

result = value1 + value2;

result = value1 - value2;

result = value1 * value2;

http://127.0.0.1:800/Default/arduino.cc/en/Reference/Int

V1.0

 17

17 Language Reference

result = value1 / value2;

Parameters:

value1: any variable or constant

value2: any variable or constant

Programming Tips:

Know that integer constants default to int, so some constant calculations may overflow

(e.g. 60 * 1000 will yield a negative result).

Choose variable sizes that are large enough to hold the largest results from your

calculations

Know at what point your variable will "roll over" and also what happens in the other

direction e.g. (0 - 1) OR (0 - - 32768)

For math that requires fractions, use float variables, but be aware of their drawbacks:

large size, slow computation speeds

Use the cast operator e.g. (int)myFloat to convert one variable type to another on the fly.

% (modulo)

Description

Calculates the remainder when one integer is divided by another. It is useful for

keeping a variable within a particular range (e.g. the size of an array).

Syntax

result = dividend % divisor

Parameters

dividend: the number to be divided

divisor: the number to divide by

Returns

the remainder

http://127.0.0.1:800/Default/arduino.cc/en/Reference/IntegerConstants
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Int

V1.0

 18

18 Language Reference

Examples

x = 7 % 5; // x now contains 2

x = 9 % 5; // x now contains 4

x = 5 % 5; // x now contains 0

x = 4 % 5; // x now contains 4

Example Code

/* update one value in an array each time through a loop */

int values[10];

int i = 0;

void setup() {}

void loop()

{

 values[i] = analogRead(0);

 i = (i + 1) % 10; // modulo operator rolls over variable

}

Tip

The modulo operator does not work on floats.

Comparison Operators

== (equal to)

http://127.0.0.1:800/Default/arduino.cc/en/Reference/If

V1.0

 19

19 Language Reference

!= (not equal to)

< (less than)

> (greater than)

<= (less than or equal to)

>= (greater than or equal to)

if (conditional) and ==, !=, <, > (comparison operators)

if, which is used in conjunction with a comparison operator, tests whether a certain

condition has been reached, such as an input being above a certain number. The

format for an if test is:

if (someVariable > 50)

{

 // do something here

}

The program tests to see if someVariable is greater than 50. If it is, the program takes

a particular action. Put another way, if the statement in parentheses is true, the

statements inside the brackets are run. If not, the program skips over the code.

The brackets may be omitted after an if statement. If this is done, the next line

(defined by the semicolon) becomes the only conditional statement.

if (x > 120) digitalWrite(LEDpin, HIGH);

if (x > 120)

digitalWrite(LEDpin, HIGH);

if (x > 120){ digitalWrite(LEDpin, HIGH); }

if (x > 120){

 digitalWrite(LEDpin1, HIGH);

 digitalWrite(LEDpin2, HIGH);

} // all are correct

The statements being evaluated inside the parentheses require the use of one or more

operators:

Comparison Operators:

 x == y (x is equal to y)

 x != y (x is not equal to y)

 x < y (x is less than y)

 x > y (x is greater than y)

 x <= y (x is less than or equal to y)

 x >= y (x is greater than or equal to y)

http://127.0.0.1:800/Default/arduino.cc/en/Reference/If
http://127.0.0.1:800/Default/arduino.cc/en/Reference/If
http://127.0.0.1:800/Default/arduino.cc/en/Reference/If
http://127.0.0.1:800/Default/arduino.cc/en/Reference/If
http://127.0.0.1:800/Default/arduino.cc/en/Reference/If

V1.0

 20

20 Language Reference

Warning:

Beware of accidentally using the single equal sign (e.g. if (x = 10)). The single

equal sign is the assignment operator, and sets x to 10 (puts the value 10 into the

variable x). Instead use the double equal sign (e.g. if (x == 10)), which is the

comparison operator, and tests whether x is equal to 10 or not. The latter statement

is only true if x equals 10, but the former statement will always be true.

This is because C evaluates the statement if (x=10) as follows: 10 is assigned to x

(remember that the single equal sign is the assignment operator), so x now contains

10. Then the 'if' conditional evaluates 10, which always evaluates to TRUE, since any

non-zero number evaluates to TRUE. Consequently, if (x = 10) will always

evaluate to TRUE, which is not the desired result when using an 'if' statement.

Additionally, the variable x will be set to 10, which is also not a desired action.

if can also be part of a branching control structure using the if...else] construction.

Reference Home

Boolean Operators

These can be used inside the condition of an if statement.

&& (logical and)

True only if both operands are true, e.g.

if (digitalRead(2) == HIGH && digitalRead(3) == HIGH) { // read two

switches

 // ...

}

is true only if both inputs are high.

|| (logical or)

True if either operand is true, e.g.

if (x > 0 || y > 0) {

 // ...

}

is true if either x or y is greater than 0.

! (not)

True if the operand is false, e.g.

if (!x) {

http://127.0.0.1:800/Default/arduino.cc/en/Reference/Assignment
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Else
http://127.0.0.1:800/Default/arduino.cc/en/Reference/HomePage
http://127.0.0.1:800/Default/arduino.cc/en/Reference/If

V1.0

 21

21 Language Reference

 // ...

}

is true if x is false (i.e. if x equals 0).

Warning

Make sure you don't mistake the boolean AND operator, && (double ampersand) for

the bitwise AND operator & (single ampersand). They are entirely different beasts.

Similarly, do not confuse the boolean || (double pipe) operator with the bitwise OR

operator | (single pipe).

The bitwise not ~ (tilde) looks much different than the boolean not ! (exclamation

point or "bang" as the programmers say) but you still have to be sure which one you

want where.

Examples

if (a >= 10 && a <= 20){} // true if a is between 10 and 20

See also

& (bitwise AND)

| (bitwise OR)

~ (bitwise NOT

The pointer operators

& (reference) and * (dereference)

Pointers are one of the more complicated subjects for beginners in learning C, and it

is possible to write the vast majority of Arduino sketches without ever encountering

pointers. However for manipulating certain data structures, the use of pointers can

simplify the code, and and knowledge of manipulating pointers is handy to have in

one's toolkit.

http://127.0.0.1:800/Default/arduino.cc/en/Reference/BitwiseAnd
http://127.0.0.1:800/Default/arduino.cc/en/Reference/BitwiseAnd
http://127.0.0.1:800/Default/arduino.cc/en/Reference/BitwiseXorNot

V1.0

 22

22 Language Reference

Bitwise Operators

& (bitwise and)

| (bitwise or)

^ (bitwise xor)

~ (bitwise not)

<< (bitshift left)

>> (bitshift right)

Bitwise AND (&), Bitwise OR (|), Bitwise XOR (^)

Bitwise AND (&)

The bitwise operators perform their calculations at the bit level of variables. They

help solve a wide range of common programming problems. Much of the material

below is from an excellent tutorial on bitwise math wihch may be found here.

Description and Syntax

Below are descriptions and syntax for all of the operators. Further details may be

found in the referenced tutorial.

Bitwise AND (&)

The bitwise AND operator in C++ is a single ampersand, &, used between two other

integer expressions. Bitwise AND operates on each bit position of the surrounding

expressions independently, according to this rule: if both input bits are 1, the

resulting output is 1, otherwise the output is 0. Another way of expressing this is:

 0 0 1 1 operand1

 0 1 0 1 operand2

 0 0 0 1 (operand1 & operand2) - returned result

In Arduino, the type int is a 16-bit value, so using & between two int expressions

causes 16 simultaneous AND operations to occur. In a code fragment like:

 int a = 92; // in binary: 0000000001011100

http://127.0.0.1:800/Default/arduino.cc/en/Reference/BitwiseAnd
http://127.0.0.1:800/Default/arduino.cc/en/Reference/BitwiseAnd
http://127.0.0.1:800/Default/arduino.cc/en/Reference/BitwiseAnd
http://127.0.0.1:800/Default/arduino.cc/en/Reference/BitwiseXorNot
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Bitshift
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Bitshift
http://127.0.0.1:800/Default/www.arduino.cc/playground/Code/BitMath

V1.0

 23

23 Language Reference

 int b = 101; // in binary: 0000000001100101

 int c = a & b; // result: 0000000001000100, or 68 in decimal.

Each of the 16 bits in a and b are processed by using the bitwise AND, and all 16

resulting bits are stored in c, resulting in the value 01000100 in binary, which is 68 in

decimal.

One of the most common uses of bitwise AND is to select a particular bit (or bits)

from an integer value, often called masking. See below for an example

Bitwise OR (|)

The bitwise OR operator in C++ is the vertical bar symbol, |. Like the & operator, |

operates independently each bit in its two surrounding integer expressions, but what

it does is different (of course). The bitwise OR of two bits is 1 if either or both of the

input bits is 1, otherwise it is 0. In other words:

 0 0 1 1 operand1

 0 1 0 1 operand2

 0 1 1 1 (operand1 | operand2) - returned result

Here is an example of the bitwise OR used in a snippet of C++ code:

 int a = 92; // in binary: 0000000001011100

 int b = 101; // in binary: 0000000001100101

 int c = a | b; // result: 0000000001111101, or 125 in

decimal.

Example Program

A common job for the bitwise AND and OR operators is what programmers call

Read-Modify-Write on a port. On microcontrollers, a port is an 8 bit number that

represents something about the condition of the pins. Writing to a port controls all of

the pins at once.

PORTD is a built-in constant that refers to the output states of digital pins

0,1,2,3,4,5,6,7. If there is 1 in an bit position, then that pin is HIGH. (The pins already

need to be set to outputs with the pinMode() command.) So if we write PORTD =

B00110001; we have made pins 2,3 & 7 HIGH. One slight hitch here is that we may

also have changeed the state of Pins 0 & 1, which are used by the Arduino for serial

communications so we may have interfered with serial communication.

 Our algorithm for the program is:

Get PORTD and clear out only the bits corresponding to the pins we wish to control (with

bitwise AND).

Combine the modified PORTD value with the new value for the pins under control (with

biwise OR).

int i; // counter variable

int j;

V1.0

 24

24 Language Reference

void setup(){

DDRD = DDRD | B11111100; // set direction bits for pins 2 to 7, leave

0 and 1 untouched (xx | 00 == xx)

// same as pinMode(pin, OUTPUT) for pins 2 to 7

Serial.begin(9600);

}

void loop(){

for (i=0; i<64; i++){

PORTD = PORTD & B00000011; // clear out bits 2 - 7, leave pins 0 and

1 untouched (xx & 11 == xx)

j = (i << 2); // shift variable up to pins 2 - 7 - to

avoid pins 0 and 1

PORTD = PORTD | j; // combine the port information with the

new information for LED pins

Serial.println(PORTD, BIN); // debug to show masking

delay(100);

 }

}

Bitwise XOR (^)

There is a somewhat unusual operator in C++ called bitwise EXCLUSIVE OR, also

known as bitwise XOR. (In English this is usually pronounced "eks-or".) The bitwise

XOR operator is written using the caret symbol ^. This operator is very similar to the

bitwise OR operator |, only it evaluates to 0 for a given bit position when both of the

input bits for that position are 1:

 0 0 1 1 operand1

 0 1 0 1 operand2

 0 1 1 0 (operand1 ^ operand2) - returned result

Another way to look at bitwise XOR is that each bit in the result is a 1 if the input bits

are different, or 0 if they are the same.

Here is a simple code example:

 int x = 12; // binary: 1100

 int y = 10; // binary: 1010

 int z = x ^ y; // binary: 0110, or decimal 6

The ^ operator is often used to toggle (i.e. change from 0 to 1, or 1 to 0) some of the

bits in an integer expression. In a bitwise OR operation if there is a 1 in the mask bit,

that bit is inverted; if there is a 0, the bit is not inverted and stays the same. Below is

a program to blink digital pin 5.

V1.0

 25

25 Language Reference

// Blink_Pin_5

// demo for Exclusive OR

void setup(){

DDRD = DDRD | B00100000; // set digital pin five as OUTPUT

Serial.begin(9600);

}

void loop(){

PORTD = PORTD ^ B00100000; // invert bit 5 (digital pin 5), leave

others untouched

delay(100);

}

See Also

&&(Boolean AND)

||(Boolean OR)

Reference Home

bitshift left (<<), bitshift right (>>)

Description

From The Bitmath Tutorial in The Playground

There are two bit shift operators in C++: the left shift operator << and the right shift

operator >>. These operators cause the bits in the left operand to be shifted left or

right by the number of positions specified by the right operand.

More on bitwise math may be found here.

Syntax

variable << number_of_bits

variable >> number_of_bits

Parameters

variable - (byte, int, long) number_of_bits integer <= 32

Example:

 int a = 5; // binary: 0000000000000101

 int b = a << 3; // binary: 0000000000101000, or 40 in decimal

 int c = b >> 3; // binary: 0000000000000101, or back to 5 like

we started with

When you shift a value x by y bits (x << y), the leftmost y bits in x are lost, literally

shifted out of existence:

 int a = 5; // binary: 0000000000000101

 int b = a << 14; // binary: 0100000000000000 - the first 1 in

101 was discarded

If you are certain that none of the ones in a value are being shifted into oblivion, a

simple way to think of the left-shift operator is that it multiplies the left operand by 2

http://127.0.0.1:800/Default/arduino.cc/en/Reference/Boolean
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Boolean
http://127.0.0.1:800/Default/arduino.cc/en/Reference/HomePage
http://127.0.0.1:800/Default/www.arduino.cc/playground/Code/BitMath

V1.0

 26

26 Language Reference

raised to the right operand power. For example, to generate powers of 2, the

following expressions can be employed:

 1 << 0 == 1

 1 << 1 == 2

 1 << 2 == 4

 1 << 3 == 8

 ...

 1 << 8 == 256

 1 << 9 == 512

 1 << 10 == 1024

 ...

When you shift x right by y bits (x >> y), and the highest bit in x is a 1, the behavior

depends on the exact data type of x. If x is of type int, the highest bit is the sign bit,

determining whether x is negative or not, as we have discussed above. In that case,

the sign bit is copied into lower bits, for esoteric historical reasons:

 int x = -16; // binary: 1111111111110000

 int y = x >> 3; // binary: 1111111111111110

This behavior, called sign extension, is often not the behavior you want. Instead, you

may wish zeros to be shifted in from the left. It turns out that the right shift rules are

different for unsigned int expressions, so you can use a typecast to suppress ones

being copied from the left:

 int x = -16; // binary: 1111111111110000

 int y = (unsigned int)x >> 3; // binary: 0001111111111110

If you are careful to avoid sign extension, you can use the right-shift operator >> as a

way to divide by powers of 2. For example:

 int x = 1000;

int y = x >> 3; // integer division of 1000 by 8, causing y =

125.

V1.0

 27

27 Language Reference

Compound Operators

++ (increment)

-- (decrement)

+= (compound addition)

-= (compound subtraction)

*= (compound multiplication)

/= (compound division)

&= (compound bitwise and)

|= (compound bitwise or)

++ (increment) / -- (decrement)

Description

Increment or decrement a variable

Syntax

x++; // increment x by one and returns the old value of x

++x; // increment x by one and returns the new value of x

x-- ; // decrement x by one and returns the old value of x

--x ; // decrement x by one and returns the new value of x

Parameters

x: an integer or long (possibly unsigned)

Returns

The original or newly incremented / decremented value of the variable.

Examples

x = 2;

y = ++x; // x now contains 3, y contains 3

y = x--; // x contains 2 again, y still contains 3

+= , -= , *= , /=

Description

Perform a mathematical operation on a variable with another constant or variable.

The += (et al) operators are just a convenient shorthand for the expanded syntax,

listed below.

Syntax

x += y; // equivalent to the expression x = x + y;

x -= y; // equivalent to the expression x = x - y;

x *= y; // equivalent to the expression x = x * y;

x /= y; // equivalent to the expression x = x / y;

http://127.0.0.1:800/Default/arduino.cc/en/Reference/Increment
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Increment
http://127.0.0.1:800/Default/arduino.cc/en/Reference/IncrementCompound
http://127.0.0.1:800/Default/arduino.cc/en/Reference/IncrementCompound
http://127.0.0.1:800/Default/arduino.cc/en/Reference/IncrementCompound
http://127.0.0.1:800/Default/arduino.cc/en/Reference/IncrementCompound
http://127.0.0.1:800/Default/arduino.cc/en/Reference/BitwiseCompoundAnd
http://127.0.0.1:800/Default/arduino.cc/en/Reference/BitwiseCompoundOr

V1.0

 28

28 Language Reference

Parameters

x: any variable type

y: any variable type or constant

Examples

x = 2;

x += 4; // x now contains 6

x -= 3; // x now contains 3

x *= 10; // x now contains 30

x /= 2; // x now contains 15

compound bitwise AND (&=)

Description

The compound bitwise AND operator (&=) is often used with a variable and a

constant to force particular bits in a variable to the LOW state (to 0). This is often

referred to in programming guides as "clearing" or "resetting" bits.

Syntax:

x &= y; // equivalent to x = x & y;

Parameters

x: a char, int or long variable

y: an integer constant or char, int, or long

Example:

First, a review of the Bitwise AND (&) operator

 0 0 1 1 operand1

 0 1 0 1 operand2

 0 0 0 1 (operand1 & operand2) - returned result

Bits that are "bitwise ANDed" with 0 are cleared to 0 so, if myByte is a byte variable,

myByte & B00000000 = 0;

Bits that are "bitwise ANDed" with 1 are unchanged so,

myByte & B11111111 = myByte;

Note: because we are dealing with bits in a bitwise operator - it is convenient to use

the binary formatter with constants. The numbers are still the same value in other

representations, they are just not as easy to understand. Also, B00000000 is shown

for clarity, but zero in any number format is zero (hmmm something philosophical

there?)

Consequently - to clear (set to zero) bits 0 & 1 of a variable, while leaving the rest of

the variable unchanged, use the compound bitwise AND operator (&=) with the

constant B11111100

 1 0 1 0 1 0 1 0 variable

 1 1 1 1 1 1 0 0 mask

 1 0 1 0 1 0 0 0

http://127.0.0.1:800/Default/arduino.cc/en/Reference/IntegerConstants

V1.0

 29

29 Language Reference

 variable unchanged

 bits cleared

Here is the same representation with the variable's bits replaced with the symbol x

 x x x x x x x x variable

 1 1 1 1 1 1 0 0 mask

 x x x x x x 0 0

 variable unchanged

 bits cleared

So if:

myByte = 10101010;

myByte &= B1111100 == B10101000;

See Also

|= (compound bitwise or)

& (bitwise AND)

| (bitwise OR)

compound bitwise OR (|=)

Description

The compound bitwise OR operator (|=) is often used with a variable and a constant

to "set" (set to 1) particular bits in a variable.

Syntax:

x |= y; // equivalent to x = x | y;

Parameters

x: a char, int or long variable

y: an integer constant or char, int, or long

Example:

First, a review of the Bitwise OR (|) operator

 0 0 1 1 operand1

 0 1 0 1 operand2

 0 1 1 1 (operand1 | operand2) - returned result

Bits that are "bitwise ORed" with 0 are unchanged, so if myByte is a byte variable,

myByte | B00000000 = myByte;

Bits that are "bitwise ORed" with 1 are set to 1 so:

myByte | B11111111 = B11111111;

http://127.0.0.1:800/Default/arduino.cc/en/Reference/BitwiseCompoundOr
http://127.0.0.1:800/Default/arduino.cc/en/Reference/BitwiseAnd
http://127.0.0.1:800/Default/arduino.cc/en/Reference/BitwiseAnd

V1.0

 30

30 Language Reference

Consequently - to set bits 0 & 1 of a variable, while leaving the rest of the variable

unchanged, use the compound bitwise OR operator (|=) with the constant

B00000011

 1 0 1 0 1 0 1 0 variable

 0 0 0 0 0 0 1 1 mask

 1 0 1 0 1 0 1 1

 variable unchanged

 bits set

Here is the same representation with the variables bits replaced with the symbol x

 x x x x x x x x variable

 0 0 0 0 0 0 1 1 mask

 x x x x x x 1 1

 variable unchanged

 bits set

So if:

myByte = B10101010;

myByte |= B00000011 == B10101011;

Variables

V1.0

 31

31 Language Reference

Constants

HIGH | LOW

INPUT | OUTPUT| INPUT_PULLUP

true | false

integer constants

floating point constants

Constants are predefined variables in the Arduino language. They are used to make

the programs easier to read. We classify constants in groups.

Defining Logical Levels, true and false (Boolean Constants)

There are two constants used to represent truth and falsity in the Arduino language:

true, and false.

false

false is the easier of the two to define. false is defined as 0 (zero).

true

true is often said to be defined as 1, which is correct, but true has a wider definition.

Any integer which is non-zero is true, in a Boolean sense. So -1, 2 and -200 are all

defined as true, too, in a Boolean sense.

Note that the true and false constants are typed in lowercase unlike HIGH, LOW,

INPUT, & OUTPUT.

Defining Pin Levels, HIGH and LOW

When reading or writing to a digital pin there are only two possible values a pin can

take/be-set-to: HIGH and LOW.

HIGH

The meaning of HIGH (in reference to a pin) is somewhat different depending on

whether a pin is set to an INPUT or OUTPUT. When a pin is configured as an INPUT

with pinMode, and read with digitalRead, the microcontroller will report HIGH if a

voltage of 3 volts or more is present at the pin.

A pin may also be configured as an INPUT with pinMode, and subsequently made

HIGH with digitalWrite, this will set the internal 20K pullup resistors, which will

steer the input pin to a HIGH reading unless it is pulled LOW by external circuitry.

This is how INPUT_PULLUP works as well

When a pin is configured to OUTPUT with pinMode, and set to HIGH with

digitalWrite, the pin is at 5 volts. In this state it can source current, e.g. light an LED

that is connected through a series resistor to ground, or to another pin configured as

an output, and set to LOW.

LOW

The meaning of LOW also has a different meaning depending on whether a pin is set

to INPUT or OUTPUT. When a pin is configured as an INPUT with pinMode, and

read with digitalRead, the microcontroller will report LOW if a voltage of 2 volts or

less is present at the pin.

When a pin is configured to OUTPUT with pinMode, and set to LOW with

digitalWrite, the pin is at 0 volts. In this state it can sink current, e.g. light an LED

http://127.0.0.1:800/Default/arduino.cc/en/Reference/Constants
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Constants
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Constants
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Constants
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Constants
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Constants
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Constants
http://127.0.0.1:800/Default/arduino.cc/en/Reference/IntegerConstants
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Fpconstants

V1.0

 32

32 Language Reference

that is connected through a series resistor to, +5 volts, or to another pin configured as

an output, and set to HIGH.

Defining Digital Pins, INPUT, INPUT_PULLUP, and OUTPUT

Digital pins can be used as INPUT, INPUT_PULLUP, or OUTPUT. Changing a

pin with pinMode() changes the electrical behavior of the pin.

Pins Configured as INPUT

Arduino (Atmega) pins configured as INPUT with pinMode() are said to be in a

high-impedance state. Pins configured as INPUT make extremely small demands on

the circuit that they are sampling, equivalent to a series resistor of 100 Megohms in

front of the pin. This makes them useful for reading a sensor, but not powering an

LED.

If you have your pin configured as an INPUT, you will want the pin to have a

reference to ground, often accomplished with a pull-down resistor (a resistor going to

ground) as described in the Digital Read Serial tutorial.

Pins Configured as INPUT_PULLUP

The Atmega chip on the Arduino has internal pull-up resistors (resistors that connect

to power internally) that you can access. If you prefer to use these instead of external

pull-down resistors, you can use the INPUT_PULLUP argument in pinMode().

This effectively inverts the behavior, where HIGH means the sensor is off, and LOW

means the sensor is on. See the Input Pullup Serial tutorial for an example of this in

use.

Pins Configured as Outputs

Pins configured as OUTPUT with pinMode() are said to be in a low-impedance state.

This means that they can provide a substantial amount of current to other circuits.

Atmega pins can source (provide positive current) or sink (provide negative current)

up to 40 mA (milliamps) of current to other devices/circuits. This makes them useful

for powering LED's but useless for reading sensors. Pins configured as outputs can

also be damaged or destroyed if short circuited to either ground or 5 volt power rails.

The amount of current provided by an Atmega pin is also not enough to power most

relays or motors, and some interface circuitry will be required

Data Types

http://127.0.0.1:800/Default/arduino.cc/en/Tutorial/DigitalReadSerial
http://127.0.0.1:800/Default/arduino.cc/en/Tutorial/InputPullupSerial

V1.0

 33

33 Language Reference

void

boolean

char

unsigned char

byte

int

unsigned int

word

long

unsigned long

float

double

string - char array

String - object

array

void

The void keyword is used only in function declarations. It indicates that the function

is expected to return no information to the function from which it was called.

Example:

// actions are performed in the functions "setup" and "loop"

// but no information is reported to the larger program

void setup()

{

 // ...

}

void loop()

{

 // ...

}

boolean

A boolean holds one of two values, true or false. (Each boolean variable occupies

one byte of memory.)

Example

int LEDpin = 5; // LED on pin 5

int switchPin = 13; // momentary switch on 13, other side connected

to ground

boolean running = false;

void setup()

http://127.0.0.1:800/Default/arduino.cc/en/Reference/Void
http://127.0.0.1:800/Default/arduino.cc/en/Reference/BooleanVariables
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Char
http://127.0.0.1:800/Default/arduino.cc/en/Reference/UnsignedChar
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Byte
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Int
http://127.0.0.1:800/Default/arduino.cc/en/Reference/UnsignedInt
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Word
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Long
http://127.0.0.1:800/Default/arduino.cc/en/Reference/UnsignedLong
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Float
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Double
http://127.0.0.1:800/Default/arduino.cc/en/Reference/String
http://127.0.0.1:800/Default/arduino.cc/en/Reference/StringObject
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Array
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Constants
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Constants

V1.0

 34

34 Language Reference

{

 pinMode(LEDpin, OUTPUT);

 pinMode(switchPin, INPUT);

 digitalWrite(switchPin, HIGH); // turn on pullup resistor

}

void loop()

{

 if (digitalRead(switchPin) == LOW)

 { // switch is pressed - pullup keeps pin high normally

 delay(100); // delay to debounce switch

 running = !running; // toggle running variable

 digitalWrite(LEDpin, running) // indicate via LED

 }

}

char

Description

A data type that takes up 1 byte of memory that stores a character value. Character

literals are written in single quotes, like this: 'A' (for multiple characters - strings -

use double quotes: "ABC").

Characters are stored as numbers however. You can see the specific encoding in the

ASCII chart. This means that it is possible to do arithmetic on characters, in which

the ASCII value of the character is used (e.g. 'A' + 1 has the value 66, since the ASCII

value of the capital letter A is 65). See Serial.println reference for more on how

characters are translated to numbers.

The char datatype is a signed type, meaning that it encodes numbers from -128 to

127. For an unsigned, one-byte (8 bit) data type, use the byte data type.

Example

 char myChar = 'A';

 char myChar = 65; // both are equivalent

unsigned char

Description

An unsigned data type that occupies 1 byte of memory. Same as the byte datatype.

The unsigned char datatype encodes numbers from 0 to 255.

For consistency of Arduino programming style, the byte data type is to be preferred.

Example

 unsigned char myChar = 240;

byte

Description

A byte stores an 8-bit unsigned number, from 0 to 255.

http://127.0.0.1:800/Default/arduino.cc/en/Reference/ASCIIchart
http://127.0.0.1:800/Default/arduino.cc/en/Serial/Println
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Byte

V1.0

 35

35 Language Reference

Example

 byte b = B10010; // "B" is the binary formatter (B10010 = 18

decimal)

int

Description

Integers are your primary datatype for number storage, and store a 2 byte value. This

yields a range of -32,768 to 32,767 (minimum value of -2^15 and a maximum value of

(2^15) - 1).

Int's store negative numbers with a technique called 2's complement math. The

highest bit, sometimes refered to as the "sign" bit, flags the number as a negative

number. The rest of the bits are inverted and 1 is added.

The Arduino takes care of dealing with negative numbers for you, so that arithmetic

operations work transparently in the expected manner. There can be an unexpected

complication in dealing with the bitshift right operator (>>) however.

Example

 int ledPin = 13;

Syntax

 int var = val;

var - your int variable name

val - the value you assign to that variable

Coding Tip

When variables are made to exceed their maximum capacity they "roll over" back to

their minimum capacitiy, note that this happens in both directions.

 int x

 x = -32,768;

 x = x - 1; // x now contains 32,767 - rolls over in neg.

direction

 x = 32,767;

 x = x + 1; // x now contains -32,768 - rolls over

unsigned int

Description

Unsigned ints (unsigned integers) are the same as ints in that they store a 2 byte

value. Instead of storing negative numbers however they only store positive values,

yielding a useful range of 0 to 65,535 (2^16) - 1).

The difference between unsigned ints and (signed) ints, lies in the way the highest bit,

sometimes refered to as the "sign" bit, is interpreted. In the Arduino int type (which

is signed), if the high bit is a "1", the number is interpreted as a negative number, and

the other 15 bits are interpreted with 2's complement math.

Example

 unsigned int ledPin = 13;

http://127.0.0.1:800/Default/en.wikipedia.org/wiki/2_2527s_complement
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Bitshift
http://127.0.0.1:800/Default/en.wikipedia.org/wiki/2_2527s_complement

V1.0

 36

36 Language Reference

Syntax

 unsigned int var = val;

var - your unsigned int variable name

val - the value you assign to that variable

Coding Tip

When variables are made to exceed their maximum capacity they "roll over" back to

their minimum capacitiy, note that this happens in both directions

 unsigned int x

 x = 0;

 x = x - 1; // x now contains 65535 - rolls over in neg

direction

 x = x + 1; // x now contains 0 - rolls over

word

Description

A word stores a 16-bit unsigned number, from 0 to 65535. Same as an unsigned int.

Example

 word w = 10000;

long

Description

Long variables are extended size variables for number storage, and store 32 bits (4

bytes), from -2,147,483,648 to 2,147,483,647.

Example

 long speedOfLight = 186000L; // see Integer Constants for

explanation of the 'L'

Syntax

 long var = val;

var - the long variable name

val - the value assigned to the variable

unsigned long

Description

Unsigned long variables are extended size variables for number storage, and store 32

bits (4 bytes). Unlike standard longs unsigned longs won't store negative numbers,

making their range from 0 to 4,294,967,295 (2^32 - 1).

Example

unsigned long time;

void setup()

{

 Serial.begin(9600);

V1.0

 37

37 Language Reference

}

void loop()

{

 Serial.print("Time: ");

 time = millis();

 //prints time since program started

 Serial.println(time);

 // wait a second so as not to send massive amounts of data

 delay(1000);

}

Syntax

 unsigned long var = val;

var - your long variable name

val - the value you assign to that variable

float

Description

Datatype for floating-point numbers, a number that has a decimal point. Floating-

point numbers are often used to approximate analog and continuous values because

they have greater resolution than integers. Floating-point numbers can be as large as

3.4028235E+38 and as low as -3.4028235E+38. They are stored as 32 bits (4 bytes)

of information.

Floats have only 6-7 decimal digits of precision. That means the total number of

digits, not the number to the right of the decimal point. Unlike other platforms,

where you can get more precision by using a double (e.g. up to 15 digits), on the

Arduino, double is the same size as float.

Floating point numbers are not exact, and may yield strange results when compared.

For example 6.0 / 3.0 may not equal 2.0. You should instead check that the

absolute value of the difference between the numbers is less than some small

number.

Floating point math is also much slower than integer math in performing

calculations, so should be avoided if, for example, a loop has to run at top speed for a

critical timing function. Programmers often go to some lengths to convert floating

point calculations to integer math to increase speed.

Examples

 float myfloat;

 float sensorCalbrate = 1.117;

Syntax

 float var = val;

var - your float variable name

val - the value you assign to that variable

V1.0

 38

38 Language Reference

Example Code

 int x;

 int y;

 float z;

 x = 1;

 y = x / 2; // y now contains 0, ints can't hold

fractions

 z = (float)x / 2.0; // z now contains .5 (you have to use 2.0,

not 2)

double

Desciption

Double precision floating point number. Occupies 4 bytes.

The double implementation on the Arduino is currently exactly the same as the float,

with no gain in precision.

Tip

Users who borrow code from other sources that includes double variables may wish

to examine the code to see if the implied precision is different from that actually

achieved on the Arduino

string

Description

Text strings can be represented in two ways. you can use the String data type, which

is part of the core as of version 0019, or you can make a string out of an array of type

char and null-terminate it. This page described the latter method. For more details on

the String object, which gives you more functionality at the cost of more memory, see

the String object page.

Examples

All of the following are valid declarations for strings.

 char Str1[15];

 char Str2[8] = {'a', 'r', 'd', 'u', 'i', 'n', 'o'};

 char Str3[8] = {'a', 'r', 'd', 'u', 'i', 'n', 'o', '\0'};

 char Str4[] = "arduino";

 char Str5[8] = "arduino";

 char Str6[15] = "arduino";

Possibilities for declaring strings

Declare an array of chars without initializing it as in Str1

Declare an array of chars (with one extra char) and the compiler will add the required

null character, as in Str2

Explicitly add the null character, Str3

Initialize with a string constant in quotation marks; the compiler will size the array to fit

the string constant and a terminating null character, Str4

http://127.0.0.1:800/Default/arduino.cc/en/Reference/StringObject

V1.0

 39

39 Language Reference

Initialize the array with an explicit size and string constant, Str5

Initialize the array, leaving extra space for a larger string, Str6

Null termination

Generally, strings are terminated with a null character (ASCII code 0). This allows

functions (like Serial.print()) to tell where the end of a string is. Otherwise, they

would continue reading subsequent bytes of memory that aren't actually part of the

string.

This means that your string needs to have space for one more character than the text

you want it to contain. That is why Str2 and Str5 need to be eight characters, even

though "arduino" is only seven - the last position is automatically filled with a null

character. Str4 will be automatically sized to eight characters, one for the extra null.

In Str3, we've explicitly included the null character (written '\0') ourselves.

Note that it's possible to have a string without a final null character (e.g. if you had

specified the length of Str2 as seven instead of eight). This will break most functions

that use strings, so you shouldn't do it intentionally. If you notice something

behaving strangely (operating on characters not in the string), however, this could be

the problem.

Single quotes or double quotes?

Strings are always defined inside double quotes ("Abc") and characters are always

defined inside single quotes('A').

Wrapping long strings

You can wrap long strings like this:

char myString[] = "This is the first line"

" this is the second line"

" etcetera";

Arrays of strings

It is often convenient, when working with large amounts of text, such as a project

with an LCD display, to setup an array of strings. Because strings themselves are

arrays, this is in actually an example of a two-dimensional array.

In the code below, the asterisk after the datatype char "char*" indicates that this is an

array of "pointers". All array names are actually pointers, so this is required to make

an array of arrays. Pointers are one of the more esoteric parts of C for beginners to

understand, but it isn't necessary to understand pointers in detail to use them

effectively here.

Example

char* myStrings[]={"This is string 1", "This is string 2", "This is

string 3",

"This is string 4", "This is string 5","This is string 6"};

void setup(){

Serial.begin(9600);

}

V1.0

 40

40 Language Reference

void loop(){

for (int i = 0; i < 6; i++){

 Serial.println(myStrings[i]);

 delay(500);

 }

}

Arrays

An array is a collection of variables that are accessed with an index number. Arrays in

the C programming language, on which Arduino is based, can be complicated, but

using simple arrays is relatively straightforward.

Creating (Declaring) an Array

All of the methods below are valid ways to create (declare) an array.

 int myInts[6];

 int myPins[] = {2, 4, 8, 3, 6};

 int mySensVals[6] = {2, 4, -8, 3, 2};

 char message[6] = "hello";

You can declare an array without initializing it as in myInts.

In myPins we declare an array without explicitly choosing a size. The compiler counts

the elements and creates an array of the appropriate size.

Finally you can both initialize and size your array, as in mySensVals. Note that when

declaring an array of type char, one more element than your initialization is required,

to hold the required null character.

Accessing an Array

Arrays are zero indexed, that is, referring to the array initialization above, the first

element of the array is at index 0, hence

mySensVals[0] == 2, mySensVals[1] == 4, and so forth.

It also means that in an array with ten elements, index nine is the last element.

Hence:

int myArray[10]={9,3,2,4,3,2,7,8,9,11};

 // myArray[9] contains 11

 // myArray[10] is invalid and contains random information

(other memory address)

For this reason you should be careful in accessing arrays. Accessing past the end of an

array (using an index number greater than your declared array size - 1) is reading

from memory that is in use for other purposes. Reading from these locations is

probably not going to do much except yield invalid data. Writing to random memory

locations is definitely a bad idea and can often lead to unhappy results such as

crashes or program malfunction. This can also be a difficult bug to track down.

V1.0

 41

41 Language Reference

Unlike BASIC or JAVA, the C compiler does no checking to see if array access is

within legal bounds of the array size that you have declared.

To assign a value to an array:

mySensVals[0] = 10;

To retrieve a value from an array:

x = mySensVals[4];

Arrays and FOR Loops

Arrays are often manipulated inside for loops, where the loop counter is used as the

index for each array element. For example, to print the elements of an array over the

serial port, you could do something like this:

int i;

for (i = 0; i < 5; i = i + 1) {

 Serial.println(myPins[i]);

}

Example

For a complete program that demonstrates the use of arrays, see the Knight Rider

example from the Tutorials.

Conversion

char()

byte()

int()

word()

long()

float()

char()

Description

Converts a value to the char data type.

Syntax

char(x)

Parameters

x: a value of any type

http://127.0.0.1:800/Default/www.arduino.cc/en/Tutorial/KnightRider
http://127.0.0.1:800/Default/www.arduino.cc/en/Tutorial/KnightRider
http://127.0.0.1:800/Default/www.arduino.cc/en/Main/LearnArduino
http://127.0.0.1:800/Default/arduino.cc/en/Reference/CharCast
http://127.0.0.1:800/Default/arduino.cc/en/Reference/ByteCast
http://127.0.0.1:800/Default/arduino.cc/en/Reference/IntCast
http://127.0.0.1:800/Default/arduino.cc/en/Reference/WordCast
http://127.0.0.1:800/Default/arduino.cc/en/Reference/LongCast
http://127.0.0.1:800/Default/arduino.cc/en/Reference/FloatCast
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Char

V1.0

 42

42 Language Reference

Returns

char

byte()

Description

Converts a value to the byte data type.

Syntax

byte(x)

Parameters

x: a value of any type

Returns

byte

int()

Description

Converts a value to the int data type.

Syntax

int(x)

Parameters

x: a value of any type

Returns

int

word()

Description

Convert a value to the word data type or create a word from two bytes.

Syntax

word(x)

word(h, l)

Parameters

x: a value of any type

h: the high-order (leftmost) byte of the word

l: the low-order (rightmost) byte of the word

Returns

word

long()

Description

Converts a value to the long data type.

Syntax

long(x)

Parameters

x: a value of any type

http://127.0.0.1:800/Default/arduino.cc/en/Reference/Byte
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Int
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Word
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Long

V1.0

 43

43 Language Reference

Returns

long

float()

Description

Converts a value to the float data type.

Syntax

float(x)

Parameters

x: a value of any type

Returns

float

Notes

See the reference for float for details about the precision and limitations of floating

point numbers on Arduino.

Variable Scope & Qualifiers

variable scope

static

volatile

const

Variable Scope

Variables in the C programming language, which Arduino uses, have a property

called scope. This is in contrast to languages such as BASIC where every variable is a

global variable.

A global variable is one that can be seen by every function in a program. Local

variables are only visible to the function in which they are declared. In the Arduino

environment, any variable declared outside of a function (e.g. setup(), loop(), etc.), is

a global variable.

When programs start to get larger and more complex, local variables are a useful way

to insure that only one function has access to its own variables. This prevents

programming errors when one function inadvertently modifies variables used by

another function.

http://127.0.0.1:800/Default/arduino.cc/en/Reference/Float
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Float
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Scope
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Static
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Volatile
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Const

V1.0

 44

44 Language Reference

It is also sometimes handy to declare and initialize a variable inside a for loop. This

creates a variable that can only be accessed from inside the for-loop brackets.

Example:

int gPWMval; // any function will see this variable

void setup()

{

 // ...

}

void loop()

{

 int i; // "i" is only "visible" inside of "loop"

 float f; // "f" is only "visible" inside of "loop"

 // ...

 for (int j = 0; j <100; j++){

 // variable j can only be accessed inside the for-loop brackets

 }

}

Static

The static keyword is used to create variables that are visible to only one function.

However unlike local variables that get created and destroyed every time a function is

called, static variables persist beyond the function call, preserving their data between

function calls.

Variables declared as static will only be created and initialized the first time a

function is called.

Example

/* RandomWalk

* Paul Badger 2007

* RandomWalk wanders up and down randomly between two

* endpoints. The maximum move in one loop is governed by

* the parameter "stepsize".

* A static variable is moved up and down a random amount.

* This technique is also known as "pink noise" and "drunken walk".

*/

#define randomWalkLowRange -20

#define randomWalkHighRange 20

int stepsize;

V1.0

 45

45 Language Reference

int thisTime;

int total;

void setup()

{

 Serial.begin(9600);

}

void loop()

{ // tetst randomWalk function

 stepsize = 5;

 thisTime = randomWalk(stepsize);

 Serial.println(thisTime);

 delay(10);

}

int randomWalk(int moveSize){

 static int place; // variable to store value in random walk -

declared static so that it stores

 // values in between function calls, but no

other functions can change its value

 place = place + (random(-moveSize, moveSize + 1));

 if (place < randomWalkLowRange){ // check lower

and upper limits

 place = place + (randomWalkLowRange - place); // reflect

number back in positive direction

 }

 else if(place > randomWalkHighRange){

 place = place - (place - randomWalkHighRange); // reflect

number back in negative direction

 }

 return place;

}

volatile keyword

volatile is a keyword known as a variable qualifier, it is usually used before the

datatype of a variable, to modify the way in which the compiler and subsequent

program treats the variable.

V1.0

 46

46 Language Reference

Declaring a variable volatile is a directive to the compiler. The compiler is software

which translates your C/C++ code into the machine code, which are the real

instructions for the Atmega chip in the Arduino.

Specifically, it directs the compiler to load the variable from RAM and not from a

storage register, which is a temporary memory location where program variables are

stored and manipulated. Under certain conditions, the value for a variable stored in

registers can be inaccurate.

A variable should be declared volatile whenever its value can be changed by

something beyond the control of the code section in which it appears, such as a

concurrently executing thread. In the Arduino, the only place that this is likely to

occur is in sections of code associated with interrupts, called an interrupt service

routine.

Example

// toggles LED when interrupt pin changes state

int pin = 13;

volatile int state = LOW;

void setup()

{

 pinMode(pin, OUTPUT);

 attachInterrupt(0, blink, CHANGE);

}

void loop()

{

 digitalWrite(pin, state);

}

void blink()

{

 state = !state;

}

const keyword

The const keyword stands for constant. It is a variable qualifier that modifies the

behavior of the variable, making a variable "read-only". This means that the variable

can be used just as any other variable of its type, but its value cannot be changed. You

will get a compiler error if you try to assign a value to a const variable.

Constants defined with the const keyword obey the rules of variable scoping that

govern other variables. This, and the pitfalls of using#define, makes the const

keyword a superior method for defining constants and is preferred over using

#define.

http://127.0.0.1:800/Default/arduino.cc/en/Reference/Scope
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Define

V1.0

 47

47 Language Reference

Example

const float pi = 3.14;

float x;

//

x = pi * 2; // it's fine to use const's in math

pi = 7; // illegal - you can't write to (modify) a constant

#define or const

You can use either const or #define for creating numeric or string constants. For

arrays, you will need to use const. In general const is preferred over #define for

defining constants.

Utilities

sizeof()

sizeof

Description

The sizeof operator returns the number of bytes in a variable type, or the number of

bytes occupied by an array.

Syntax

sizeof(variable)

Parameters

variable: any variable type or array (e.g. int, float, byte)

Example code

The sizeof operator is useful for dealing with arrays (such as strings) where it is

convenient to be able to change the size of the array without breaking other parts of

the program.

This program prints out a text string one character at a time. Try changing the text

phrase.

char myStr[] = "this is a test";

int i;

http://127.0.0.1:800/Default/arduino.cc/en/Reference/Array
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Sizeof

V1.0

 48

48 Language Reference

void setup(){

 Serial.begin(9600);

}

void loop() {

 for (i = 0; i < sizeof(myStr) - 1; i++){

 Serial.print(i, DEC);

 Serial.print(" = ");

 Serial.write(myStr[i]);

 Serial.println();

 }

 delay(5000); // slow down the program

}

Note that sizeof returns the total number of bytes. So for larger variable types such as

ints, the for loop would look something like this. Note also that a properly formatted

string ends with the NULL symbol, which has ASCII value 0.

for (i = 0; i < (sizeof(myInts)/sizeof(int)) - 1; i++) {

 // do something with myInts[i]

}

PROGMEM

Store data in flash (program) memory instead of SRAM. There's a

description of the various types of memory available on an Arduino

board.

The PROGMEM keyword is a variable modifier, it should be used only

with the datatypes defined in pgmspace.h. It tells the compiler "put

this information into flash memory", instead of into SRAM, where it

would normally go.

http://www.arduino.cc/playground/Learning/Memory

V1.0

 49

49 Language Reference

PROGMEM is part of the pgmspace.h library that is available in the

AVR architecture only. So you first need to include the library at

the top your sketch, like this:

#include <avr/pgmspace.h>

[Get Code]

Syntax

const dataType variableName[] PROGMEM = {data0, data1, data3...};

[Get Code]

 dataType - any variable type

 variableName - the name for your array of data

Note that because PROGMEM is a variable modifier, there is no hard

and fast rule about where it should go, so the Arduino compiler

accepts all of the definitions below, which are also synonymous.

However experiments have indicated that, in various versions of

Arduino (having to do with GCC version), PROGMEM may work in one

location and not in another. The "string table" example below has

been tested to work with Arduino 13. Earlier versions of the IDE may

work better if PROGMEM is included after the variable name.

const dataType variableName[] PROGMEM = {}; // use this form

const PROGMEM dataType variableName[] = {}; // or this form

const dataType PROGMEM variableName[] = {}; // not this one

[Get Code]

While PROGMEM could be used on a single variable, it is really only

worth the fuss if you have a larger block of data that needs to be

stored, which is usually easiest in an array, (or another C data

structure beyond our present discussion).

Using PROGMEM is also a two-step procedure. After getting the data

into Flash memory, it requires special methods (functions), also

defined in the pgmspace.h library, to read the data from program

memory back into SRAM, so we can do something useful with it.

Example

The following code fragments illustrate how to read and write chars

(bytes) and ints (2 bytes) to PROGMEM.

http://www.nongnu.org/avr-libc/user-manual/group__avr__pgmspace.html
https://www.arduino.cc/en/Reference/PROGMEM?action=sourceblock&num=1
https://www.arduino.cc/en/Reference/PROGMEM?action=sourceblock&num=2
https://www.arduino.cc/en/Reference/PROGMEM?action=sourceblock&num=3
http://www.nongnu.org/avr-libc/user-manual/group__avr__pgmspace.html

V1.0

 50

50 Language Reference

#include <avr/pgmspace.h>

// save some unsigned ints

const PROGMEM uint16_t charSet[] = { 65000, 32796, 16843, 10, 11234};

// save some chars

const char signMessage[] PROGMEM = {"I AM PREDATOR, UNSEEN COMBATANT.

CREATED BY THE UNITED STATES DEPART"};

unsigned int displayInt;

int k; // counter variable

char myChar;

void setup() {

 Serial.begin(9600);

 while (!Serial);

 // put your setup code here, to run once:

 // read back a 2-byte int

 for (k = 0; k < 5; k++)

 {

 displayInt = pgm_read_word_near(charSet + k);

 Serial.println(displayInt);

 }

 Serial.println();

 // read back a char

 int len = strlen_P(signMessage);

 for (k = 0; k < len; k++)

 {

 myChar = pgm_read_byte_near(signMessage + k);

 Serial.print(myChar);

 }

 Serial.println();

}

void loop() {

 // put your main code here, to run repeatedly:

}

[Get Code]

https://www.arduino.cc/en/Reference/PROGMEM?action=sourceblock&num=4

V1.0

 51

51 Language Reference

Arrays of strings

It is often convenient when working with large amounts of text, such

as a project with an LCD display, to setup an array of strings.

Because strings themselves are arrays, this is in actually an example

of a two-dimensional array.

These tend to be large structures so putting them into program memory

is often desirable. The code below illustrates the idea.

/*

 PROGMEM string demo

 How to store a table of strings in program memory (flash),

 and retrieve them.

 Information summarized from:

 http://www.nongnu.org/avr-libc/user-manual/pgmspace.html

 Setting up a table (array) of strings in program memory is slightly complicated, but

 here is a good template to follow.

 Setting up the strings is a two-step process. First define the strings.

*/

#include <avr/pgmspace.h>

const char string_0[] PROGMEM = "String 0"; // "String 0" etc are strings to store - change to

suit.

const char string_1[] PROGMEM = "String 1";

const char string_2[] PROGMEM = "String 2";

const char string_3[] PROGMEM = "String 3";

const char string_4[] PROGMEM = "String 4";

const char string_5[] PROGMEM = "String 5";

// Then set up a table to refer to your strings.

const char* const string_table[] PROGMEM = {string_0, string_1, string_2, string_3, string_4,

string_5};

char buffer[30]; // make sure this is large enough for the largest string it must hold

void setup()

{

 Serial.begin(9600);

V1.0

 52

52 Language Reference

 while(!Serial);

 Serial.println("OK");

}

void loop()

{

 /* Using the string table in program memory requires the use of special functions to retrieve the

data.

 The strcpy_P function copies a string from program space to a string in RAM ("buffer").

 Make sure your receiving string in RAM is large enough to hold whatever

 you are retrieving from program space. */

 for (int i = 0; i < 6; i++)

 {

 strcpy_P(buffer, (char*)pgm_read_word(&(string_table[i]))); // Necessary casts and

dereferencing, just copy.

 Serial.println(buffer);

 delay(500);

 }

}

[Get Code]

Note

Please note that variables must be either globally defined, OR

defined with the static keyword, in order to work with PROGMEM.

The following code will NOT work when inside a function:

const char long_str[] PROGMEM = "Hi, I would like to tell you a bit about myself.\n";

[Get Code]

The following code WILL work, even if locally defined within a

function:

const static char long_str[] PROGMEM = "Hi, I would like to tell you a bit about myself.\n"

[Get Code]

The F() macro

When an instruction like :

https://www.arduino.cc/en/Reference/PROGMEM?action=sourceblock&num=5
https://www.arduino.cc/en/Reference/PROGMEM?action=sourceblock&num=6
https://www.arduino.cc/en/Reference/PROGMEM?action=sourceblock&num=7

V1.0

 53

53 Language Reference

Serial.print("Write something on the Serial Monitor");

[Get Code]

is used, the string to be printed is normally saved in RAM. If your

sketch prints a lot of stuff on the Serial Monitor, you can easily

fill the RAM. If you have free FLASH memory space, you can easily

indicate that the string must be saved in FLASH using the syntax:

Serial.print(F("Write something on the Serial Monitor that is stored in FLASH"))；

Functions

Digital I/O
pinMode()

digitalWrite()

digitalRead()

pinMode()

Description

Configures the specified pin to behave either as an input or an output. See the

description of digital pins for details on the functionality of the pins.

As of Arduino 1.0.1, it is possible to enable the internal pullup resistors with the mode

INPUT_PULLUP. Additionally, the INPUT mode explicitly disables the internal

pullups.

Syntax

pinMode(pin, mode)

Parameters

pin: the number of the pin whose mode you wish to set

mode: INPUT, OUTPUT, or INPUT_PULLUP. (see the digital pins page for a more

complete description of the functionality.)

Returns

None

Example

int ledPin = 13; // LED connected to digital pin 13

void setup()

{

 pinMode(ledPin, OUTPUT); // sets the digital pin as output

}

https://www.arduino.cc/en/Reference/PROGMEM?action=sourceblock&num=8
http://127.0.0.1:800/Default/arduino.cc/en/Reference/PinMode
http://127.0.0.1:800/Default/arduino.cc/en/Reference/DigitalWrite
http://127.0.0.1:800/Default/arduino.cc/en/Reference/DigitalRead
http://127.0.0.1:800/Default/arduino.cc/en/Tutorial/DigitalPins
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Constants
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Constants
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Constants
http://127.0.0.1:800/Default/arduino.cc/en/Tutorial/DigitalPins

V1.0

 54

54 Language Reference

void loop()

{

 digitalWrite(ledPin, HIGH); // sets the LED on

 delay(1000); // waits for a second

 digitalWrite(ledPin, LOW); // sets the LED off

 delay(1000); // waits for a second

}

[Get Code]

Note

The analog input pins can be used as digital pins, referred to as A0, A1, etc.

digitalWrite()

Description

Write a HIGH or a LOW value to a digital pin.

If the pin has been configured as an OUTPUT with pinMode(), its voltage will be set

to the corresponding value: 5V (or 3.3V on 3.3V boards) for HIGH, 0V (ground) for

LOW.

If the pin is configured as an INPUT, writing a HIGH value with digitalWrite() will

enable an internal 20K pullup resistor (see the tutorial on digital pins). Writing LOW

will disable the pullup. The pullup resistor is enough to light an LED dimly, so if

LEDs appear to work, but very dimly, this is a likely cause. The remedy is to set the

pin to an output with the pinMode() function.

NOTE: Digital pin 13 is harder to use as a digital input than the other digital pins

because it has an LED and resistor attached to it that's soldered to the board on most

boards. If you enable its internal 20k pull-up resistor, it will hang at around 1.7 V

instead of the expected 5V because the onboard LED and series resistor pull the

voltage level down, meaning it always returns LOW. If you must use pin 13 as a

digital input, use an external pull down resistor.

Syntax

digitalWrite(pin, value)

Parameters

pin: the pin number

value: HIGH or LOW

Returns

none

Example

int ledPin = 13; // LED connected to digital pin 13

void setup()

{

http://127.0.0.1:800/Default/arduino.cc/en/Reference/PinMode@action=sourceblock&num=1
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Constants
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Constants
http://127.0.0.1:800/Default/arduino.cc/en/Reference/PinMode
http://127.0.0.1:800/Default/arduino.cc/en/Tutorial/DigitalPins
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Constants
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Constants

V1.0

 55

55 Language Reference

 pinMode(ledPin, OUTPUT); // sets the digital pin as output

}

void loop()

{

 digitalWrite(ledPin, HIGH); // sets the LED on

 delay(1000); // waits for a second

 digitalWrite(ledPin, LOW); // sets the LED off

 delay(1000); // waits for a second

}

Sets pin 13 to HIGH, makes a one-second-long delay, and sets the pin back to LOW.

Note

The analog input pins can be used as digital pins, referred to as A0, A1, etc.

digitalRead()

Description

Reads the value from a specified digital pin, either HIGH or LOW.

Syntax

digitalRead(pin)

Parameters

pin: the number of the digital pin you want to read (int)

Returns

HIGH or LOW

Example

int ledPin = 13; // LED connected to digital pin 13

int inPin = 7; // pushbutton connected to digital pin 7

int val = 0; // variable to store the read value

void setup()

{

 pinMode(ledPin, OUTPUT); // sets the digital pin 13 as output

 pinMode(inPin, INPUT); // sets the digital pin 7 as input

}

void loop()

{

 val = digitalRead(inPin); // read the input pin

 digitalWrite(ledPin, val); // sets the LED to the button's value

}

http://127.0.0.1:800/Default/arduino.cc/en/Reference/Constants
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Constants
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Constants
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Constants

V1.0

 56

56 Language Reference

Sets pin 13 to the same value as the pin 7, which is an input.

Note

If the pin isn't connected to anything, digitalRead() can return either HIGH or LOW

(and this can change randomly).

The analog input pins can be used as digital pins, referred to as A0, A1, etc.

Analog I/O
analogReference()

analogRead()

analogWrite() - PWM

analogReference(type)

Description

Configures the reference voltage used for analog input (i.e. the value used as the top

of the input range). The options are:

DEFAULT: the default analog reference of 5 volts (on 5V Arduino boards) or 3.3 volts (on

3.3V Arduino boards)

INTERNAL: an built-in reference, equal to 1.1 volts on the ATmega168 or ATmega328

and 2.56 volts on the ATmega8 (not available on the Arduino Mega)

INTERNAL1V1: a built-in 1.1V reference (Arduino Mega only)

INTERNAL2V56: a built-in 2.56V reference (Arduino Mega only)

EXTERNAL: the voltage applied to the AREF pin (0 to 5V only) is used as the

reference.

Parameters

type: which type of reference to use (DEFAULT, INTERNAL, INTERNAL1V1,

INTERNAL2V56, or EXTERNAL).

Returns

None.

Note

After changing the analog reference, the first few readings from analogRead() may

not be accurate.

http://127.0.0.1:800/Default/arduino.cc/en/Reference/AnalogReference
http://127.0.0.1:800/Default/arduino.cc/en/Reference/AnalogRead
http://127.0.0.1:800/Default/arduino.cc/en/Reference/AnalogWrite

V1.0

 57

57 Language Reference

Warning

Don't use anything less than 0V or more than 5V for external reference

voltage on the AREF pin! If you're using an external reference on the

AREF pin, you must set the analog reference to EXTERNAL before calling

analogRead(). Otherwise, you will short together the active reference voltage

(internally generated) and the AREF pin, possibly damaging the microcontroller on

your Arduino board.

Alternatively, you can connect the external reference voltage to the AREF pin through

a 5K resistor, allowing you to switch between external and internal reference

voltages. Note that the resistor will alter the voltage that gets used as the reference

because there is an internal 32K resistor on the AREF pin. The two act as a voltage

divider, so, for example, 2.5V applied through the resistor will yield 2.5 * 32 / (32 +

5) = ~2.2V at the AREF pin

analogRead()

Description

Reads the value from the specified analog pin. The Arduino board contains a 6

channel (8 channels on the Mini and Nano, 16 on the Mega), 10-bit analog to digital

converter. This means that it will map input voltages between 0 and 5 volts into

integer values between 0 and 1023. This yields a resolution between readings of: 5

volts / 1024 units or, .0049 volts (4.9 mV) per unit. The input range and resolution

can be changed using analogReference().

It takes about 100 microseconds (0.0001 s) to read an analog input, so the maximum

reading rate is about 10,000 times a second.

Syntax

analogRead(pin)

Parameters

pin: the number of the analog input pin to read from (0 to 5 on most boards, 0 to 7 on

the Mini and Nano, 0 to 15 on the Mega)

Returns

int (0 to 1023)

Note

If the analog input pin is not connected to anything, the value returned by

analogRead() will fluctuate based on a number of factors (e.g. the values of the other

analog inputs, how close your hand is to the board, etc.).

Example

int analogPin = 3; // potentiometer wiper (middle terminal)

connected to analog pin 3

 // outside leads to ground and +5V

int val = 0; // variable to store the value read

http://127.0.0.1:800/Default/arduino.cc/en/Reference/AnalogReference

V1.0

 58

58 Language Reference

void setup()

{

 Serial.begin(9600); // setup serial

}

void loop()

{

 val = analogRead(analogPin); // read the input pin

 Serial.println(val); // debug value

}

analogWrite()

Description

Writes an analog value (PWM wave) to a pin. Can be used to light a LED at varying

brightnesses or drive a motor at various speeds. After a call to analogWrite(), the

pin will generate a steady square wave of the specified duty cycle until the next call to

analogWrite() (or a call to digitalRead() or digitalWrite() on the same pin).

The frequency of the PWM signal is approximately 490 Hz.

On most Arduino boards (those with the ATmega168 or ATmega328), this function

works on pins 3, 5, 6, 9, 10, and 11. On the Arduino Mega, it works on pins 2 through

13. Older Arduino boards with an ATmega8 only support analogWrite() on pins 9, 10,

and 11. You do not need to call pinMode() to set the pin as an output before calling

analogWrite().

The analogWrite function has nothing whatsoever to do with the analog pins or the

analogRead function.

Syntax

analogWrite(pin, value)

Parameters

pin: the pin to write to.

value: the duty cycle: between 0 (always off) and 255 (always on).

Returns

nothing

Notes and Known Issues

The PWM outputs generated on pins 5 and 6 will have higher-than-expected duty

cycles. This is because of interactions with the millis() and delay() functions, which

share the same internal timer used to generate those PWM outputs. This will be

noticed mostly on low duty-cycle settings (e.g 0 - 10) and may result in a value of 0

not fully turning off the output on pins 5 and 6.

Example

Sets the output to the LED proportional to the value read from the potentiometer.

http://127.0.0.1:800/Default/arduino.cc/en/Tutorial/PWM

V1.0

 59

59 Language Reference

int ledPin = 9; // LED connected to digital pin 9

int analogPin = 3; // potentiometer connected to analog pin 3

int val = 0; // variable to store the read value

void setup()

{

 pinMode(ledPin, OUTPUT); // sets the pin as output

}

void loop()

{

 val = analogRead(analogPin); // read the input pin

 analogWrite(ledPin, val / 4); // analogRead values go from 0 to

1023, analogWrite values from 0 to 255

}

Advanced I/O

tone()

noTone()

shiftOut()

shiftIn()

pulseIn()

tone()

Description

Generates a square wave of the specified frequency (and 50% duty cycle) on a pin. A

duration can be specified, otherwise the wave continues until a call to noTone(). The

pin can be connected to a piezo buzzer or other speaker to play tones.

http://127.0.0.1:800/Default/arduino.cc/en/Reference/Tone
http://127.0.0.1:800/Default/arduino.cc/en/Reference/NoTone
http://127.0.0.1:800/Default/arduino.cc/en/Reference/ShiftOut
http://127.0.0.1:800/Default/arduino.cc/en/Reference/ShiftIn
http://127.0.0.1:800/Default/arduino.cc/en/Reference/PulseIn
http://127.0.0.1:800/Default/arduino.cc/en/Reference/NoTone

V1.0

 60

60 Language Reference

Only one tone can be generated at a time. If a tone is already playing on a different

pin, the call to tone() will have no effect. If the tone is playing on the same pin, the

call will set its frequency.

Use of the tone() function will interfere with PWM output on pins 3 and 11 (on boards

other than the Mega).

NOTE: if you want to play different pitches on multiple pins, you need to call

noTone() on one pin before calling tone() on the next pin.

Syntax

tone(pin, frequency)

tone(pin, frequency, duration)

Parameters

pin: the pin on which to generate the tone

frequency: the frequency of the tone in hertz - unsigned int

duration: the duration of the tone in milliseconds (optional) - unsigned long

Returns

nothing

noTone()

Description

Stops the generation of a square wave triggered by tone(). Has no effect if no tone is

being generated.

NOTE: if you want to play different pitches on multiple pins, you need to call

noTone() on one pin before calling tone() on the next pin.

Syntax

noTone(pin)

Parameters

pin: the pin on which to stop generating the tone

Returns

nothing

shiftOut()

Description

Shifts out a byte of data one bit at a time. Starts from either the most (i.e. the

leftmost) or least (rightmost) significant bit. Each bit is written in turn to a data pin,

after which a clock pin is pulsed (taken high, then low) to indicate that the bit is

available.

Note: if you're interfacing with a device that's clocked by rising edges, you'll need to

make sure that the clock pin is low before the call to shiftOut(), e.g. with a call to

digitalWrite(clockPin, LOW).

This is a software implementation; see also the SPI library, which provides a

hardware implementation that is faster but works only on specific pins.

Syntax

shiftOut(dataPin, clockPin, bitOrder, value)

http://127.0.0.1:800/Default/arduino.cc/en/Reference/Tone
http://127.0.0.1:800/Default/arduino.cc/en/Reference/SPI

V1.0

 61

61 Language Reference

Parameters

dataPin: the pin on which to output each bit (int)

clockPin: the pin to toggle once the dataPin has been set to the correct value (int)

bitOrder: which order to shift out the bits; either MSBFIRST or LSBFIRST.

(Most Significant Bit First, or, Least Significant Bit First)

value: the data to shift out. (byte)

Returns

None

Note

The dataPin and clockPin must already be configured as outputs by a call to

pinMode().

shiftOut is currently written to output 1 byte (8 bits) so it requires a two step

operation to output values larger than 255.

// Do this for MSBFIRST serial

int data = 500;

// shift out highbyte

shiftOut(dataPin, clock, MSBFIRST, (data >> 8));

// shift out lowbyte

shiftOut(data, clock, MSBFIRST, data);

// Or do this for LSBFIRST serial

data = 500;

// shift out lowbyte

shiftOut(dataPin, clock, LSBFIRST, data);

// shift out highbyte

shiftOut(dataPin, clock, LSBFIRST, (data >> 8));

[Get Code]

Example

For accompanying circuit, see the tutorial on controlling a 74HC595 shift register.

//**/

/

// Name : shiftOutCode, Hello World //

// Author : Carlyn Maw,Tom Igoe //

// Date : 25 Oct, 2006 //

// Version : 1.0 //

// Notes : Code for using a 74HC595 Shift Register //

// : to count from 0 to 255 //

//***

*

//Pin connected to ST_CP of 74HC595

int latchPin = 8;

http://127.0.0.1:800/Default/arduino.cc/en/Reference/PinMode
http://127.0.0.1:800/Default/arduino.cc/en/Reference/ShiftOut@action=sourceblock&num=1
http://127.0.0.1:800/Default/arduino.cc/en/Tutorial/ShiftOut

V1.0

 62

62 Language Reference

//Pin connected to SH_CP of 74HC595

int clockPin = 12;

////Pin connected to DS of 74HC595

int dataPin = 11;

void setup() {

 //set pins to output because they are addressed in the main loop

 pinMode(latchPin, OUTPUT);

 pinMode(clockPin, OUTPUT);

 pinMode(dataPin, OUTPUT);

}

void loop() {

 //count up routine

 for (int j = 0; j < 256; j++) {

 //ground latchPin and hold low for as long as you are

transmitting

 digitalWrite(latchPin, LOW);

 shiftOut(dataPin, clockPin, LSBFIRST, j);

 //return the latch pin high to signal chip that it

 //no longer needs to listen for information

 digitalWrite(latchPin, HIGH);

 delay(1000);

 }

}

shiftIn()

Description

Shifts in a byte of data one bit at a time. Starts from either the most (i.e. the leftmost)

or least (rightmost) significant bit. For each bit, the clock pin is pulled high, the next

bit is read from the data line, and then the clock pin is taken low.

Note: this is a software implementation; Arduino also provides an SPI library that

uses the hardware implementation, which is faster but only works on specific pins.

Syntax

byte incoming = shiftIn(dataPin, clockPin, bitOrder)

Parameters

dataPin: the pin on which to input each bit (int)

clockPin: the pin to toggle to signal a read from dataPin

bitOrder: which order to shift in the bits; either MSBFIRST or LSBFIRST.

(Most Significant Bit First, or, Least Significant Bit First)

http://127.0.0.1:800/Default/arduino.cc/en/Reference/SPI

V1.0

 63

63 Language Reference

Returns

the value read (byte)

pulseIn()

Description

Reads a pulse (either HIGH or LOW) on a pin. For example, if value is HIGH,

pulseIn() waits for the pin to go HIGH, starts timing, then waits for the pin to go

LOW and stops timing. Returns the length of the pulse in microseconds. Gives up

and returns 0 if no pulse starts within a specified time out.

The timing of this function has been determined empirically and will probably show

errors in longer pulses. Works on pulses from 10 microseconds to 3 minutes in

length.

Syntax

pulseIn(pin, value)

pulseIn(pin, value, timeout)

Parameters

pin: the number of the pin on which you want to read the pulse. (int)

value: type of pulse to read: either HIGH or LOW. (int)

timeout (optional): the number of microseconds to wait for the pulse to start; default

is one second (unsigned long)

Returns

the length of the pulse (in microseconds) or 0 if no pulse started before the timeout

(unsigned long)

Example

int pin = 7;

unsigned long duration;

void setup()

{

 pinMode(pin, INPUT);

}

void loop()

{

 duration = pulseIn(pin, HIGH);

}

http://127.0.0.1:800/Default/arduino.cc/en/Reference/Constants
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Constants

V1.0

 64

64 Language Reference

Time

millis()

Description

Returns the number of milliseconds since the Arduino board began running the

current program. This number will overflow (go back to zero), after approximately 50

days.

Parameters

None

Returns

Number of milliseconds since the program started (unsigned long)

Example

unsigned long time;

void setup(){

 Serial.begin(9600);

}

void loop(){

 Serial.print("Time: ");

 time = millis();

 //prints time since program started

 Serial.println(time);

 // wait a second so as not to send massive amounts of data

 delay(1000);

}

Tip:

Note that the parameter for millis is an unsigned long, errors may be generated if a

programmer tries to do math with other datatypes such as ints.

V1.0

 65

65 Language Reference

micros()

Description

Returns the number of microseconds since the Arduino board began running the

current program. This number will overflow (go back to zero), after approximately 70

minutes. On 16 MHz Arduino boards (e.g. Duemilanove and Nano), this function has

a resolution of four microseconds (i.e. the value returned is always a multiple of four).

On 8 MHz Arduino boards (e.g. the LilyPad), this function has a resolution of eight

microseconds.

Note: there are 1,000 microseconds in a millisecond and 1,000,000 microseconds in

a second.

Parameters

None

Returns

Number of microseconds since the program started (unsigned long)

Example

unsigned long time;

void setup(){

 Serial.begin(9600);

}

void loop(){

 Serial.print("Time: ");

 time = micros();

 //prints time since program started

 Serial.println(time);

 // wait a second so as not to send massive amounts of data

 delay(1000);

}

delay()

Description

Pauses the program for the amount of time (in miliseconds) specified as parameter.

(There are 1000 milliseconds in a second.)

Syntax

delay(ms)

Parameters

ms: the number of milliseconds to pause (unsigned long)

Returns

nothing

Example

int ledPin = 13; // LED connected to digital pin 13

V1.0

 66

66 Language Reference

void setup()

{

 pinMode(ledPin, OUTPUT); // sets the digital pin as output

}

void loop()

{

 digitalWrite(ledPin, HIGH); // sets the LED on

 delay(1000); // waits for a second

 digitalWrite(ledPin, LOW); // sets the LED off

 delay(1000); // waits for a second

}

Caveat

While it is easy to create a blinking LED with the delay() function, and many sketches

use short delays for such tasks as switch debouncing, the use of delay() in a sketch

has significant drawbacks. No other reading of sensors, mathematical calculations, or

pin manipulation can go on during the delay function, so in effect, it brings most

other activity to a halt. For alternative approaches to controlling timing see the

millis() function and the sketch sited below. More knowledgeable programmers

usually avoid the use of delay() for timing of events longer than 10's of milliseconds

unless the Arduino sketch is very simple.

Certain things do go on while the delay() function is controlling the Atmega chip

however, because the delay function does not disable interrupts. Serial

communication that appears at the RX pin is recorded, PWM (analogWrite) values

and pin states are maintained, and interrupts will work as they should.

delayMicroseconds()

Description

Pauses the program for the amount of time (in microseconds) specified as parameter.

There are a thousand microseconds in a millisecond, and a million microseconds in a

second.

Currently, the largest value that will produce an accurate delay is 16383. This could

change in future Arduino releases. For delays longer than a few thousand

microseconds, you should use delay() instead.

Syntax

delayMicroseconds(us)

Parameters

us: the number of microseconds to pause (unsigned int)

Returns

None

Example

int outPin = 8; // digital pin 8

http://127.0.0.1:800/Default/arduino.cc/en/Reference/Millis
http://127.0.0.1:800/Default/arduino.cc/en/Reference/AnalogWrite
http://127.0.0.1:800/Default/arduino.cc/en/Reference/AttachInterrupt

V1.0

 67

67 Language Reference

void setup()

{

 pinMode(outPin, OUTPUT); // sets the digital pin as output

}

void loop()

{

 digitalWrite(outPin, HIGH); // sets the pin on

 delayMicroseconds(50); // pauses for 50 microseconds

 digitalWrite(outPin, LOW); // sets the pin off

 delayMicroseconds(50); // pauses for 50 microseconds

}

configures pin number 8 to work as an output pin. It sends a train of pulses with 100

microseconds period.

Caveats and Known Issues

This function works very accurately in the range 3 microseconds and up. We cannot

assure that delayMicroseconds will perform precisely for smaller delay-times.

As of Arduino 0018, delayMicroseconds() no longer disables interrupts.

Math

min()

max()

abs()

constrain()

map()

pow()

sqrt()

http://127.0.0.1:800/Default/arduino.cc/en/Reference/Min
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Max
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Abs
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Constrain
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Map
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Pow
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Sqrt

V1.0

 68

68 Language Reference

min(x, y)

Description

Calculates the minimum of two numbers.

Parameters

x: the first number, any data type

y: the second number, any data type

Returns

The smaller of the two numbers.

Examples

sensVal = min(sensVal, 100); // assigns sensVal to the smaller of

sensVal or 100

 // ensuring that it never gets above

100.

Note

Perhaps counter-intuitively, max() is often used to constrain the lower end of a

variable's range, while min() is used to constrain the upper end of the range.

Warning

Because of the way the min() function is implemented, avoid using other functions

inside the brackets, it may lead to incorrect results

min(a++, 100); // avoid this - yields incorrect results

a++;

min(a, 100); // use this instead - keep other math outside the

function

max(x, y)

Description

Calculates the maximum of two numbers.

Parameters

x: the first number, any data type

y: the second number, any data type

Returns

The larger of the two parameter values.

Example

sensVal = max(senVal, 20); // assigns sensVal to the larger of

sensVal or 20

 // (effectively ensuring that it is at

least 20)

Note

Perhaps counter-intuitively, max() is often used to constrain the lower end of a

variable's range, while min() is used to constrain the upper end of the range.

V1.0

 69

69 Language Reference

Warning

Because of the way the max() function is implemented, avoid using other functions

inside the brackets, it may lead to incorrect results

max(a--, 0); // avoid this - yields incorrect results

a--; // use this instead -

max(a, 0); // keep other math outside the function

abs(x)

Description

Computes the absolute value of a number.

Parameters

x: the number

Returns

x: if x is greater than or equal to 0.

-x: if x is less than 0.

Warning

Because of the way the abs() function is implemented, avoid using other functions

inside the brackets, it may lead to incorrect results.

abs(a++); // avoid this - yields incorrect results

a++; // use this instead -

abs(a); // keep other math outside the function

constrain(x, a, b)

Description

Constrains a number to be within a range.

Parameters

x: the number to constrain, all data types

a: the lower end of the range, all data types

b: the upper end of the range, all data types

Returns

x: if x is between a and b

a: if x is less than a

b: if x is greater than b

Example

sensVal = constrain(sensVal, 10, 150);

// limits range of sensor values to between 10 and 150

V1.0

 70

70 Language Reference

map(value, fromLow, fromHigh, toLow, toHigh)

Description

Re-maps a number from one range to another. That is, a value of fromLow would

get mapped to toLow, a value of fromHigh to toHigh, values in-between to values

in-between, etc.

Does not constrain values to within the range, because out-of-range values are

sometimes intended and useful. The constrain() function may be used either before

or after this function, if limits to the ranges are desired.

Note that the "lower bounds" of either range may be larger or smaller than the "upper

bounds" so the map() function may be used to reverse a range of numbers, for

example

y = map(x, 1, 50, 50, 1);

The function also handles negative numbers well, so that this example

y = map(x, 1, 50, 50, -100);

is also valid and works well.

The map() function uses integer math so will not generate fractions, when the math

might indicate that it should do so. Fractional remainders are truncated, and are not

rounded or averaged.

Parameters

value: the number to map

fromLow: the lower bound of the value's current range

fromHigh: the upper bound of the value's current range

toLow: the lower bound of the value's target range

toHigh: the upper bound of the value's target range

Returns

The mapped value.

Example

/* Map an analog value to 8 bits (0 to 255) */

void setup() {}

void loop()

{

 int val = analogRead(0);

 val = map(val, 0, 1023, 0, 255);

 analogWrite(9, val);

}

Appendix

For the mathematically inclined, here's the whole function

long map(long x, long in_min, long in_max, long out_min, long

out_max)

{

 return (x - in_min) * (out_max - out_min) / (in_max - in_min) +

out_min;

V1.0

 71

71 Language Reference

}

pow(base, exponent)

Description

Calculates the value of a number raised to a power. Pow() can be used to raise a

number to a fractional power. This is useful for generating exponential mapping of

values or curves.

Parameters

base: the number (float)

exponent: the power to which the base is raised (float)

Returns

The result of the exponentiation (double)

Example

See the fscale function in the code library

sqrt(x)

Description

Calculates the square root of a number.

Parameters

x: the number, any data type

Returns

double, the number's square root

http://127.0.0.1:800/Default/arduino.cc/playground/Main/Fscale

V1.0

 72

72 Language Reference

Trigonometry

sin()

cos()

tan()

sin(rad)

Description

Calculates the sine of an angle (in radians). The result will be between -1 and 1.

Parameters

rad: the angle in radians (float)

Returns

the sine of the angle (double)

cos(rad)

Description

Calculates the cos of an angle (in radians). The result will be between -1 and 1.

Parameters

rad: the angle in radians (float)

Returns

The cos of the angle ("double")

tan(rad)

Description

Calculates the tangent of an angle (in radians). The result will be between negative

infinity and infinity.

Parameters

rad: the angle in radians (float)

Returns

The tangent of the angle (double)

Random Numbers

randomSeed()

http://127.0.0.1:800/Default/arduino.cc/en/Reference/Sin
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Cos
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Tan
http://127.0.0.1:800/Default/arduino.cc/en/Reference/RandomSeed

V1.0

 73

73 Language Reference

random()

randomSeed(seed)

Description

randomSeed() initializes the pseudo-random number generator, causing it to start at

an arbitrary point in its random sequence. This sequence, while very long, and

random, is always the same.

If it is important for a sequence of values generated by random() to differ, on

subsequent executions of a sketch, use randomSeed() to initialize the random

number generator with a fairly random input, such as analogRead() on an

unconnected pin.

Conversely, it can occasionally be useful to use pseudo-random sequences that repeat

exactly. This can be accomplished by calling randomSeed() with a fixed number,

before starting the random sequence.

Parameters

long, int - pass a number to generate the seed.

Returns

no returns

Example

long randNumber;

void setup(){

 Serial.begin(9600);

 randomSeed(analogRead(0));

}

void loop(){

 randNumber = random(300);

 Serial.println(randNumber);

 delay(50);

}

random()

Description

The random function generates pseudo-random numbers.

Syntax

random(max)

random(min, max)

Parameters

min - lower bound of the random value, inclusive (optional)

max - upper bound of the random value, exclusive

http://127.0.0.1:800/Default/arduino.cc/en/Reference/Random

V1.0

 74

74 Language Reference

Returns

a random number between min and max-1 (long)

Note:

If it is important for a sequence of values generated by random() to differ, on

subsequent executions of a sketch, use randomSeed() to initialize the random

number generator with a fairly random input, such as analogRead() on an

unconnected pin.

Conversely, it can occasionally be useful to use pseudo-random sequences that repeat

exactly. This can be accomplished by calling randomSeed() with a fixed number,

before starting the random sequence.

Example

long randNumber;

void setup(){

 Serial.begin(9600);

 // if analog input pin 0 is unconnected, random analog

 // noise will cause the call to randomSeed() to generate

 // different seed numbers each time the sketch runs.

 // randomSeed() will then shuffle the random function.

 randomSeed(analogRead(0));

}

void loop() {

 // print a random number from 0 to 299

 randNumber = random(300);

 Serial.println(randNumber);

 // print a random number from 10 to 19

 randNumber = random(10, 20);

 Serial.println(randNumber);

 delay(50);

}

V1.0

 75

75 Language Reference

Bits and Bytes

lowByte()

highByte()

bitRead()

bitWrite()

bitSet()

bitClear()

bit()

lowByte()

Description

Extracts the low-order (rightmost) byte of a variable (e.g. a word).

Syntax

lowByte(x)

Parameters

x: a value of any type

Returns

byte

highByte()

Description

Extracts the high-order (leftmost) byte of a word (or the second lowest byte of a

larger data type).

Syntax

highByte(x)

Parameters

x: a value of any type

Returns

byte

bitRead()

Description

Reads a bit of a number.

Syntax

bitRead(x, n)

Parameters

x: the number from which to read

n: which bit to read, starting at 0 for the least-significant (rightmost) bit

Returns

the value of the bit (0 or 1).

http://127.0.0.1:800/Default/arduino.cc/en/Reference/LowByte
http://127.0.0.1:800/Default/arduino.cc/en/Reference/HighByte
http://127.0.0.1:800/Default/arduino.cc/en/Reference/BitRead
http://127.0.0.1:800/Default/arduino.cc/en/Reference/BitWrite
http://127.0.0.1:800/Default/arduino.cc/en/Reference/BitSet
http://127.0.0.1:800/Default/arduino.cc/en/Reference/BitClear
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Bit

V1.0

 76

76 Language Reference

bitWrite()

Description

Writes a bit of a numeric variable.

Syntax

bitWrite(x, n, b)

Parameters

x: the numeric variable to which to write

n: which bit of the number to write, starting at 0 for the least-significant (rightmost)

bit

b: the value to write to the bit (0 or 1)

Returns

none

bitSet()

Description

Sets (writes a 1 to) a bit of a numeric variable.

Syntax

bitSet(x, n)

Parameters

x: the numeric variable whose bit to set

n: which bit to set, starting at 0 for the least-significant (rightmost) bit

Returns

none

bitClear()

Description

Clears (writes a 0 to) a bit of a numeric variable.

Syntax

bitClear(x, n)

Parameters

x: the numeric variable whose bit to clear

n: which bit to clear, starting at 0 for the least-significant (rightmost) bit

Returns

none

bit()

Description

Computes the value of the specified bit (bit 0 is 1, bit 1 is 2, bit 2 is 4, etc.).

Syntax

bit(n)

Parameters

n: the bit whose value to compute

V1.0

 77

77 Language Reference

Returns

the value of the bit

External Interrupts

attachInterrupt()

detachInterrupt()

attachInterrupt()

Description

Specifies a function to call when an external interrupt occurs. Replaces any previous

function that was attached to the interrupt. Most Arduino boards have two external

interrupts: numbers 0 (on digital pin 2) and 1 (on digital pin 3). The Arduino Mega

has an additional four: numbers 2 (pin 21), 3 (pin 20), 4 (pin 19), and 5 (pin 18).

Syntax

attachInterrupt(interrupt, function, mode)

Parameters

interrupt: the number of the interrupt (int)

function: the function to call when the interrupt occurs; this function must take no

parameters and return nothing. This function is sometimes referred to as an

interrupt service routine.

mode defines when the interrupt should be triggered. Four contstants are

predefined as valid values:

LOW to trigger the interrupt whenever the pin is low,

CHANGE to trigger the interrupt whenever the pin changes value

RISING to trigger when the pin goes from low to high,

FALLING for when the pin goes from high to low.

Returns

none

Note

Inside the attached function, delay() won't work and the value returned by millis()

will not increment. Serial data received while in the function may be lost. You

http://127.0.0.1:800/Default/arduino.cc/en/Reference/AttachInterrupt
http://127.0.0.1:800/Default/arduino.cc/en/Reference/DetachInterrupt

V1.0

 78

78 Language Reference

should declare as volatile any variables that you modify within the attached

function.

Using Interrupts

Interrupts are useful for making things happen automatically in microcontroller

programs, and can help solve timing problems. A good task for using an interrupt

might be reading a rotary encoder, monitoring user input.

If you wanted to insure that a program always caught the pulses from a rotary

encoder, never missing a pulse, it would make it very tricky to write a program to do

anything else, because the program would need to constantly poll the sensor lines for

the encoder, in order to catch pulses when they occurred. Other sensors have a

similar interface dynamic too, such as trying to read a sound sensor that is trying to

catch a click, or an infrared slot sensor (photo-interrupter) trying to catch a coin

drop. In all of these situations, using an interrupt can free the microcontroller to get

some other work done while not missing the doorbell.

Example

int pin = 13;

volatile int state = LOW;

void setup()

{

 pinMode(pin, OUTPUT);

 attachInterrupt(0, blink, CHANGE);

}

void loop()

{

 digitalWrite(pin, state);

}

void blink()

{

 state = !state;

}

detachInterrupt()

Description

Turns off the given interrupt.

Syntax

detachInterrupt(interrupt)

Parameters

interrupt: the number of interrupt to disable (0 or 1).

See also

V1.0

 79

79 Language Reference

Interrupts

interrupts()

noInterrupts()

interrupts()

Description

Re-enables interrupts (after they've been disabled by noInterrupts()). Interrupts

allow certain important tasks to happen in the background and are enabled by

default. Some functions will not work while interrupts are disabled, and incoming

communication may be ignored. Interrupts can slightly disrupt the timing of code,

however, and may be disabled for particularly critical sections of code.

Parameters

None

Returns

None

Example

void setup() {}

void loop()

{

 noInterrupts();

 // critical, time-sensitive code here

 interrupts();

 // other code here

}

noInterrupts()

Description

Disables interrupts (you can re-enable them with interrupts()). Interrupts allow

certain important tasks to happen in the background and are enabled by default.

http://127.0.0.1:800/Default/arduino.cc/en/Reference/Interrupts
http://127.0.0.1:800/Default/arduino.cc/en/Reference/NoInterrupts
http://127.0.0.1:800/Default/arduino.cc/en/Reference/NoInterrupts

V1.0

 80

80 Language Reference

Some functions will not work while interrupts are disabled, and incoming

communication may be ignored. Interrupts can slightly disrupt the timing of code,

however, and may be disabled for particularly critical sections of code.

Parameters

None.

Returns

None.

Example

void setup() {}

void loop()

{

 noInterrupts();

 // critical, time-sensitive code here

 interrupts();

 // other code here

}

Communication

Serial

Stream

Serial

Used for communication between the Arduino board and a computer or other devices. All

Arduino boards have at least one serial port (also known as a UART or USART): Serial.

It communicates on digital pins 0 (RX) and 1 (TX) as well as with the computer via USB.

Thus, if you use these functions, you cannot also use pins 0 and 1 for digital input or

output.

http://127.0.0.1:800/Default/arduino.cc/en/Reference/Serial
http://127.0.0.1:800/Default/arduino.cc/en/Reference/Stream

V1.0

 81

81 Language Reference

You can use the Arduino environment's built-in serial monitor to communicate with an

Arduino board. Click the serial monitor button in the toolbar and select the same baud

rate used in the call to begin().

The Arduino Mega has three additional serial ports: Serial1 on pins 19 (RX) and 18

(TX), Serial2 on pins 17 (RX) and 16 (TX),Serial3 on pins 15 (RX) and 14 (TX). To use

these pins to communicate with your personal computer, you will need an additional

USB-to-serial adaptor, as they are not connected to the Mega's USB-to-serial adaptor. To

use them to communicate with an external TTL serial device, connect the TX pin to your

device's RX pin, the RX to your device's TX pin, and the ground of your Mega to your

device's ground. (Don't connect these pins directly to an RS232 serial port; they operate

at +/- 12V and can damage your Arduino board.)

The Arduino Leonardo board uses Serial1 to communicate viaRS232 on pins 0 (RX) and

1 (TX). Serial is reserved for USB CDC communication. For more information, refer to

the Leonardogetting started page and hardware page.

Functions

if (Serial)

available()

begin()

end()

find()

findUntil()

flush()

parseFloat()

parseInt()

peek()

print()

println()

read()

readBytes()

readBytesUntil()

setTimeout()

write()

serialEvent()

Examples

ReadASCIIString

ASCII Table

Dimmer

Graph

Physical Pixel

Virtual Color Mixer

Serial Call Response

Serial Call Response ASCII

http://arduino.cc/en/Main/ArduinoBoardMega2560
http://arduino.cc/en/Guide/ArduinoLeonardo
http://arduino.cc/en/Main/ArduinoBoardLeonardo
http://arduino.cc/en/Serial/IfSerial
http://arduino.cc/en/Serial/Available
http://arduino.cc/en/Serial/Begin
http://arduino.cc/en/Serial/End
http://arduino.cc/en/Serial/Find
http://arduino.cc/en/Serial/FindUntil
http://arduino.cc/en/Serial/Flush
http://arduino.cc/en/Serial/ParseFloat
http://arduino.cc/en/Serial/ParseInt
http://arduino.cc/en/Serial/Peek
http://arduino.cc/en/Serial/Print
http://arduino.cc/en/Serial/Println
http://arduino.cc/en/Serial/Read
http://arduino.cc/en/Serial/ReadBytes
http://arduino.cc/en/Serial/ReadBytesUntil
http://arduino.cc/en/Serial/SetTimeout
http://arduino.cc/en/Serial/Write
http://arduino.cc/en/Reference/SerialEvent
http://arduino.cc/en/Tutorial/ReadASCIIString
http://arduino.cc/en/Tutorial/ASCIITable
http://arduino.cc/en/Tutorial/Dimmer
http://arduino.cc/en/Tutorial/Graph
http://arduino.cc/en/Tutorial/PhysicalPixel
http://arduino.cc/en/Tutorial/VirtualColorMixer
http://arduino.cc/en/Tutorial/SerialCallResponse
http://arduino.cc/en/Tutorial/SerialCallResponseASCII

V1.0

 82

82 Language Reference

1 if (Serial)

Description

Indicates if the specified Serial port is ready.

On the Leonardo, if (Serial) indicates wether or not the USB CDC serial connection is

open. For all other instances, including if (Serial1) on the Leonardo, this will always

returns true.

This was introduced in Arduino 1.0.1.

Syntax

All boards:

if (Serial)

Arduino Leonardo specific:

if (Serial1)

Arduino Mega specific:

if (Serial1)

if (Serial2)

if (Serial3)

Parameters

none

Returns

boolean : returns true if the specified serial port is available. This will only return false if

querying the Leonardo's USB CDC serial connection before it is ready.

Example:

void setup() {

 //Initialize serial and wait for port to open:

 Serial.begin(9600);

 while (!Serial) {

 ; // wait for serial port to connect. Needed for Leonardo only

 }

}

void loop() {

 //proceed normally

}

2 available()

Description

Get the number of bytes (characters) available for reading from the

serial port. This is data that's already arrived and stored in the

serial receive buffer (which holds 64 bytes). available() inherits

from the Stream utility class.

http://arduino.cc/en/Reference/Stream

V1.0

 83

83 Language Reference

Syntax

Serial.available()

Arduino Mega only:

Serial1.available()

Serial2.available()

Serial3.available()

Parameters

none

Returns

the number of bytes available to read

Example

int incomingByte = 0; // for incoming serial data

void setup() {

 Serial.begin(9600); // opens serial port, sets data

rate to 9600 bps

}

void loop() {

 // send data only when you receive data:

 if (Serial.available() > 0) {

 // read the incoming byte:

 incomingByte = Serial.read();

 // say what you got:

 Serial.print("I received: ");

 Serial.println(incomingByte, DEC);

 }

}

[Get Code]

Arduino Mega example:
void setup() {

 Serial.begin(9600);

 Serial1.begin(9600);

}

void loop() {

 // read from port 0, send to port 1:

 if (Serial.available()) {

 int inByte = Serial.read();

 Serial1.print(inByte, BYTE);

http://arduino.cc/en/Serial/Available?action=sourceblock&num=1

V1.0

 84

84 Language Reference

 }

 // read from port 1, send to port 0:

 if (Serial1.available()) {

 int inByte = Serial1.read();

 Serial.print(inByte, BYTE);

 }

}

3 begin()

Description

Sets the data rate in bits per second (baud) for serial data transmission. For

communicating with the computer, use one of these rates: 300, 1200, 2400, 4800, 9600,

14400, 19200, 28800, 38400, 57600, or 115200. You can, however, specify other rates -

for example, to communicate over pins 0 and 1 with a component that requires a

particular baud rate.

Syntax

Serial.begin(speed)

Arduino Mega only:

Serial1.begin(speed)

Serial2.begin(speed)

Serial3.begin(speed)

Parameters

speed: in bits per second (baud) - long

Returns

nothing

Example:

void setup() {

 Serial.begin(9600); // opens serial port, sets data rate to

9600 bps

}

void loop() {}

[Get Code]

Arduino Mega example:

// Arduino Mega using all four of its Serial ports

// (Serial, Serial1, Serial2, Serial3),

// with different baud rates:

void setup(){

 Serial.begin(9600);

 Serial1.begin(38400);

 Serial2.begin(19200);

 Serial3.begin(4800);

http://arduino.cc/en/Serial/Begin?action=sourceblock&num=1

V1.0

 85

85 Language Reference

 Serial.println("Hello Computer");

 Serial1.println("Hello Serial 1");

 Serial2.println("Hello Serial 2");

 Serial3.println("Hello Serial 3");

}

void loop() {}

[Get Code]

Thanks to Jeff Gray for the mega example

See also

4 end()

Description

Disables serial communication, allowing the RX and TX pins to be used for general input

and output. To re-enable serial communication, call Serial.begin().

Syntax

Serial.end()

Arduino Mega only:

Serial1.end()

Serial2.end()

Serial3.end()

Parameters

none

Returns

nothing

5 Serial.find()

Description

Serial.find() reads data from the serial buffer until the target string of given length is

found. The function returns true if target string is found, false if it times out.

Serial.flush() inherits from the Stream utility class.

Syntax

Serial.find(target)

Parameters

target : the string to search for (char)

Returns

boolean

See als

6 Serial.findUntil()

Description

Serial.findUntil() reads data from the serial buffer until a target string of given length or

terminator string is found.

The function returns true if the target string is found, false if it times out.

http://arduino.cc/en/Serial/Begin?action=sourceblock&num=2
http://arduino.cc/en/Serial/Begin
http://arduino.cc/en/Reference/Stream

V1.0

 86

86 Language Reference

Serial.findUntil() inherits from the Stream utility class.

Syntax

Serial.findUntil(target, terminal)

Parameters

target : the string to search for (char)

terminal : the terminal string in the search (char)

Returns

boolean

See als

7 flush()

Description

Waits for the transmission of outgoing serial data to complete. (Prior to Arduino 1.0, this

instead removed any buffered incoming serial data.)

flush() inherits from the Stream utility class.

Syntax

Serial.flush()

Arduino Mega only:

Serial1.flush()

Serial2.flush()

Serial3.flush()

Parameters

none

Returns

nothing

See als

8 Serial.parseFloat()

Description

Serial.parseFloat() returns the first valid floating point number from the Serial buffer.

Characters that are not digits (or the minus sign) are skipped. parseFloat() is terminated

by the first character that is not a floating point number.

Serial.parseFloat() inherits from the Stream utility class.

Syntax

Serial.parseFloat()

Parameters

none

Returns

float

9 parseInt()

Description

Looks for the next valid integer in the incoming serial stream. parseInt() inherits from

the Stream utility class.

http://arduino.cc/en/Reference/Stream
http://arduino.cc/en/Reference/Stream
http://arduino.cc/en/Reference/Stream
http://arduino.cc/en/Reference/Stream

V1.0

 87

87 Language Reference

Syntax

Serial.parseInt()

Arduino Mega only:

Serial1.parseInt()

Serial2.parseInt()

Serial3.parseInt()

Parameters

none

Returns

int : the next valid integer

Example

10 peek()

Description

Returns the next byte (character) of incoming serial data without
removing it from the internal serial buffer. That is, successive calls to
peek() will return the same character, as will the next call to read().
peek() inherits from the Streamutility class.

Syntax

Serial.peek()
Arduino Mega only:
Serial1.peek()
Serial2.peek()
Serial3.peek()

Parameters

None

Returns

the first byte of incoming serial data available (or -1 if no data is
available) - int

11 print()

Description

Prints data to the serial port as human-readable ASCII text. This command can take

many forms. Numbers are printed using an ASCII character for each digit. Floats are

similarly printed as ASCII digits, defaulting to two decimal places. Bytes are sent as a

single character. Characters and strings are sent as is. For example:

Serial.print(78) gives "78"

Serial.print(1.23456) gives "1.23"

Serial.print('N') gives "N"

http://arduino.cc/en/Reference/Stream

V1.0

 88

88 Language Reference

Serial.print("Hello world.") gives "Hello world."

An optional second parameter specifies the base (format) to use; permitted values are

BIN (binary, or base 2), OCT (octal, or base 8), DEC (decimal, or base 10), HEX

(hexadecimal, or base 16). For floating point numbers, this parameter specifies the

number of decimal places to use. For example:

Serial.print(78, BIN) gives "1001110"

Serial.print(78, OCT) gives "116"

Serial.print(78, DEC) gives "78"

Serial.print(78, HEX) gives "4E"

Serial.println(1.23456, 0) gives "1"

Serial.println(1.23456, 2) gives "1.23"

Serial.println(1.23456, 4) gives "1.2346"

You can pass flash-memory based strings to Serial.print() by wrapping them with F(). For

example :

Serial.print(F(“Hello World”))

To send a single byte, use Serial.write().

Syntax

Serial.print(val)

Serial.print(val, format)

Parameters

val: the value to print - any data type

format: specifies the number base (for integral data types) or number of decimal places

(for floating point types)

Returns

size_t (long): print() returns the number of bytes written, though reading that number is

optional

Example:

/*

Uses a FOR loop for data and prints a number in various formats.

*/

int x = 0; // variable

void setup() {

 Serial.begin(9600); // open the serial port at 9600 bps:

}

void loop() {

 // print labels

 Serial.print("NO FORMAT"); // prints a label

 Serial.print("\t"); // prints a tab

 Serial.print("DEC");

 Serial.print("\t");

http://arduino.cc/en/Serial/Write

V1.0

 89

89 Language Reference

 Serial.print("HEX");

 Serial.print("\t");

 Serial.print("OCT");

 Serial.print("\t");

 Serial.print("BIN");

 Serial.print("\t");

 for(x=0; x< 64; x++){ // only part of the ASCII chart, change

to suit

 // print it out in many formats:

 Serial.print(x); // print as an ASCII-encoded decimal -

same as "DEC"

 Serial.print("\t"); // prints a tab

 Serial.print(x, DEC); // print as an ASCII-encoded decimal

 Serial.print("\t"); // prints a tab

 Serial.print(x, HEX); // print as an ASCII-encoded hexadecimal

 Serial.print("\t"); // prints a tab

 Serial.print(x, OCT); // print as an ASCII-encoded octal

 Serial.print("\t"); // prints a tab

 Serial.println(x, BIN); // print as an ASCII-encoded binary

 // then adds the carriage return with

"println"

 delay(200); // delay 200 milliseconds

 }

 Serial.println(""); // prints another carriage return

}

[Get Code]

Programming Tips

As of version 1.0, serial transmission is asynchronous; Serial.print() will return before

any characters are transmitted.

See also

12 println()

Description

Prints data to the serial port as human-readable ASCII text followed by a carriage return

character (ASCII 13, or '\r') and a newline character (ASCII 10, or '\n'). This command

takes the same forms as Serial.print().

http://arduino.cc/en/Serial/Print?action=sourceblock&num=1
http://arduino.cc/en/Serial/Print

V1.0

 90

90 Language Reference

Syntax

Serial.println(val)

Serial.println(val, format)

Parameters

val: the value to print - any data type

format: specifies the number base (for integral data types) or number of decimal places

(for floating point types)

Returns

size_t (long): println() returns the number of bytes written, though reading that number

is optional

Example:

/*

 Analog input

 reads an analog input on analog in 0, prints the value out.

 created 24 March 2006

 by Tom Igoe

 */

int analogValue = 0; // variable to hold the analog value

void setup() {

 // open the serial port at 9600 bps:

 Serial.begin(9600);

}

void loop() {

 // read the analog input on pin 0:

 analogValue = analogRead(0);

 // print it out in many formats:

 Serial.println(analogValue); // print as an ASCII-encoded

decimal

 Serial.println(analogValue, DEC); // print as an ASCII-encoded

decimal

 Serial.println(analogValue, HEX); // print as an ASCII-encoded

hexadecimal

 Serial.println(analogValue, OCT); // print as an ASCII-encoded

octal

 Serial.println(analogValue, BIN); // print as an ASCII-encoded

binary

V1.0

 91

91 Language Reference

 // delay 10 milliseconds before the next reading:

 delay(10);

}

[Get Code]

See also

13 read()

Description

Reads incoming serial data. read() inherits from the Stream utility class.

Syntax

Serial.read()

Arduino Mega only:

Serial1.read()

Serial2.read()

Serial3.read()

Parameters

None

Returns

the first byte of incoming serial data available (or -1 if no data is available) - int

Example

int incomingByte = 0; // for incoming serial data

void setup() {

 Serial.begin(9600); // opens serial port, sets data

rate to 9600 bps

}

void loop() {

 // send data only when you receive data:

 if (Serial.available() > 0) {

 // read the incoming byte:

 incomingByte = Serial.read();

 // say what you got:

 Serial.print("I received: ");

 Serial.println(incomingByte, DEC);

 }

}

[

http://arduino.cc/en/Serial/Println?action=sourceblock&num=1
http://arduino.cc/en/Reference/Stream
http://arduino.cc/en/Serial/Read?action=sourceblock&num=1

V1.0

 92

92 Language Reference

14 Serial.readBytes()

Description

Serial.readBytes() reads characters from the serial port into a buffer. The function

terminates if the determined length has been read, or it times out

(see Serial.setTimeout()).

Serial.readBytes() returns the number of characters placed in the buffer. A 0 means no

valid data was found.

Serial.readBytes() inherits from the Stream utility class.

Syntax

Serial.readBytes(buffer, length)

Parameters

buffer: the buffer to store the bytes in (char[] or byte[])

length : the number of bytes to read (int)

Returns

byte

See

15 Serial.readBytesUntil()

Description

Serial.readBytesUntil() reads characters from the serial buffer into an array. The function

terminates if the terminator character is detected, the determined length has been read,

or it times out (see Serial.setTimeout()).

Serial.readBytesUntil() returns the number of characters read into the buffer. A 0 means

no valid data was found.

Serial.readBytesUntil() inherits from the Stream utility class.

Syntax

Serial.readBytesUntil(character, buffer, length)

Parameters

character : the character to search for (char)

buffer: the buffer to store the bytes in (char[] or byte[]) length : the number of bytes to

read (int)

Returns

byte

See

16 Serial.setTimeout()

Description

Serial.setTimeout() sets the maximum milliseconds to wait for serial data when

using Serial.readBytesUntil() orSerial.readBytes(). It defaults to 1000 milliseconds.

Serial.setTimeout() inherits from the Stream utility class.

Syntax

Serial.setTimeout(time)

http://arduino.cc/en/Serial/SetTimeout
http://arduino.cc/en/Reference/Stream
http://arduino.cc/en/Serial/SetTimeout
http://arduino.cc/en/Reference/Stream
http://arduino.cc/en/Serial/ReadBytesUntil
http://arduino.cc/en/Serial/ReadBytes
http://arduino.cc/en/Reference/Stream

V1.0

 93

93 Language Reference

Parameters

time : timeout duration in milliseconds (long).

Parameters

None

See a

17 write()

Description

Writes binary data to the serial port. This data is sent as a byte or

series of bytes; to send the characters representing the digits of a

number use the print() function instead.

Syntax

Serial.write(val)

Serial.write(str)

Serial.write(buf, len)

Arduino Mega also supports: Serial1, Serial2, Serial3 (in place of

Serial)

Parameters

val: a value to send as a single byte

str: a string to send as a series of bytes

buf: an array to send as a series of bytes

len: the length of the buffer

Returns

byte

write() will return the number of bytes written, though reading that

number is optional

Example

void setup(){

 Serial.begin(9600);

}

void loop(){

 Serial.write(45); // send a byte with the value 45

 int bytesSent = Serial.write(“hello”); //send the string “hello”

and return the length of the string.

}

18 serialEvent()

Description

Called when data is available. Use Serial.read() to capture this data.

Syntax

void serialEvent(){

http://arduino.cc/en/Serial/Print

V1.0

 94

94 Language Reference

//statements

}

[Get Code]

Arduino Mega only:

void serialEvent1(){

//statements

}

void serialEvent2(){

//statements

}

void serialEvent3(){

//statements

}

[Get Code]

Parameters

statements: any valid statements

Examples

ReadASCIIString

ASCII Table

Dimmer

Graph

Physical Pixel

Virtual Color Mixer

Serial Call Response

Serial Call Response ASCII

Read ASCII String

This sketch uses the Serial.parseInt() function to locate values

separated by a non-alphanumeric character. Often people use a comma

to indicate different pieces of information (this format is commonly

referred to as comma-separated-values), but other characters like a

space or a period will work too. The values are parsed into ints and

used to determine the color of a RGB LED. You'll use the serial

monitor to send strings like "5,220,70" to the Arduino to change the

lights.

Hardware Required

Arduino Board

Breadboard

Hookup wire

Common anode RGB LED

Three 220-ohm resistors

http://arduino.cc/en/Reference/SerialEvent?action=sourceblock&num=1
http://arduino.cc/en/Reference/SerialEvent?action=sourceblock&num=2
http://arduino.cc/en/Tutorial/ReadASCIIString
http://arduino.cc/en/Tutorial/ASCIITable
http://arduino.cc/en/Tutorial/Dimmer
http://arduino.cc/en/Tutorial/Graph
http://arduino.cc/en/Tutorial/PhysicalPixel
http://arduino.cc/en/Tutorial/VirtualColorMixer
http://arduino.cc/en/Tutorial/SerialCallResponse
http://arduino.cc/en/Tutorial/SerialCallResponseASCII
http://arduino.cc/en/Reference/ParseInt

V1.0

 95

95 Language Reference

Circuit

image developed using Fritzing. For more circuit examples, see the Fritzing project page

You'll need five wires to make the circuit above. Connect a red wire

to one of the long vertical rows on your breadboard. Connect the

other end to the 5V pin on your Arduino.

Place an RGB LED on your breadboard. Check the datasheet for your

specific LED to verify the pins. Connect the power rail you just

created to the common anode on the LED.

With your remaining wires, connect your red cathode to pin 3, green

cathode to pin 5, and blue cathode to pin 6 in series with the

resistors.

RGB LEDs with a common anode share a common power pin. Instead of

turning a pin HIGH to illuminate the LED, you need to turn the pin

LOW, to create a voltage difference across the diode. So sending 255

via analogWrite() turns the LED off, while a value of 0 turns it on

at full brightness. In the code below, you'll use a little bit of

math on the Arduino side, so you can send values which correspond to

the expected brightness. Essentially, instead of using

analogWrite(pin, brightness), you'll be calling analogWrite(pin, 255-

brightness).

http://www.fritzing.org/
http://fritzing.org/projects/
http://arduino.cc/en/uploads/Tutorial/readASCIIString_bb.png

V1.0

 96

96 Language Reference

Code

You'll first set up some global variables for the pins your LED

will connect to. This will make it easier to differentiate which one

is red, green, and blue in the main part of your program:

const int redPin = 3;

const int greenPin = 5;

const int bluePin = 6;

In your setup(), begin serial communication at 9600 bits of data per

second between Arduino and your computer with the line:

Serial.begin(9600);

Also in the setup, you'll want to configure the pins as outputs:

pinMode(redPin, OUTPUT);\\ pinMode(greenPin, OUTPUT);

pinMode(bluePin, OUTPUT);

In the loop(), check to see if there is any data in the serial

buffer. By making this a while() statement, it will run as long as

there is information waiting to be read :

while (Serial.available() > 0) {

Next, declare some local variables for storing the serial

information. This will be the brightness of the LEDs.

UsingSerial.parseInt() to separate the data by commas, read the

information into your variables:

int red = Serial.parseInt();\\ int green = Serial.parseInt();

int blue = Serial.parseInt();

Once you've read the data into your variables, check for the newline

character to proceed:

if (Serial.read() == '\n') {

Using constrain(), you can keep the values in an acceptable range

for PWM control. This way, if the value was outside the range of what

PWM can send, it will be limited to a valid number. By subtracting

this value from 255 you will be formatting the value to use with a

common anode LED. As explained above, these LEDs will illuminate

when there is a voltage difference between the anode and the pin

connected to the Arduino:

red = 255 - constrain(red, 0, 255);

green = 255 - constrain(green, 0, 255);

blue = 255 - constrain(blue, 0, 255);

Now that you have formatted the values for PWM, use analogWrite() to

change the color of the LED. Because you subtracted your value from

255 in the step above:

analogWrite(redPin, red);

analogWrite(greenPin, green);

analogWrite(bluePin, blue);

Send the value of each LED back to the serial monitor in one string

as HEX values :

http://arduino.cc/en/Reference/Scope
http://arduino.cc/en/Reference/Setup
http://arduino.cc/en/Reference/Loop
http://arduino.cc/en/Reference/While
http://arduino.cc/en/Serial/ParseInt
http://arduino.cc/en/Reference/Constrain
http://arduino.cc/en/Reference/AnalogWrite

V1.0

 97

97 Language Reference

Serial.print(red, HEX);

Serial.print(green, HEX);

Serial.println(blue, HEX);

Finally, close up your brackets from the if statement, while

statement, and main loop :

}

}

}

Once you have programmed the Arduino, open your Serial minitor. Make

sure you have chosen to send a newline character when sending a

message. Enter values between 0-255 for the lights in the following

format : Red,Green,Blue. Once you have sent the values to the

Arduino, the attached LED will turn the color you specified, and you

will receive the HEX values in the serial monitor.
/*

 Reading a serial ASCII-encoded string.

 This sketch demonstrates the Serial parseInt() function.

 It looks for an ASCII string of comma-separated values.

 It parses them into ints, and uses those to fade an RGB LED.

 Circuit: Common-anode RGB LED wired like so:

 * Red cathode: digital pin 3

 * Green cathode: digital pin 5

 * blue cathode: digital pin 6

 * anode: +5V

 created 13 Apr 2012

 by Tom Igoe

 This example code is in the public domain.

 */

// pins for the LEDs:

const int redPin = 3;

const int greenPin = 5;

const int bluePin = 6;

void setup() {

 // initialize serial:

 Serial.begin(9600);

 // make the pins outputs:

 pinMode(redPin, OUTPUT);

 pinMode(greenPin, OUTPUT);

http://arduino.cc/en/Reference/If

V1.0

 98

98 Language Reference

 pinMode(bluePin, OUTPUT);

}

void loop() {

 // if there's any serial available, read it:

 while (Serial.available() > 0) {

 // look for the next valid integer in the incoming serial stream:

 int red = Serial.parseInt();

 // do it again:

 int green = Serial.parseInt();

 // do it again:

 int blue = Serial.parseInt();

 // look for the newline. That's the end of your

 // sentence:

 if (Serial.read() == '\n') {

 // constrain the values to 0 - 255 and invert

 // if you're using a common-cathode LED, just use

"constrain(color, 0, 255);"

 red = 255 - constrain(red, 0, 255);

 green = 255 - constrain(green, 0, 255);

 blue = 255 - constrain(blue, 0, 255);

 // fade the red, green, and blue legs of the LED:

 analogWrite(redPin, red);

 analogWrite(greenPin, green);

 analogWrite(bluePin, blue);

 // print the three numbers in one string as hexadecimal:

 Serial.print(red, HEX);

 Serial.print(green, HEX);

 Serial.println(blue, HEX);

 }

 }

}

ASCII Table

Demonstrates the advanced serial printing functions by generating a table of characters

and their ASCII values in decimal, hexadecimal, octal, and binary. For more on ASCII,

see asciitable.com

Hardware Required

Arduino Board

V1.0

 99

99 Language Reference

Circuit

image developed using Fritzing. For more circuit examples, see the Fritzing project page

None, but the Arduino has to be connected to the computer.

Code

/*

 ASCII table

 Prints out byte values in all possible formats:

 * as raw binary values

 * as ASCII-encoded decimal, hex, octal, and binary values

 For more on ASCII, see http://www.asciitable.com and

http://en.wikipedia.org/wiki/ASCII

 The circuit: No external hardware needed.

 created 2006

 by Nicholas Zambetti

 modified 9 Apr 2012

 by Tom Igoe

 This example code is in the public domain.

 <http://www.zambetti.com>

 */

void setup() {

 //Initialize serial and wait for port to open:

 Serial.begin(9600);

 while (!Serial) {

 ; // wait for serial port to connect. Needed for Leonardo only

 }

http://www.fritzing.org/
http://fritzing.org/projects/
http://arduino.cc/en/uploads/Tutorial/Arduino_bb.png

V1.0

 100

100 Language Reference

 // prints title with ending line break

 Serial.println("ASCII Table ~ Character Map");

}

// first visible ASCIIcharacter '!' is number 33:

int thisByte = 33;

// you can also write ASCII characters in single quotes.

// for example. '!' is the same as 33, so you could also use this:

//int thisByte = '!';

void loop() {

 // prints value unaltered, i.e. the raw binary version of the

 // byte. The serial monitor interprets all bytes as

 // ASCII, so 33, the first number, will show up as '!'

 Serial.write(thisByte);

 Serial.print(", dec: ");

 // prints value as string as an ASCII-encoded decimal (base 10).

 // Decimal is the default format for Serial.print() and

Serial.println(),

 // so no modifier is needed:

 Serial.print(thisByte);

 // But you can declare the modifier for decimal if you want to.

 //this also works if you uncomment it:

 // Serial.print(thisByte, DEC);

 Serial.print(", hex: ");

 // prints value as string in hexadecimal (base 16):

 Serial.print(thisByte, HEX);

 Serial.print(", oct: ");

 // prints value as string in octal (base 8);

 Serial.print(thisByte, OCT);

 Serial.print(", bin: ");

 // prints value as string in binary (base 2)

 // also prints ending line break:

 Serial.println(thisByte, BIN);

 // if printed last visible character '~' or 126, stop:

 if(thisByte == 126) { // you could also use if (thisByte ==

V1.0

 101

101 Language Reference

'~') {

 // This loop loops forever and does nothing

 while(true) {

 continue;

 }

 }

 // go on to the next character

 thisByte++;

}

[Get Code]

Output

ASCII Table ~ Character Map

!, dec: 33, hex: 21, oct: 41, bin

4, decúASCII Table ~ Character Map

!, dec: 33, hex: 21, oct: 41, bin: 100001

", dec: 34, hex: 22, oct: 42, bin: 100010

#, dec: 35, hex: 23, oct: 43, bin: 100011

$, dec: 36, hex: 24, oct: 44, bin: 100100

%, dec: 37, hex: 25, oct: 45, bin: 100101

&, dec: 38, hex: 26, oct: 46, bin: 100110

', dec: 39, hex: 27, oct: 47, bin: 100111

(, dec: 40, hex: 28, oct: 50, bin: 101000

), dec: 41, hex: 29, oct: 51, bin: 101001

*, dec: 42, hex: 2A, oct: 52, bin: 101010

+, dec: 43, hex: 2B, oct: 53, bin: 101011

,, dec: 44, hex: 2C, oct: 54, bin: 101100

-, dec: 45, hex: 2D, oct: 55, bin: 101101

., dec: 46, hex: 2E, oct: 56, bin: 101110

/, dec: 47, hex: 2F, oct: 57, bin: 101111

0, dec: 48, hex: 30, oct: 60, bin: 110000

1, dec: 49, hex: 31, oct: 61, bin: 110001

2, dec: 50, hex: 32, oct: 62, bin: 110010

3, dec: 51, hex: 33, oct: 63, bin: 110011

4, dec: 52, hex: 34, oct: 64, bin: 110100

5, dec: 53, hex: 35, oct: 65, bin: 110101

6, dec: 54, hex: 36, oct: 66, bin: 110110

7, dec: 55, hex: 37, oct: 67, bin: 110111

8, dec: 56, hex: 38, oct: 70, bin: 111000

9, dec: 57, hex: 39, oct: 71, bin: 111001

:, dec: 58, hex: 3A, oct: 72, bin: 111010

;, dec: 59, hex: 3B, oct: 73, bin: 111011

<, dec: 60, hex: 3C, oct: 74, bin: 111100

=, dec: 61, hex: 3D, oct: 75, bin: 111101

>, dec: 62, hex: 3E, oct: 76, bin: 111110

http://arduino.cc/en/Tutorial/ASCIITable?action=sourceblock&num=1

V1.0

 102

102 Language Reference

?, dec: 63, hex: 3F, oct: 77, bin: 111111

@, dec: 64, hex: 40, oct: 100, bin: 1000000

A, dec: 65, hex: 41, oct: 101, bin: 1000001

B, dec: 66, hex: 42, oct: 102, bin: 1000010

C, dec: 67, hex: 43, oct: 103, bin: 1000011

D, dec: 68, hex: 44, oct: 104, bin: 1000100

E, dec: 69, hex: 45, oct: 105, bin: 1000101

Dimmer

This example shows how to send data from a personal computer to an Arduino board to

control the brightness of an LED. The data is sent in individual bytes, each of which

ranges in value from 0 to 255. Arduino reads these bytes and uses them to set the

brightness of the LED.

You can send bytes to the Arduino from any software that can access the computer serial

port. Examples for Processingand Max/MSP version 5 are shown below.

Hardware Required

Arduino Board

LED

220 ohm resistor

Software Required

Processing or

Max/MSP version 5

Circuit

An LED connected to pin 9. Use an appropriate resistor as needed. For most

common LEDs, you can usually do without the resistor, as the current output of the

digital I/O pins is limited.

click the image to enlarge

image developed using Fritzing. For more circuit examples, see the Fritzing project page

http://www.processing.org/
http://www.cycling74.com/products/max5
http://www.processing.org/
http://www.cycling74.com/products/max5
http://www.fritzing.org/
http://fritzing.org/projects/
http://arduino.cc/en/uploads/Tutorial/dimmer-circuit3.png

V1.0

 103

103 Language Reference

Schematic

click the image to enlarge

%

Code

/*

 Dimmer

 Demonstrates the sending data from the computer to the Arduino

board,

 in this case to control the brightness of an LED. The data is

sent

 in individual bytes, each of which ranges from 0 to 255. Arduino

 reads these bytes and uses them to set the brightness of the LED.

 The circuit:

 LED attached from digital pin 9 to ground.

 Serial connection to Processing, Max/MSP, or another serial

application

 created 2006

 by David A. Mellis

 modified 30 Aug 2011

 by Tom Igoe and Scott Fitzgerald

 This example code is in the public domain.

 http://www.arduino.cc/en/Tutorial/Dimmer

http://arduino.cc/en/uploads/Tutorial/simplefade_pin9_schem.png

V1.0

 104

104 Language Reference

 */

const int ledPin = 9; // the pin that the LED is attached to

void setup()

{

 // initialize the serial communication:

 Serial.begin(9600);

 // initialize the ledPin as an output:

 pinMode(ledPin, OUTPUT);

}

void loop() {

 byte brightness;

 // check if data has been sent from the computer:

 if (Serial.available()) {

 // read the most recent byte (which will be from 0 to 255):

 brightness = Serial.read();

 // set the brightness of the LED:

 analogWrite(ledPin, brightness);

 }

}

/* Processing code for this example

 // Dimmer - sends bytes over a serial port

 // by David A. Mellis

 //This example code is in the public domain.

 import processing.serial.*;

 Serial port;

 void setup() {

 size(256, 150);

 println("Available serial ports:");

 println(Serial.list());

 // Uses the first port in this list (number 0). Change this to

 // select the port corresponding to your Arduino board. The last

 // parameter (e.g. 9600) is the speed of the communication. It

 // has to correspond to the value passed to Serial.begin() in your

 // Arduino sketch.

 port = new Serial(this, Serial.list()[0], 9600);

V1.0

 105

105 Language Reference

 // If you know the name of the port used by the Arduino board, you

 // can specify it directly like this.

 //port = new Serial(this, "COM1", 9600);

 }

 void draw() {

 // draw a gradient from black to white

 for (int i = 0; i < 256; i++) {

 stroke(i);

 line(i, 0, i, 150);

 }

 // write the current X-position of the mouse to the serial port

as

 // a single byte

 port.write(mouseX);

 }

 */

/* Max/MSP v5 patch for this example

----------begin_max5_patcher----------

1008.3ocuXszaiaCD9r8uhA5rqAeHIa0aAMaAVf1S6hdoYQAsDiL6JQZHQ2M

YWr+2KeX4vjnjXKKkKhhiGQ9MeyCNz+X9rnMp63sQvuB+MLa1OlOalSjUvrC

ymEUytKuh05TKJWUWyk5nE9eSyuS6jesvHu4F4MxOuUzB6X57sPKWVzBLXiP

xZtGj6q2vafaaT0.BzJfjj.p8ZPukazsQvpfcpFs8mXR3plh8BoBxURIOWyK

rxspZ0YI.eTCEh5Vqp+wGtFXZMKe6CZc3yWZwTdCmYW.BBkdiby8v0r+ST.W

sD9SdUkn8FYspPbqvnBNFtZWiUyLmleJWo0vuKzeuj2vpJLaWA7YiE7wREui

FpDFDp1KcbAFcP5sJoVxp4NB5Jq40ougIDxJt1wo3GDZHiNocKhiIExx+owv

AdOEAksDs.RRrOoww1Arc.9RvN2J9tamwjkcqknvAE0l+8WnjHqreNet8whK

z6mukIK4d+Xknv3jstvJs8EirMMhxsZIusET25jXbX8xczIl5xPVxhPcTGFu

xNDu9rXtUCg37g9Q8Yc+EuofIYmg8QdkPCrOnXsaHwYs3rWx9PGsO+pqueG2

uNQBqWFh1X7qQG+3.VHcHrfO1nyR2TlqpTM9MDsLKNCQVz6KO.+Sfc5j1Ykj

jzkn2jwNDRP7LVb3d9LtoWBAOnvB92Le6yRmZ4UF7YpQhiFi7A5Ka8zXhKdA

4r9TRGG7V4COiSbAJKdXrWNhhF0hNUh7uBa4Mba0l7JUK+omjDMwkSn95Izr

TOwkdp7W.oPRmNRQsiKeu4j3CkfVgt.NYPEYqMGvvJ48vIlPiyzrIuZskWIS

xGJPcmPiWOfLodybH3wjPbMYwlbFIMNHPHFOtLBNaLSa9sGk1TxMzCX5KTa6

WIH2ocxSdngM0QPqFRxyPHFsprrhGc9Gy9xoBjz0NWdR2yW9DUa2F85jG2v9

FgTO4Q8qiC7fzzQNpmNpsY3BrYPVJBMJQ1uVmoItRhw9NrVGO3NMNzYZ+zS7

3WTvTOnUydG5kHMKLqAOjTe7fN2bGSxOZDkMrBrGQ9J1gONBEy0k4gVo8qHc

cxmfxVihWz6a3yqY9NazzUYkua9UnynadOtogW.JfsVGRVNEbWF8I+eHtcwJ

+wLXqZeSdWLo+FQF6731Tva0BISKTx.cLwmgJsUTTvkg1YsnXmxDge.CDR7x

D6YmX6fMznaF7kdczmJXwm.XSOOrdoHhNA7GMiZYLZZR.+4lconMaJP6JOZ8

V1.0

 106

106 Language Reference

ftCs1YWHZI3o.sIXezX5ihMSuXzZtk3ai1mXRSczoCS32hAydeyXNEu5SHyS

xqZqbd3ZLdera1iPqYxOm++v7SUSz

-----------end_max5_patcher-----------

 */

[Get Code]

Processing Code

The Processing sketch in the code sample above will send bytes out the serial port to the

Arduino to dim the LED.

Max code

The Max/MSP patch in the code sample above looks like the image below. Copy it and

paste it into a new patch window.

Graph

This example shows you how to send a byte of data from the Arduino to a personal

computer and graph the result. This is called serial communication because the

connection appears to both the Arduino and the computer as a serial port, even though it

may actually use a USB cable.

You can use the Arduino serial monitor to view the sent data, or it can be read by

Processing (see code below), Flash, PD, Max/MSP, etc.

Hardware Required

Arduino Board

Analog Sensor (potentiometer, photocell, FSR, etc.)

Software Required

Processing or

Max/MSP version 5

http://arduino.cc/en/Tutorial/Dimmer?action=sourceblock&num=1
http://www.processing.org/
http://www.cycling74.com/products/max5
http://arduino.cc/en/uploads/Tutorial/maxDimmer.png

V1.0

 107

107 Language Reference

Circuit

Connect a potentiometer or other analog sensor to analog input 0.

click the image to enlarge

image developed using Fritzing. For more circuit examples, see the Fritzing project page

Schematic

click the image to enlarge

Code

/*

 Graph

http://www.fritzing.org/
http://fritzing.org/projects/
http://arduino.cc/en/uploads/Tutorial/graph-circuit3.png
http://arduino.cc/en/uploads/Tutorial/AnalogReadSerial_sch.png

V1.0

 108

108 Language Reference

 A simple example of communication from the Arduino board to the

computer:

 the value of analog input 0 is sent out the serial port. We call

this "serial"

 communication because the connection appears to both the Arduino

and the

 computer as a serial port, even though it may actually use

 a USB cable. Bytes are sent one after another (serially) from the

Arduino

 to the computer.

 You can use the Arduino serial monitor to view the sent data, or

it can

 be read by Processing, PD, Max/MSP, or any other program capable

of reading

 data from a serial port. The Processing code below graphs the

data received

 so you can see the value of the analog input changing over time.

 The circuit:

 Any analog input sensor is attached to analog in pin 0.

 created 2006

 by David A. Mellis

 modified 9 Apr 2012

 by Tom Igoe and Scott Fitzgerald

 This example code is in the public domain.

 http://www.arduino.cc/en/Tutorial/Graph

 */

void setup() {

 // initialize the serial communication:

 Serial.begin(9600);

}

void loop() {

 // send the value of analog input 0:

 Serial.println(analogRead(A0));

 // wait a bit for the analog-to-digital converter

 // to stabilize after the last reading:

 delay(2);

V1.0

 109

109 Language Reference

}

/* Processing code for this example

 // Graphing sketch

 // This program takes ASCII-encoded strings

 // from the serial port at 9600 baud and graphs them. It expects

values in the

 // range 0 to 1023, followed by a newline, or newline and carriage

return

 // Created 20 Apr 2005

 // Updated 18 Jan 2008

 // by Tom Igoe

 // This example code is in the public domain.

 import processing.serial.*;

 Serial myPort; // The serial port

 int xPos = 1; // horizontal position of the graph

 void setup () {

 // set the window size:

 size(400, 300);

 // List all the available serial ports

 println(Serial.list());

 // I know that the first port in the serial list on my mac

 // is always my Arduino, so I open Serial.list()[0].

 // Open whatever port is the one you're using.

 myPort = new Serial(this, Serial.list()[0], 9600);

 // don't generate a serialEvent() unless you get a newline

character:

 myPort.bufferUntil('\n');

 // set inital background:

 background(0);

 }

 void draw () {

 // everything happens in the serialEvent()

 }

 void serialEvent (Serial myPort) {

V1.0

 110

110 Language Reference

 // get the ASCII string:

 String inString = myPort.readStringUntil('\n');

 if (inString != null) {

 // trim off any whitespace:

 inString = trim(inString);

 // convert to an int and map to the screen height:

 float inByte = float(inString);

 inByte = map(inByte, 0, 1023, 0, height);

 // draw the line:

 stroke(127,34,255);

 line(xPos, height, xPos, height - inByte);

 // at the edge of the screen, go back to the beginning:

 if (xPos >= width) {

 xPos = 0;

 background(0);

 }

 else {

 // increment the horizontal position:

 xPos++;

 }

 }

 }

 */

/* Max/MSP v5 patch for this example

 ----------begin_max5_patcher----------

1591.3oc0YszbaaCD9r7uBL5RalQUAO3CvdyS5zVenWZxs5NcfHgjPCIfJIT

RTxj+6AOHkoTDooroUs0AQPR73a+1cwtK3WtZxzEpOwqlB9YveAlL4KWMYh6

Q1GLo99ISKXeJMmU451zTUQAWpmNy+NM+SZ2y+sR1l02JuU9t0hJvFlNcMPy

dOuBv.U5Rgb0LPpRpYBooM3529latArTUVvzZdFPtsXAuDrrTU.f.sBffXxL

vGE50lIHkUVJXq3fRtdaoDvjYfbgjujaFJSCzq4.tLaN.bi1tJefWpqbO0uz

1IjIABoluxrJ1guxh2JfPO2B5zRNyBCLDFcqbwNvuv9fHCb8bvevyyEU2JKT

YhkBSWPAfq2TZ6YhqmuMUo0feUn+rYpY4YtY+cFw3lUJdCMYAapZqzwUHX8S

crjAd+SIOU6UBAwIygy.Q1+HAA1KH6EveWOFQlitUK92ehfal9kFhUxJ3tWc

sgpxadigWExbt1o7Ps5dk3yttivyg20W0VcSmg1G90qtx92rAZbH4ez.ruy1

nhmaDPidE07J+5n2sg6E6oKXxUSmc20o6E3SPRDbrkXnPGUYE.i5nCNB9TxQ

jG.G0kCTZtH88f07Rt0ZMMWUw8VvbKVAaTk6GyoraPdZff7rQTejBN54lgyv

HE0Ft7AvIvvgvIwO23jBdUkYOuSvIFSiNcjFhiSsUBwsUCh1AgfNSBAeNDBZ

DIDqY.f8.YjfjV1HAn9XDTxyNFYatVTkKx3kcK9GraZpI5jv7GOx+Z37Xh82

LSKHIDmDXaESoXRngIZQDKVkpxUkMCyXCQhcCK1z.G457gi3TzMz4RFD515F

V1.0

 111

111 Language Reference

G3bIQQwcP3SOF0zlkGhiCBQ1kOHHFFlXaEBQIQnCwv9QF1LxPZ.A4jR5cyQs

vbvHMJsLll01We+rE2LazX6zYmCraRrsPFwKg1ANBZFY.IAihr8Ox.aH0oAL

hB8nQVw0FSJiZeunOykbT6t3r.NP8.iL+bnwNiXuVMNJH9H9YCm89CFXPBER

bz422p8.O4dg6kRxdyjDqRwMIHTbT3QFLskxJ8tbmQK4tm0XGeZWF7wKKtYY

aTAF.XPNFaaQBinQMJ4QLF0aNHF0JtYuHSxoUZfZY6.UU2ejJTb8lQw8Fo5k

Rv6e2PI+fOM71o2ecY1VgTYdCSxxUqLokuYq9jYJi6lxPgD2NIPePLB0mwbG

YA9Rgxdiu1k5xiLlSU6JVnx6wzg3sYHwTesB8Z5D7RiGZpXyvDNJY.DQX3.H

hvmcUN4bP1yCkhpTle2P37jtBsKrLWcMScEmltOPv22ZfAqQAdKr9HzATQwZ

q18PrUGt6Tst2XMCRUfGuhXs6ccn23YloomMqcTiC5iMGPsHsHRWhWFlaenV

XcqwgCQiGGJzptyS2ZMODBz6fGza0bzmXBj7+DA94bvpR01MffAlueO7HwcI

pWCwmzJdvi9ILgflLAFmyXB6O7ML0YbD26lenmcGxjVsZUN+A6pUK7AtTrPg

M+eRYG0qD9j4I7eEbco8Xh6WcO.or9XDC6UCiewbXHkh6xm5LiPEkzpJDRTu

mEB44Fgz4NCtJvX.SM1vo2SlTCZGAe7GZu6ahdRyzFOhYZ+mbVVSYptBw.K1

tboIkatIA7c1cTKD1u.honLYV04VkluHsXe0szv9pQCE9Ro3jaVB1o15pz2X

zYoBvO5KXCAe0LCYJybE8ZODf4fV8t9qW0zYxq.YJfTosj1bv0xc.SaC0+AV

9V9L.KKyV3SyTcRtmzi6rO.O16USvts4B5xe9EymDvebK0eMfW6+NIsNlE2m

eqRyJ0utRq13+RjmqYKN1e.4d61jjdsauXe3.2p6jgi9hsNIv97CoyJ01xzl

c3ZhUCtSHx3UZgjoEJYqNY+hYs5zZQVFW19L3JDYaTlMLqAAt1G2yXlnFg9a

53L1FJVcv.cOX0dh7mCVGCLce7GFcQwDdH5Ta3nyAS0pQbHxegr+tGIZORgM

RnMj5vGl1Fs16drnk7Tf1XOLgv1n0d2iEsCxR.eQsNOZ4FGF7whofgfI3kES

1kCeOX5L2rifbdu0A9ae2X.V33B1Z+.Bj1FrP5iFrCYCG5EUWSG.hhunHJd.

HJ5hhnng3h9HPj4lud02.1bxGw.

-----------end_max5_patcher-----------

 */

[Get Code]

Processing Sketch

Using the Processing sketch in the code sample above, you'll get a graph of the sensor's

value. As you change the value of the analog sensor, you'll get a graph something like this:

http://arduino.cc/en/Tutorial/Graph?action=sourceblock&num=1

V1.0

 112

112 Language Reference

Max Code

The max patch looks like this. The text of the patch is in the code sample above. Copy the

text and paste it into a new Max window to see the sketch.

V1.0

 113

113 Language Reference

Physical Pixel

This example example uses the Arduino board to receive data from the computer. The

Arduino boards turns on an LED when it receives the character 'H', and turns off the LED

when it receives the character 'L'.

The data can be sent from the Arduino serial monitor, or another program like Processing

(see code below), Flash (via a serial-net proxy), PD, or Max/MSP.

Hardware Required

Arduino Board

Analog Sensor (potentiometer, photocell, FSR, etc.)

Software Required

Processing or

Max/MSP version 5

Circuit

Attach an LED to pin 13. The long leg, or anode, goes to pin 13. The short leg, or cathode,

goes to ground. You can also use the built-in LED on most Arduino boards.

click the image to enlarge

http://www.processing.org/
http://www.cycling74.com/products/max5
http://arduino.cc/en/uploads/Tutorial/max-graph.png

V1.0

 114

114 Language Reference

image developed using Fritzing. For more circuit examples, see the Fritzing project page

Schematic

click the image to enlarge

Code

/*

 Physical Pixel

 An example of using the Arduino board to receive data from the

 computer. In this case, the Arduino boards turns on an LED when

 it receives the character 'H', and turns off the LED when it

 receives the character 'L'.

 The data can be sent from the Arduino serial monitor, or another

 program like Processing (see code below), Flash (via a serial-net

 proxy), PD, or Max/MSP.

 The circuit:

 * LED connected from digital pin 13 to ground

http://www.fritzing.org/
http://fritzing.org/projects/
http://arduino.cc/en/uploads/Tutorial/ExampleCircuit_bb.png
http://arduino.cc/en/uploads/Tutorial/ExampleCircuit_sch.png

V1.0

 115

115 Language Reference

 created 2006

 by David A. Mellis

 modified 30 Aug 2011

 by Tom Igoe and Scott Fitzgerald

 This example code is in the public domain.

 http://www.arduino.cc/en/Tutorial/PhysicalPixel

 */

const int ledPin = 13; // the pin that the LED is attached to

int incomingByte; // a variable to read incoming serial data

into

void setup() {

 // initialize serial communication:

 Serial.begin(9600);

 // initialize the LED pin as an output:

 pinMode(ledPin, OUTPUT);

}

void loop() {

 // see if there's incoming serial data:

 if (Serial.available() > 0) {

 // read the oldest byte in the serial buffer:

 incomingByte = Serial.read();

 // if it's a capital H (ASCII 72), turn on the LED:

 if (incomingByte == 'H') {

 digitalWrite(ledPin, HIGH);

 }

 // if it's an L (ASCII 76) turn off the LED:

 if (incomingByte == 'L') {

 digitalWrite(ledPin, LOW);

 }

 }

}

/* Processing code for this example

 // mouseover serial

 // Demonstrates how to send data to the Arduino I/O board, in order

to

V1.0

 116

116 Language Reference

 // turn ON a light if the mouse is over a square and turn it off

 // if the mouse is not.

 // created 2003-4

 // based on examples by Casey Reas and Hernando Barragan

 // modified 30 Aug 2011

 // by Tom Igoe

 // This example code is in the public domain.

 import processing.serial.*;

 float boxX;

 float boxY;

 int boxSize = 20;

 boolean mouseOverBox = false;

 Serial port;

 void setup() {

 size(200, 200);

 boxX = width/2.0;

 boxY = height/2.0;

 rectMode(RADIUS);

 // List all the available serial ports in the output pane.

 // You will need to choose the port that the Arduino board is

 // connected to from this list. The first port in the list is

 // port #0 and the third port in the list is port #2.

 println(Serial.list());

 // Open the port that the Arduino board is connected to (in this

case #0)

 // Make sure to open the port at the same speed Arduino is using

(9600bps)

 port = new Serial(this, Serial.list()[0], 9600);

 }

 void draw()

 {

 background(0);

V1.0

 117

117 Language Reference

 // Test if the cursor is over the box

 if (mouseX > boxX-boxSize && mouseX < boxX+boxSize &&

 mouseY > boxY-boxSize && mouseY < boxY+boxSize) {

 mouseOverBox = true;

 // draw a line around the box and change its color:

 stroke(255);

 fill(153);

 // send an 'H' to indicate mouse is over square:

 port.write('H');

 }

 else {

 // return the box to it's inactive state:

 stroke(153);

 fill(153);

 // send an 'L' to turn the LED off:

 port.write('L');

 mouseOverBox = false;

 }

 // Draw the box

 rect(boxX, boxY, boxSize, boxSize);

 }

 */

/*

Max/MSP version 5 patch to run with this example:

----------begin_max5_patcher----------

1672.3oc2ZszaaiCD9ryuBBebQVCQRYao8xhf1cQCPVfBzh8RRQ.sDsM2HSZ

HQmlzh9eu7gjsjsEk7y0oWjiHoHm4aluYHGlueUmtiDuPy5B9Cv8fNc99Uc5

XZR2Pm726zcF4knDRlYXciDylQ4xtWa6SReQZZ+iSeMiEQR.ej8BM4A9C7OO

kkAlSjQSAYTdbFfvA27o2c6sfO.Doqd6NfXgDHmRUCKkolg4hT06BfbQJGH3

5Qd2e8d.QJIQSow5tzebZ7BFW.FIHow8.2JAQpVIIYByxo9KIMkSjL9D0BRT

sbGHZJIkDoZOSMuQT.8YZ5qpgGI3locF4IpQRzq2nDF+odZMIJkRjpEF44M3

A9nWAum7LKFbSOv+PSRXYOvmIhYiYpg.8A2LOUOxPyH+TjPJA+MS9sIzTRRr

QP9rXF31IBZAHpVHkHrfaPRHLuUCzoj9GSoQRqIB52y6Z.tu8o4EX+fddfuj

+MrXiwPL5+9cXwrOVvkbxLpomazHbQO7EyX7DpzXYgkFdF6algCQpkX4XUlo

hA6oa7GWck9w0Gnmy6RXQOoQeCfWwlzsdnHLTq8n9PCHLv7Cxa6PAN3RCKjh

ISRVZ+sSl704Tqt0kocE9R8J+P+RJOZ4ysp6gN0vppBbOTEN8qp0YCq5bq47

PUwfA5e766z7NbGMuncw7VgNRSyQhbnPMGrDsGaFSvKM5NcWoIVdZn44.eOi

9DTRUT.7jDQzSTiF4UzXLc7tLGh4T9pwaFQkGUGIiOOkpBSJUwGsBd40krHQ

9XEvwq2V6eLIhV6GuzP7uzzXBmzsXPSRYwBtVLp7s5lKVv6UN2VW7xRtYDbx

V1.0

 118

118 Language Reference

7s7wRgHYDI8YVFaTBshkP49R3rYpH3RlUhTQmK5jMadJyF3cYaTNQMGSyhRE

IIUlJaOOukdhoOyhnekEKmZlqU3UkLrk7bpPrpztKBVUR1uorLddk6xIOqNt

lBOroRrNVFJGLrDxudpET4kzkstNp2lzuUHVMgk5TDZx9GWumnoQTbhXsEtF

tzCcM+z0QKXsngCUtTOEIN0SX2iHTTIIz968.Kf.uhfzUCUuAd3UKd.OKt.N

HTynxTQyjpQD9jlwEXeKQxfHCBahUge6RprSa2V4m3aYOMyaP6gah2Yf1zbD

jVwZVGFZHHxINFxpjr5CiTS9JiZn6e6nTlXQZTAFj6QCppQwzL0AxVtoi6WE

QXsANkEGWMEuwNvhmKTnat7A9RqLq6pXuEwY6xM5xRraoTiurj51J1vKLzFs

CvM7HI14Mpje6YRxHOSieTsJpvJORjxT1nERK6s7YTN7sr6rylNwf5zMiHI4

meZ4rTYt2PpVettZERbjJ6PjfqN2loPSrUcusH01CegsGEE5467rnCdqT1ES

QxtCvFq.cvGz+BaAHXKzRSfP+2Jf.KCvj5ZLJRAhwi+SWHvPyN3vXiaPn6JR

3eoA.0TkFhTvpsDMIrL20nAkCI4EoYfSHAuiPBdmJRyd.IynYYjIzMvjOTKf

3DLvnvRLDLpWeEOYXMfAZqfQ0.qsnlUdmA33t8CNJ7MZEb.u7fiZHLYzDkJp

R7CqEVLGN75U+1JXxFUY.xEEBcRCqhOEkz2bENEWnh4pbh0wY25EefbD6EmW

UA6Ip8wFLyuFXx+Wrp8m6iff1B86W7bqJO9+mx8er4E3.abCLrYdA16sBuHx

vKT6BlpIGQIhL55W7oicf3ayv3ixQCm4aQuY1HZUPQWY+cASx2WZ3f1fICuz

vj5R5ZbM1y8gXYN4dIXaYGq4NhQvS5MmcDADy+S.j8CQ78vk7Q7gtPDX3kFh

3NGaAsYBUAO.8N1U4WKycxbQdrWxJdXd10gNIO+hkUMmm.CZwknu7JbNUYUq

0sOsTsI1QudDtjw0t+xZ85wWZd80tMCiiMADNX4UzrcSeK23su87IANqmA7j

tiRzoXi2YRh67ldAk79gPmTe3YKuoY0qdEDV3X8xylCJMTN45JIakB7uY8XW

uVr3PO8wWwEoTW8lsfraX7ZqzZDDXCRqNkztHsGCYpIDDAOqxDpMVUMKcOrp

942acPvx2NPocMC1wQZ8glRn3myTykVaEUNLoEeJjVaAevA4EAZnsNgkeyO+

3rEZB7f0DTazDcQTNmdt8aACGi1QOWnMmd+.6YjMHH19OB5gKsMF877x8wsJ

hN97JSnSfLUXGUoj6ujWXd6Pk1SAC+Pkogm.tZ.1lX1qL.pe6PE11DPeMMZ2

.P0K+3peBt3NskC

-----------end_max5_patcher-----------

 */

[Get Code]

Processing Code

Copy the Processing code from the code sample above. As you mouse over the center

square, the LED on pin 13 should turn on and off. The Processing applet looks like this:

Mouse over the square to turn the LED on and off.

Max patch

The Max/MSP patch looks like the image below. Copy it from the code sample above and

paste it into a new patch window.

http://arduino.cc/en/Tutorial/PhysicalPixel?action=sourceblock&num=1

V1.0

 119

119 Language Reference

Virtual Color Mixer

This example demonstrates how to send multiple values from the Arduino board to the

computer. The readings from three potentiometers are used to set the red, green, and

blue components of the background color of a Processing sketch or Max/MSP patch.

Hardware Required

Arduino Board

(3) Analog Sensors (potentiometer, photocell, FSR, etc.)

(3) 10K ohm resistors

breadboard

hook-up wire

Software Required

Processing or

Max/MSP version 5

Circuit

Connect analog sensors to analog input pins 0, 1, and 2.

This circuit uses three voltage divider sub-circuits to generate analog voltages from the

force-sensing resistors. a voltage divider has two resistors in series, dividing the voltage

proportionally to their values.

Click on the image to enlarge

http://www.processing.org/
http://www.cycling74.com/products/max5
http://www.tigoe.net/pcomp/code/input-output/analog-input
http://arduino.cc/en/uploads/Tutorial/max-physicalPixel.png

V1.0

 120

120 Language Reference

image developed using Fritzing. For more circuit examples, see the Fritzing project page

Schematic

Click on the image to enlarge

Code

The sensor values are sent from the Arduino to the computer as ASCII-encoded decimal

numbers. This means that each number is sent using the ASCII characters "0" through

"9". For the value "234" for example, three bytes are sent: ASCII "2" (binary value 50),

ASCII "3" (binary value 51), and ASCII "4" (binary value 52).

/*

 This example reads three analog sensors (potentiometers are

easiest)

http://www.fritzing.org/
http://fritzing.org/projects/
http://www.tigoe.net/pcomp/code/communication/interpreting-serial-data-bytes
http://www.tigoe.net/pcomp/code/communication/interpreting-serial-data-bytes
http://arduino.cc/en/uploads/Tutorial/virtualColorMixer_bb.png
http://arduino.cc/en/uploads/Tutorial/VCM_schem.png

V1.0

 121

121 Language Reference

 and sends their values serially. The Processing and Max/MSP

programs at the bottom

 take those three values and use them to change the background color

of the screen.

 The circuit:

 * potentiometers attached to analog inputs 0, 1, and 2

 http://www.arduino.cc/en/Tutorial/VirtualColorMixer

 created 2 Dec 2006

 by David A. Mellis

 modified 30 Aug 2011

 by Tom Igoe and Scott Fitzgerald

 This example code is in the public domain.

 */

const int redPin = A0; // sensor to control red color

const int greenPin = A1; // sensor to control green color

const int bluePin = A2; // sensor to control blue color

void setup()

{

 Serial.begin(9600);

}

void loop()

{

 Serial.print(analogRead(redPin));

 Serial.print(",");

 Serial.print(analogRead(greenPin));

 Serial.print(",");

 Serial.println(analogRead(bluePin));

}

/* Processing code for this example

// This example code is in the public domain.

 import processing.serial.*;

 float redValue = 0; // red value

 float greenValue = 0; // green value

V1.0

 122

122 Language Reference

 float blueValue = 0; // blue value

 Serial myPort;

 void setup() {

 size(200, 200);

 // List all the available serial ports

 println(Serial.list());

 // I know that the first port in the serial list on my mac

 // is always my Arduino, so I open Serial.list()[0].

 // Open whatever port is the one you're using.

 myPort = new Serial(this, Serial.list()[0], 9600);

 // don't generate a serialEvent() unless you get a newline

character:

 myPort.bufferUntil('\n');

 }

 void draw() {

 // set the background color with the color values:

 background(redValue, greenValue, blueValue);

 }

 void serialEvent(Serial myPort) {

 // get the ASCII string:

 String inString = myPort.readStringUntil('\n');

 if (inString != null) {

 // trim off any whitespace:

 inString = trim(inString);

 // split the string on the commas and convert the

 // resulting substrings into an integer array:

 float[] colors = float(split(inString, ","));

 // if the array has at least three elements, you know

 // you got the whole thing. Put the numbers in the

 // color variables:

 if (colors.length >=3) {

 // map them to the range 0-255:

 redValue = map(colors[0], 0, 1023, 0, 255);

 greenValue = map(colors[1], 0, 1023, 0, 255);

 blueValue = map(colors[2], 0, 1023, 0, 255);

 }

 }

 }

V1.0

 123

123 Language Reference

 */

/* Max/MSP patch for this example

 ----------begin_max5_patcher----------

1512.3oc4Z00aaaCE8YmeED9ktB35xOjrj1aAsXX4g8xZQeYoXfVh1gqRjdT

TsIsn+2K+PJUovVVJ1VMdCAvxThV7bO7b48dIyWtXxzkxaYkSA+J3u.Sl7kK

lLwcK6MlT2dxzB5so4zRW2lJXeRt7elNy+HM6Vs61uDDzbOYkNmo02sg4euS

4BSede8S2P0o2vEq+aEKU66PPP7b3LPHDauPvyCmAvv4v6+M7L2XXF2WfCaF

lURgVPKbCxzKUbZdySDUEbgABN.ia08R9mccGYGn66qGutNir27qWbg8iY+7

HDRx.Hjf+OPHCQgPdpQHoxhBlwB+QF4cbkthlCRk4REnfeKScs3ZwaugWBbj

.PS+.qDPAkZkgPlY5oPS4By2A5aTLFv9pounjsgpnZVF3x27pqtBrRpJnZaa

C3WxTkfUJYA.BzR.BhIy.ehquw7dSoJCsrlATLckR.nhLPNWvVwL+Vp1LHL.

SjMG.tRaG7OxT5R2c8Hx9B8.wLCxVaGI6qnpj45Ug84kL+6YIM8CqUxJyycF

7bqsBRULGvwfWyRMyovElat7NvqoejaLm4f+fkmyKuVTHy3q3ldhB.WtQY6Z

x0BSOeSpTqA+FW+Yy3SyybH3sFy8p0RVCmaMpTyX6HdDZ2JsPbfSogbBMueH

JLd6RMBdfRMzPjZvimuWIK2XgFA.ZmtfKoh0Sm88qc6OF4bDQ3P6kEtF6xej

.OkjD4H5OllyS+.3FlhY0so4xRlWqyrXErQpt+2rsnXgQNZHZgmMVzEofW7T

S4zORQtgIdDbRHrObRzSMNofUVZVcbKbhQZrSOo934TqRHIN2ncr7BF8TKR1

tHDqL.PejLRRPKMR.pKFAkbtDa+UOvsYsIFH0DYsTCjqZ66T1CmGeDILLpSm

myk0SdkOKh5LUr4GbWwRYdW7fm.BvDmzHnSdH3biGpSbxxDNJoGDAD1ChH7L

I0DaloOTBLvkO7zPs5HJnKNoGAXbol5eytUhfyiSfnjE1uAq+Fp0a+wygGwR

q3ZI8.psJpkpJnyPzwmXBj7Sh.+bNvVZxlcKAm0OYHIxcIjzEKdRChgO5UMf

LkMPNN0MfiS7Ev6TYQct.F5IWcCZ4504rGsiVswGWWSYyma01QcZgmL+f+sf

oU18Hn6o6dXkMkFF14TL9rIAWE+6wvGV.p.TPqz3HK5L+VxYxl4UmBKEjr.B

6zinuKI3C+D2Y7azIM6N7QL6t+jQyZxymK1ToAKqVsxjlGyjz2c1kTK3180h

kJEYkacWpv6lyp2VJTjWK47wHA6fyBOWxH9pUf6jUtZkLpNKW.9EeUBH3ymY

XSQlaqGrkQMGzp20adYSmIOGjIABo1xZyAWJtCX9tg6+HMuhMCPyx76ao+Us

UxmzUE79H8d2ZB1m1ztbnOa1mGeAq0awyK8a9UqBUc6pZolpzurTK232e5gp

aInVw8QIIcpaiNSJfY4Z+92Cs+Mc+mgg2cEsvGlLY6V+1kMuioxnB5VM+fsY

9vSu4WI1PMBGXye6KXvNuzmZTh7U9h5j6vvASdngPdgOFxycNL6ia1axUMmT

JIzebXcQCn3SKMf+4QCMmOZung+6xBCPLfwO8ngcEI52YJ1y7mx3CN9xKUYU

bg7Y1yXjlKW6SrZnguQdsSfOSSDItqv2jwJFjavc1vO7OigyBr2+gDYorRk1

HXZpVFfu2FxXkZtfp4RQqNkX5y2sya3YYL2iavWAOaizH+pw.Ibg8f1I9h3Z

2B79sNeOHvBOtfEalWsvyu0KMf015.AaROvZ7vv5AhnndfHLbTgjcCK1KlHv

gOk5B26OqrXjcJ005.QqCHn8fVTxnxfj93SfQiJlv8YV0VT9fVUwOOhSV3uD

eeqCUClbBPa.j3vWDoMZssNTzRNEnE6gYPXazZaMF921syaLWyAeBXvCESA8

ASi6Zyw8.RQi65J8ZsNx3ho93OhGWENtWpowepae4YhCFeLErOLENtXJrOSc

iadi39rf4hwc8xdhHz3gn3dBI7iDRlFe8huAfIZhq

-----------end_max5_patcher-----------

 */

[Get Code]

http://arduino.cc/en/Tutorial/VirtualColorMixer?action=sourceblock&num=1

V1.0

 124

124 Language Reference

Processing Code

Copy the Processing sketch from the code sample above. As you change the value of the

analog sensors, the background color will change:

Max Code

The max patch looks like this. Copy the text of it from the code sample above and paste

into a new Max window.

http://arduino.cc/en/uploads/Tutorial/max-virtualColorMixer.png

V1.0

 125

125 Language Reference

Serial Call and Response (handshaking)

This example demonstrates multi-byte communication from the Arduino board to the

computer using a call-and-response (handshaking) method.

This sketch sends an ASCII A (byte of value 65) on startup and repeats that until it gets a

serial response from the computer. Then it sends three sensor values as single bytes, and

waits for another response from the computer.

You can use the Arduino serial monitor to view the sent data, or it can be read by

Processing (see code below), Flash, PD, Max/MSP (see example below), etc.

Hardware Required

Arduino Board

(2) analog sensors (potentiometer, photocell, FSR, etc.)

(1) momentary switch/button

(3) 10K ohm resistors

breadboard

hook-up wire

Software Required

Processing or

Max/MSP version 5

Circuit

Connect analog sensors to analog input pin 0 and 1 with 10K ohm resistors used as

voltage dividers. Connect a pushbutton or switch to digital I/O pin 2 with a 10Kohm

resistor as a reference to ground.

click on the image to enlarge

image developed using Fritzing. For more circuit examples, see the Fritzing project page

Schematic

click the image to enlarge

Code

/*

 Serial Call and Response

http://www.processing.org/
http://www.cycling74.com/products/max5
http://www.fritzing.org/
http://fritzing.org/projects/
http://arduino.cc/en/uploads/Tutorial/SerialCallResponse-circuit3.png

V1.0

 126

126 Language Reference

 Language: Wiring/Arduino

 This program sends an ASCII A (byte of value 65) on startup

 and repeats that until it gets some data in.

 Then it waits for a byte in the serial port, and

 sends three sensor values whenever it gets a byte in.

 Thanks to Greg Shakar and Scott Fitzgerald for the improvements

 The circuit:

 * potentiometers attached to analog inputs 0 and 1

 * pushbutton attached to digital I/O 2

 Created 26 Sept. 2005

 by Tom Igoe

 modified 24 April 2012

 by Tom Igoe and Scott Fitzgerald

 This example code is in the public domain.

 http://www.arduino.cc/en/Tutorial/SerialCallResponse

 */

int firstSensor = 0; // first analog sensor

int secondSensor = 0; // second analog sensor

int thirdSensor = 0; // digital sensor

int inByte = 0; // incoming serial byte

void setup()

{

 // start serial port at 9600 bps:

 Serial.begin(9600);

 while (!Serial) {

 ; // wait for serial port to connect. Needed for Leonardo only

 }

 pinMode(2, INPUT); // digital sensor is on digital pin 2

 establishContact(); // send a byte to establish contact until

receiver responds

}

void loop()

{

V1.0

 127

127 Language Reference

 // if we get a valid byte, read analog ins:

 if (Serial.available() > 0) {

 // get incoming byte:

 inByte = Serial.read();

 // read first analog input, divide by 4 to make the range 0-

255:

 firstSensor = analogRead(A0)/4;

 // delay 10ms to let the ADC recover:

 delay(10);

 // read second analog input, divide by 4 to make the range 0-

255:

 secondSensor = analogRead(1)/4;

 // read switch, map it to 0 or 255L

 thirdSensor = map(digitalRead(2), 0, 1, 0, 255);

 // send sensor values:

 Serial.write(firstSensor);

 Serial.write(secondSensor);

 Serial.write(thirdSensor);

 }

}

void establishContact() {

 while (Serial.available() <= 0) {

 Serial.print('A'); // send a capital A

 delay(300);

 }

}

/*

Processing sketch to run with this example:

// This example code is in the public domain.

import processing.serial.*;

int bgcolor; // Background color

int fgcolor; // Fill color

Serial myPort; // The serial port

int[] serialInArray = new int[3]; // Where we'll put what we

receive

int serialCount = 0; // A count of how many bytes

we receive

int xpos, ypos; // Starting position of the ball

boolean firstContact = false; // Whether we've heard from

V1.0

 128

128 Language Reference

the microcontroller

void setup() {

 size(256, 256); // Stage size

 noStroke(); // No border on the next thing drawn

 // Set the starting position of the ball (middle of the stage)

 xpos = width/2;

 ypos = height/2;

 // Print a list of the serial ports, for debugging purposes:

 println(Serial.list());

 // I know that the first port in the serial list on my mac

 // is always my FTDI adaptor, so I open Serial.list()[0].

 // On Windows machines, this generally opens COM1.

 // Open whatever port is the one you're using.

 String portName = Serial.list()[0];

 myPort = new Serial(this, portName, 9600);

}

void draw() {

 background(bgcolor);

 fill(fgcolor);

 // Draw the shape

 ellipse(xpos, ypos, 20, 20);

}

void serialEvent(Serial myPort) {

 // read a byte from the serial port:

 int inByte = myPort.read();

 // if this is the first byte received, and it's an A,

 // clear the serial buffer and note that you've

 // had first contact from the microcontroller.

 // Otherwise, add the incoming byte to the array:

 if (firstContact == false) {

 if (inByte == 'A') {

 myPort.clear(); // clear the serial port buffer

 firstContact = true; // you've had first contact from the

microcontroller

 myPort.write('A'); // ask for more

 }

 }

 else {

V1.0

 129

129 Language Reference

 // Add the latest byte from the serial port to array:

 serialInArray[serialCount] = inByte;

 serialCount++;

 // If we have 3 bytes:

 if (serialCount > 2) {

 xpos = serialInArray[0];

 ypos = serialInArray[1];

 fgcolor = serialInArray[2];

 // print the values (for debugging purposes only):

 println(xpos + "\t" + ypos + "\t" + fgcolor);

 // Send a capital A to request new sensor readings:

 myPort.write('A');

 // Reset serialCount:

 serialCount = 0;

 }

 }

}

*/

/*

Max/MSP version 5 patch to run with this example:

----------begin_max5_patcher----------

3908.3oc6ckziiaiE9b0+J3XjCIXpp.WzZNMURv.jCInQ5fYNjNngrDssRKK

4nkp6JA4+973hrkrsjncKu0SRiXasQ83G+dKj7QV+4qtaxzrOxKlf9Zzuft6

t+7U2cm7ThSbm936lrL3igIAExaaRJ+CYS+sI2qtTI+ikxSuBMKNojm+N3D4

Aua5KkPwpuoUAkgKhSm+tbdXo5cQXVOhuGwrohuHD4WT7iXzupen3HY4BuqG

rH0kzrrzxzfkb4kdJONHo9JoUKiSS3kRgjt4jYUk0mkznPJh+CYgHewpSqty

xWVwUh3jIqkEYEfmqQEMr.ETbB+YddQbVZix+tIAqV03z203QDX4ukIKHm6W

ep3T0ovqOUN+435m2Rcx+5U0E+FTzVBh9xOsHXIh5YuADg1x4IYgumG0r3mj

shmFmtJmWvSKCJ0um0WNhOKnJo7c6GmZe8YAg7Ne381Rc2j44wQYoBgn0SJN

c8qCHH1RhQqJi7NRCVsmGt.pGUESCxE31zDdCV.PRyxRZeo0MU.WOHMdYPIu

LVIrT75BMd4p73zxVuHdZ.TFKJByyRRZUTpq77dtRDzZFx+PbT4BYY0DJgaO

dUcSvj0XTT7bdQY6yUFLun8YZo71jl0TIt042RYNLa4RfCTWfsznKWDWfJpl

tJHrbgV6t.AZInfzWP.4INpJHA8za91u+6QN1nk7hh.PpQwonxEbTAWzpilV

MimilkmsDtPbo3TPiUdY0pGa9ZShS4gYUJz1pwE1iwCpxbAgJI9DGGwWNzFT

ksLf3z7M0MybG6Hj1WngsD7VEXS8j5q7Wu5U0+39ir8QJJS5GMHdtRimL4m1

0e1EVX0YsE2YssINriYRoFRyWVMoRRUGQvnkmms3pnXDYHbBKMPpIOL5i1s8

3rMPwFcRCsGRyPH780.8HBnpWz.vlEQBWJ+0CSunehJSmJxiIZRtNGhhDYrU

jt3ZQyA2fHJhZDifXIQHUHH8oGYgOREI5nqHIzhFWUndPyBdB3VzHJGwUhkV

rgvRl2UCVNMHcd234lf1DN16HFEIdHt99A5hrp7v5WWMSBQZgMP.Tkwoqig8

V1.0

 130

130 Language Reference

W1.Sn1f3h3nn1wLpBypPDzlJ7XinEGkLiMPloWOhrgR7dpZWJQV1faDy35Qj

MThMFkWFGsJChQPqrQp8iorV6Q28HBVF4nMVDJj7f1xyYACFScisg.ruLHOW

uMUS4Am4pI4PTnHi.6bi02HNzSYnDBe4cgAgKzRk1jc8PJLoH3Ydz6.Q.7K8

tfxx73oUkJq1MGuCy5TpAi.POWZ3AenidLOOIaZPhdjZVW3sdk6LXEGzHb7p

Mfr7SEy3SXHyBSxJ3J2ncNNYVJsXG6Me10nj4cfCRFdTFjLo7q3SiCpjjEDM

.nvra.GN39.E2CDTHWXPo8.xzfqrHCHKnf5QUYUVdoZPUjCSC7LU8.XtTUXl

X8vr51GjwFGLC2AlMdLkU4RiaRrnmJuiudnDk0ZW+9p6TuKBe433JUCzp6fU

iOF0SUk2UQYUPNTEkiZubvKa1tsmgL5SCTXGHnnG0CceLpkpR9Rs28IUESWl

EwWNKfHlg.zj6Ee7S+nE8A+m9F7Cu40u9gMm+aRp3kYYkKd3GDOz5y+c7b96

K9gfvuIK68uNO6g2vUUL80WxihCVFD9vlB30e2SOrmxUb527RZ3nZNrljGrR

70vs1J9suWuZ3zaHVdG3RIJLgGj2Gfn6TcGcstEfvtH.hpFLlnBndjOLGQAI

z98BXc6yQxghmOn6gZqj0ShPOXhynLOjzCESt+XwE8TxrCvrdXo16rqnLgvb

HaFmbh29QD+K0DyNdjDwvzQL.NXpoMvoOBxkger0HwMRQbpbCh91fjjG9Idw

prTH9SzaSea5a.GQEPnnh43WNefMlsOgx18n.vgUNO.tKl7tDyI3iHzafJHZ

VVNedVEbGgYIY42i93prB0i7B7KT1LnnCiyAiinpBnsPV7OG.tYKfBsrJOkG

UG5aq26iJw6GyJ4eM5mEgEKaNQPMEBUp.t8.krplOVTlZdJAW27bjvGK7p2p

HQPgLOSJDYv4E9gQBYBjMUselRxDy+4WplIzm9JQAWOEmfb.E364B43CAwp5

uRRDEv8hWXprjADMUOYpOg9.bVQpEfhKgGCnAnk.rghBJCdTVICA3sDvAhE5

oU4hf67ea5zWPuILqrD8uiK+i477fjHIt9y.V88yy3uMsZUj7wnxGKNAdPx5

fAZMErDZOcJU4M01WFQokix.pKa+JE1WacmnKFeYd7b.0PeIzB8Kk+5WIZpB

Ejt34KJeHgOCh4HK8Y3QiAkAfs8TRhhOkG7AAGQf0qxyfmQxa+PLb8Ex.2PS

4BdO5GB9Hvg+cfJCMofAIMu9Qz+UPCjckqVJlEmyA8Bf.rC6.3hAEuG8TdTU

bZljQ0nr1ayIqmTwQYfyRGafZhur5vfuyMSqYNWmtAPwWHalDSuUgT0Bosh.

JpAR89Y6Ez5QEfPTQO4J0DHLInIliz8BZV2JfV3Bd36qsQwAVVXbr1BGXp6s

Sd5sSDruo74wofx.HxUgxQwTnMLqTXvRmiGh2PUZr5pBynKChjl6feNUjSRn

hEUfRPT1GfG9Ik4TQBm.hEZZ.bc38HjAMKGzDRijEm1ifx1dbgzQyKh6FZc3

wOCkRJH+KUh0daWs6wzltWx1puXxlWW6NZWY2JiTBzzILRIANku02NourySM

VI1VJTvQZff32AJr+dS9e34QAoA6EGXlGFH9yk7yyQAlVd3SR94g+TxOu1sU

Flgd6ICI96LzazyPu1cgqsZ8r74SgF.65+efbMf4pGHT7lgHh30Sha3N5Ia.

oqjMf7nsuMwycf7iYDybiAAVr3eC.oTMjpzEr8GDRc9bFRGHYXDrzg.Tlx+q

NW8TY1IkzCfZ2IftkQstbB08HUezoDS+oFyI.cWIhWBaDiUo7qIrDO7f.L6n

AXqCmyNT9act.z+Iv.GR0uES0ZXfjdz.IczAxQOUR+zvRsUTigRxmyPYeNlj

yXv8Peef2ZFzuLzWPPeAE8ELzWXYlhe8WzAcUg+b1UkIoCLzIH60zwASGXau

a1Dq2nUY.sox4vng+m0nACePngC9lEMLZMBPodOxf+yx5d4uMCTHm3kJvIIG

jcLMedEQldkjpoBkQyjY1Hk.hmSY95Iwos8NDb9VSlIWOIntqgxryUjL6bCJ

y1lli5tWWxrQ7YmqGYlc6shK1iY2dr0wtNjYxgHyzaq0OznY235awCr8zSz6

EGd1QNUKf.74dADTBbTbeotjpW95IolY0WpKYONY8M83Rx2MChx3fL+iG5Mm

tXpdmvXj8uTvaAL1WjbbarQD4Z6kXBpnm6a69oKV2PY9WY174IbC3CaRQ9iK

Q4sYGQpwdtZ5wFrc7n569.M83OOR5ydSB1ZcAWCxdbKuavz9LILxfD.wWO.W

Nq+Zu4Es+AP6s5p9jDWH8ET+c85+XbW0.N1nDCTD7U4DGc6ohnU019fS7kQ0

o43luuOGjv5agHp0DT.CysOfgLR3xXlXTUKm16RivRsn3z0O6cl3YScAvtrb

hwekGB7BZuqESUzBJWmCvK7t9HF8Ts6cUAPoFWso3aP8ApWyJ3wqOPo2pJDC

BQ0NI0Pj8QCQ2r1L5vKaU5lDRYX7yRur1UYYZmJQ9iDHwN9dndB5n5ejflmm

UsBwLHnDkKXWRuAkb3NeuzqRstiQGP.fCQFdHNzaE.8u58Nz9svFE9SGIE1X

V1.0

 131

131 Language Reference

kv9Iwfl1BdNWjA7xcThsWCS847loyFD8pZq2E2F04lYULzBTDYhrFSDDJdjo

fisN2NUN26e4xRu51zD5ZseJ4HC63WyIX6jRqsp0jangBnK.Qlo58PCpWevt

ahzqK7fbKsdX6R64aao8LmWhBPh9jKVAPMzb5a2cV6opdWHneMmqMEmAGsPh

ieigIjV+4gF1GgbMNXg+NH44YaRYyd..S1ThHzKhFwwGRaWVITqyj9FvPqMT

d0pDuSqDrOGF.Uogf.juCFi9WAUkYR+rFPanDcPG8SbrtjyG03ZQ8m3AqC5H

NcUUoXSwVrqXKVcZu.5ZnkwIfIVdXVZTwAuTTUiYuxwjZDK6ZgnRtYV8tJmP

hEcuXgz2Goxyaiw35UkaWbpqtfzD02oUkkYqi.YQbZqIIWrIljFolsdmMKFR

wCJ2+DTn.9QlkOld+d9Qy9IJdpLfy05Ik2b8GsG9h8rdm1ZFx1FrmmlA2snw

qI9Mcdi2nr6q3Gc87nLawurbw1dda+tMyGJ9HaQmlkGwy6davisMgrkM65oz

eulfYCzG46am8tSDK144xV4cEvVMTRXq9CIX8+ALNWb6sttKNkiZetnbz+lx

cQnb1Nds2C0tvLNe14hwQtxYbxhqc17qHfamUcZZ3NYSWqjJuiDoizZ+ud2j

naRK4k3346IIVdR1kKiQjM39adMamvc6n+Xp36Yf3SIGh3uKbquqs1JksTII

kuJ7RrZSFb2Cn9j5a6DT8cMo0iczU+lsYaU8YNVh5k5uzJLU26ZcfuJE6XLY

0mcRp9NTCp+L+Ap+in7Xf3b9jFQBLtIY06PbrGhcrU6N00Qlaf9N0+QPo9nS

P6qsI7aYNLSNOHpsAxis0ggnZLjYqyyFkdSqinVsPaqSDZaYBZ6c93uLCjGm

iCroJVLzU45iNE.pIUfs3TWb.0FejHp9uANr0GcJPTroFDNOHpkIweLnI1QT

dHl3P7LhOF3Ahd9rnvLwAMy5JSdNezGlsIsW9mW44r26js+alhxjlkdhN0YE

YqiH5MTeWo6D4Qm.ieLS7OynmuVGSbmbFUlnWWhiQlhOeN+Yl35bq.tGo9JR

cj8AVqdz7nSgVB9zNj.FTOU68o5d9KO5TUOGxVMw+jTO8T6wqD0hEiHsOJO5

TTOMoS.zlqN0SpZjz6GcH05ylVM0jwuidlkmAif374ih5M5QPfccr8Hqifff

otN8pt3hUcaWu8nosBhwmD0Epw5KmoF.poxy4YHbnjqfPJqcM3Y2vun7nS.i

f3eETiqcRX2LR.4QmhZrkoCSGwzZrqKHrVR8caari+55d2caPqmq5n.ywe8Q

WrZL9fpwVXeaogMByE6y1SMdjk+gbavbN7fYvVtt1C2XwHJSzpk+tidUO25H

UB9onw9mlFQ10fhpZBaDatcMTTEGcJpwzqg92qqiVtM6Cu0IRQ0ndEdfCAqV

l0qYAUmPrctbxO4XCuPMa1asYzKDks1D52ZCne6Mednz9qW8+.vfqkDA

-----------end_max5_patcher-----------

*/

[Get Code]

Processing Code

Copy the Processing sketch from the code sample above. As you change the value of the

analog sensor, you'll get a ball moving onscreen something like this. When you turn the

switch off, the ball will disappear:

http://arduino.cc/en/Tutorial/SerialCallResponse?action=sourceblock&num=1

V1.0

 132

132 Language Reference

Max Code

The max patch looks like this. Copy the text from the code sample above.

V1.0

 133

133 Language Reference

Serial Call and Response (handshaking) with ASCII -

encoded output

This example demonstrates string-based communication from the Arduino board to the

computer using a call-and-response (handshaking) method.

The sketch sends an ASCII string on startup and repeats that until it gets a serial

response from the computer. Then it sends three sensor values as ASCII-encoded

numbers, separated by commas and terminated by a linefeed and carriage return, and

waits for another response from the computer.

http://arduino.cc/en/uploads/Tutorial/Max5SerialCallResponse.png

V1.0

 134

134 Language Reference

You can use the Arduino serial monitor to view the sent data, or it can be read by

Processing (see code below), Flash, PD, Max/MSP (see example below), etc. The

examples below split the incoming string on the commas and convert the string into

numbers again.

Compare this to the Serial call and response example. They are similar, in that both use a

handshaking method, but this one encodes the sensor readings as strings, while the other

sends them as binary values. While sending as ASCII-encoded strings takes more bytes, it

means you can easily send values larger than 255 for each sensor reading. It's also easier

to read in a serial terminal program.

Hardware Required

Arduino Board

(2) analog sensors (potentiometer, photocell, FSR, etc.)

(1) momentary switch/button

(3) 10K ohm resistors

breadboard

hook-up wire

Software Required

Processing or

Max/MSP version 5

Circuit

Connect analog sensors to analog input pin 0 and 1 with 10Kohm resistors used as voltage

dividers. Connect a pushbutton or switch connected to digital I/O pin 2 with a 10Kohm

resistor as a reference to ground.

click the image to enlarge

image developed using Fritzing. For more circuit examples, see the Fritzing project page

Schematic

click the image to enlarge

http://arduino.cc/en/Tutorial/SerialCallResponse
http://www.processing.org/
http://www.cycling74.com/products/max5
http://www.fritzing.org/
http://fritzing.org/projects/
http://arduino.cc/en/uploads/Tutorial/SerialCallResponse-circuit3.png

V1.0

 135

135 Language Reference

Code

/*

 Serial Call and Response in ASCII

 Language: Wiring/Arduino

 This program sends an ASCII A (byte of value 65) on startup

 and repeats that until it gets some data in.

 Then it waits for a byte in the serial port, and

 sends three ASCII-encoded, comma-separated sensor values,

 truncated by a linefeed and carriage return,

 whenever it gets a byte in.

 Thanks to Greg Shakar and Scott Fitzgerald for the improvements

 The circuit:

 * potentiometers attached to analog inputs 0 and 1

 * pushbutton attached to digital I/O 2

 Created 26 Sept. 2005

http://arduino.cc/en/uploads/Tutorial/SerialCallResponse_sch.png

V1.0

 136

136 Language Reference

 by Tom Igoe

 modified 24 Apr 2012

 by Tom Igoe and Scott Fitzgerald

 This example code is in the public domain.

 http://www.arduino.cc/en/Tutorial/SerialCallResponseASCII

 */

int firstSensor = 0; // first analog sensor

int secondSensor = 0; // second analog sensor

int thirdSensor = 0; // digital sensor

int inByte = 0; // incoming serial byte

void setup()

{

 // start serial port at 9600 bps and wait for port to open:

 Serial.begin(9600);

 while (!Serial) {

 ; // wait for serial port to connect. Needed for Leonardo only

 }

 pinMode(2, INPUT); // digital sensor is on digital pin 2

 establishContact(); // send a byte to establish contact until

receiver responds

}

void loop()

{

 // if we get a valid byte, read analog ins:

 if (Serial.available() > 0) {

 // get incoming byte:

 inByte = Serial.read();

 // read first analog input:

 firstSensor = analogRead(A0);

 // read second analog input:

 secondSensor = analogRead(A1);

 // read switch, map it to 0 or 255L

 thirdSensor = map(digitalRead(2), 0, 1, 0, 255);

 // send sensor values:

 Serial.print(firstSensor);

 Serial.print(",");

V1.0

 137

137 Language Reference

 Serial.print(secondSensor);

 Serial.print(",");

 Serial.println(thirdSensor);

 }

}

void establishContact() {

 while (Serial.available() <= 0) {

 Serial.println("0,0,0"); // send an initial string

 delay(300);

 }

}

/*

Processing code to run with this example:

// This example code is in the public domain.

import processing.serial.*; // import the Processing serial

library

Serial myPort; // The serial port

float bgcolor; // Background color

float fgcolor; // Fill color

float xpos, ypos; // Starting position of the ball

void setup() {

 size(640,480);

 // List all the available serial ports

 println(Serial.list());

 // I know that the first port in the serial list on my mac

 // is always my Arduino module, so I open Serial.list()[0].

 // Change the 0 to the appropriate number of the serial port

 // that your microcontroller is attached to.

 myPort = new Serial(this, Serial.list()[0], 9600);

 // read bytes into a buffer until you get a linefeed (ASCII 10):

 myPort.bufferUntil('\n');

 // draw with smooth edges:

 smooth();

V1.0

 138

138 Language Reference

}

void draw() {

 background(bgcolor);

 fill(fgcolor);

 // Draw the shape

 ellipse(xpos, ypos, 20, 20);

}

// serialEvent method is run automatically by the Processing applet

// whenever the buffer reaches the byte value set in the

bufferUntil()

// method in the setup():

void serialEvent(Serial myPort) {

 // read the serial buffer:

 String myString = myPort.readStringUntil('\n');

 // if you got any bytes other than the linefeed:

 myString = trim(myString);

 // split the string at the commas

 // and convert the sections into integers:

 int sensors[] = int(split(myString, ','));

 // print out the values you got:

 for (int sensorNum = 0; sensorNum < sensors.length; sensorNum++)

{

 print("Sensor " + sensorNum + ": " + sensors[sensorNum] +

"\t");

 }

 // add a linefeed after all the sensor values are printed:

 println();

 if (sensors.length > 1) {

 xpos = map(sensors[0], 0,1023,0,width);

 ypos = map(sensors[1], 0,1023,0,height);

 fgcolor = sensors[2];

 }

 // send a byte to ask for more data:

 myPort.write("A");

 }

*/

/*

V1.0

 139

139 Language Reference

Max/MSP version 5 patch to run with this example:

----------begin_max5_patcher----------

3640.3oc6cs0jZajE94Y9UzKkeHoVloTeSHkm1II0VkeHIthSs6C1obIjZ.E

KjHRhY7jT4+9d5KBj.jTCAXfoV6x.sj5VmyWet127ed6MCFm8EQw.z2f9.5l

a9yau4F0kjW3FS4aFLO3KgIAEpGaPX174hzxAC02qT7kR80mkkUHPAnBQdbP

BZQVdIZRd1bT4r3BDTmkU0YQPY3r3zoeJWDVpe2ttr6cFhvXt7KhyH8W26f9

USkhiTulrw+1czQUszjrzxzf4B0sdP9dqtS5x4woIhREQiWewrkkUW0oViTD

+GpFASt2Qd0+51akeLzRPIU7DPXagIFnH.4653f9WAKKyxVHRQNcfDXlih2w

puvbdWHAlcTPBRKHg4x5mr74EBMINHV1+iFL.8qG.VMWTTDLUrs.TBH+zAvP

nTEhvvxun9pBd6FWH38DWH6DWv6ItbX.RKBOJ7XbP5ztvDesvhBLb6VTwcOg

DmiBjnXfiIrjjED0CpP490PEmtPExwQA5EGUVjK.CKQJqtcYl0nCMRAJi76D

Z7dQflCCVV1i+ENiTy3AwYaghEA4.KVJx+jHMXbhntJPceO3iBpPOPKtZqtU

jUoXtw28fkEimmEIlOI.3Q4iMT9wO+iLxc9O7sN28928t6Ve8uMYo.7EUN6t

ePVoUW+6E4hOW7CAgeaV1meWd1cuWnYLy8mKhhClGDd25F3ce+C2si1Ud42+

bZ3IQJOXg7q96t80e50YvDjqHw7VvkRTXhHHuKEerRwmqfBFsS.g9h.HZN3X

hJf5Qd+xHZHgzc.mrqeYjbn4E84evfIDUjDtjNwD2iRHV6anmGdbmsfKxTTJ

dd93rjtBJ2U42foCwZDqKfYzKkrh4VgYIY4FxVRmN2646f8ck+xw7KrjzOlZ

ZYAVfdZgKlaWn29FzA8nfdR2quj.3ejflBJnKr.Dwpf13cZBm85P0rPj.rOB

6fvztPFGkVI0SAPi5NKHmih7E8Ph2e35uOtYN6x6JEQtJVWpV7gRtm2dZy9W

+YMCxLHrEvAknQktDVdY7v82SFosgmSGHO56BRRt6mEEKxRKDnGd+2812h9X

5GSeODOcAJ.M9YHHAfjPkyD0GIugn.Ht6bQ.7TTS8DoPtCQCQxWobX+jYPUJ

hPn3zgnx7kogphieFZ2j3TwDgH5dzaUscJ77kEnIY4hoYKglVYzcH5KKxJzu

qmgegxl.0MLNGBNDsr.5IUz0iAPZFE.0TtLOEdClQYrAAeORwW+XVo3aP+hb

DHUBCH.mfbEKfGOPyjQhGiCAdNUUBRcQjij4X.u5MZRDzHSyTDQFbcYdHHIM

AzlF1lnoLjKG8UZH5guV1vEkA4kKWbOPGPC9YgjNdJHVy+ZJQ1.Cq.FUWQpA

ke.8DbUwi.YEWBUCDhPyAXCEETFbuhICg9EIRiYnGVjKyt0+io.r+9vrxRz+

Nt7OlJxCRhT35u.X0amlI9X5xEQppQwneJrLarPVU7JkGYWVHz2njevz1UoX

XkoEWOkxDWO9kXYocoTwuzF611zXJyimB3F5qf9nOT9qesryJTJ1EOcV4cIh

IPVWYoOBUMFTl.4sGRRzRT4AOIkRjn8h7LnNJI2mhg6OSk5JZrPJ4i9gfu.R

w+NHLCcpfAMij88n+qTPPMt4UTwj3bAnY.h.aIe.RiAEeF8Pdzx3zLkLUs1Z

mcmczah0FH4ZmpLcp.rVbX3d0zalKhSiKAxBZ9BU2zTP3uPobgL1Q.U0.kl+

jcBZj1AMOpzsJYjdz0n53QXsfYrqELKblH7yUFoDfPVXbrwDGXqCjwjviT7a

rXZbpxOvxzXvpOnPH0GlTJMZog8l2UZJcdPjxjG7ywIYgeFULaInFDk8jpxZ

apvMA4cv9X.7.vaRRGFAcPYHMR0dF2BZC7wEJ2TOKeZnCRD+HzJo.OLWSW6r

qk2wfI6pGf.pdjC4rpfL2YeK8JYloVf93.ocJEvocv9wAcEiMQgBtl.lb0y9

heKnvtGRs+iHOJHM3uaZbN1jDrhED4FfwfLPCEmH8jV.BB0Z+aF.Vkqc4apU

EIb9a5zAcGt5Rf3WdsNJ3R4PXDU0mouHzIca0MWO.KpQjT8oq1SIyqV3mP24

ToxfHpdyOPNqgwoK.W.fxfRNtwsiDSBVlT9ociSMu+jfPQqUtk9paFLMONJK

URFMpq7xUuvOXF1HBuN6ndhzfE6nxPXQkKKFGjKQNyHtSptYYVVRyaspyBD3

CRiA0YQYrlbgHdptY77E4wZk5UWSOf9yJByyRRZzT5673NtiNrvmhiJmoZq5

fI73wKp5DFrBihhmBNxadsxfoEMuRiIbutfVcM4FWuyr.2bvrlNF5.3U+q9C

sKaa5jkMt70iSd8bC2ZbEFUuAa0DWqYF0tJ91p43649br2nZ2usLGuoxrnQq

6TArNx+1CjRLPpVWf62Kj59ZFRa38Y6D0kRo8AnT8b0g0e4p8+f6.P4sBnaX

V1.0

 140

140 Language Reference

TqMmPsOdOcjG+dMtOmdzcgLdIGqjX0J+FAVrmSu.L8fAX19Ky1C.e1.z+IB2

qpeCIUV+.I4fARxQGH0i.9ECVZrhZMTheMCkc4XRMsoCgbef2ZFjaF5MXzaH

n2PQugYmhe0WjdcU47Z1Ukhb6CwFISy2HNtcvtaNRWdshHNVgHcNMUlopRm4

tJByyLXfI0UN6GM7eUiFTm8BMbctZQC8atOegDu6oveXrgpeaGnfaETvsBJN

6AKuNsT4n+zRVXJtQd+ciEEYKyCq.8ptRTSdBRQrLNcUd5eXcjoa7fyhihZl

UrNQxBYZo5g.vpdt8klkJi1QyPvdH7UFMStbvYu8Amu1nY7ECMKGXBqnY2KH

Z18Jjl4aYNnEYiQWVzrUxytWNzL0VZ14xglI6isN5kAMi2GZlbYPyNma6FqC

aJRs9qEogO+ovfvYFxxjGV07cLnH3QQzm.R.BG7SAkk4wiWVpC2p9jwX23ka

0zSz4M6e1QZY.8mljMNHwLURqZ9FuzslMk8ZJXtcMPeblVut1XYDhdMCpmjZ

8BAqsU9DezKxJAa8Hmbbfi+wccuVv7c0qELrEHB+UAhHWzCfCbKPEyBki24Z

clythVwfkYSmlHrPdX8tC5v1iPb5ArPuOWc8NVrRZspq24UxhE0wBcAsMyt2

2LLuqvkKZRXjEq5CM6S3tq9Zm6HD+8Prm0F+jDWn1paUe+2ZuF259kxkiR5W

Qf6vzKBtMm+gFrMeuWsKW.6B61VyWOFjz0Zsmwza+.ikxQcAL3iDtbLWMTKm

OtyMEFcjWM9iu0rMa81D8kUl3v2ewcHWP5B2HX6kK7t7DL5fs6JVIrO0Z1l3

bEpOP3zih9.gbspPzKDYbRVAQ7CFhtZsYzhW1ko0WEJcG3oAC0aRIyxKsUEI

+iDPwOLfp0uNA68MmtSUSmRuNb8d1ttWya7sVWf5Iwf.1LQtZUnqNvT1bS6z

E5o2vfqNSH5bufQbuZV09M.E04Mj8XBUiBqNGl5FSt3NGlZaGRpV6wc4kiWi

q0twaaORhul1jjsIi7cMjQlJJUaQuhR495nlfRQWRJXkrgmMGXWjKM4jdGJH

yovkl4HUetutzWuY5tjFHneGn77rtG3iJ92whCVJxKhBwgGtRaFIzabfNrRn

WThd9q24vsZjf9JvHwOKBhprFDmtXYIZ7xISjaO1GE4OK2V9yiS.qFhvrznh

8cKyMZs7EVepT01FlCe0rIC0lUk6NX4N9syCyAE660+ovE9hyGqjaGurrLak

G0YwoMlFO4YMSZjd9DcWucsjUr1Yqgy8TluCY3N9Q8.+k0JCD3ZTS0CW8Qyb

s19nOxrgjw7VFU+3ooYviK66pCfimt8AAxHOOBkK+EajC2yayWtciMzgdvpM

NKORj29YyGcS4wFVlql0wcZTg1yw5wvMNiTpuUzpu.Y0miRlgO0w7wpZI2Em

SUBGayVM5eqU4C+rV4ZSPkvXqLJbAHlR3mKwT5ISL8+Kv0k.GWEKwpP3ewk3

7omKIN7EtDmp4ZtHk0BfatXgLhgasHgZrVYaY8AIO7fq8Pas1fFzjd4ibwpd

XO4GXOeOG+lcyasNh1R+wVx2yBxeTOT+wiZFYA0P48PNyiiVjAhJlNT4Qvpb

uj3aN2qYqJcBfSWhMbf+YCPcsfbNeTC2l9WNc+5eIlkST0RJgupzIn+kysgC

X6GGXnYpdYfP0GP6MKQXM3N1Ih6XVvcLuym7B0B5w8v.ahqBI49qJcJ.TaX.

N+xBP4NGHhhqYfkRNM9q1f3ZweqyYCQYdGCSZGQ5wBx47o.Ssw+CkcgQOmud

KZic4QKzCw+7ROm8nY2LfMsEDtdfeMKSn5Ev95IQhorcqJcBrzPsQUhRNe8M

1X6lhOezC4Bidv1nKcFs8YimJ9n8RWZXiO7aSCxDRLdjd91qU5TnmXCeRvmR

9jnm7b15RmJ9rO4Kr+IgO04BfczyOpqx9npzofOsIlaR8Mo0IUMR48i0mYly

lVMwlw6gbloGRezy4yKEw6BHBBWik.eRi3DNM5KDahS.SOE1EjmXl7Uyqo9T

AtQAO8fG3oLX3cZFxKh0FLNSRfDaoG74gdvW.ZDU9FMGSdFMBt+IQh.6eIvw

FujTkJREGKKcJ3X2WtXf7Ub1HywEqxh2tJnE.FcZhMByrcXQw1x+bOWJYjpy

lv8oq55aEHLcwD8hJjxbVU5EigcNtL7Ql76KVVp69Huhcb87vpoCkRYT+96v

Hd5Ay1rofMqm+FkLYvv0+GL3FkL6bLp21kL6QFNV8BNM48foWBV4zt1wXm5V

4jkNEbL45dtNw13Iltmi9sAyY0S0l8BR+3yWjVXax7eOmKrp4m0QKIal6VYo

SAf5XQxSrCa5l0qk45k5kAzqEgMNgzkz9FmL5abpnu4IhNzZ+0s+OKCSg0.

-----------end_max5_patcher-----------

*/

[Get Code]

http://arduino.cc/en/Tutorial/SerialCallResponseASCII?action=sourceblock&num=1

V1.0

 141

141 Language Reference

Processing Code

Copy the Processing sketch from the code sample above. As you change the value of the

analog sensor, you'll get a ball moving onscreen something like this. When you turn the

switch off, the ball will disappear:

Max Code

The max patch looks like this. Copy the text from the code sample above and paste it into

a new Max window

V1.0

 142

142 Language Reference

http://arduino.cc/en/uploads/Tutorial/Max5SerialCallResponseASCII.png

V1.0

 143

143 Language Reference

Stream

Stream is the base class for character and binary based streams. It is not called directly,

but invoked whenever you use a function that relies on it.

Stream defines the reading functions in Arduino. When using any core functionality that

uses a read() or similar method, you can safely assume it calls on the Stream class. For

functions like print(), Stream inherits from the Print class.

Some of the libraries that rely on Stream include :

Serial

Wire

Ethernet Client

Ethernet Server

SD

Functions

available()

read()

flush()

find()

findUntil()

peek()

readBytes()

readBytesUntil()

parseInt()

parsefloat()

setTimeout()

http://arduino.cc/en/Reference/Serial
http://arduino.cc/en/Reference/Wire
http://arduino.cc/en/Reference/Ethernet
http://arduino.cc/en/Reference/Ethernet
http://arduino.cc/en/Reference/SD
http://arduino.cc/en/Reference/StreamAvailable
http://arduino.cc/en/Reference/StreamRead
http://arduino.cc/en/Reference/StreamFlush
http://arduino.cc/en/Reference/StreamFind
http://arduino.cc/en/Reference/StreamFindUntil
http://arduino.cc/en/Reference/StreamPeek
http://arduino.cc/en/Reference/StreamReadBytes
http://arduino.cc/en/Reference/StreamReadBytesUntil
http://arduino.cc/en/Reference/StreamParseInt
http://arduino.cc/en/Reference/StreamParseFloat
http://arduino.cc/en/Reference/StreamSetTimeout

V1.0

 144

144 Language Reference

1 available()

Description

available() gets the number of bytes available in the stream. This is only for bytes that

have already arrived.

This function is part of the Stream class, and is called by any class that inherits from it

(Wire, Serial, etc). See the Stream class main page for more information.

Syntax

stream.available()

Parameters

stream : an instance of a class that inherits from Stream.

Returns

int : the number of bytes available to read

See also

Stream

2 read()

Description

read() reads characters from an incoming stream to the buffer.

This function is part of the Stream class, and is called by any class that inherits from it

(Wire, Serial, etc). See the Stream class main page for more information.

Syntax

stream.read()

Parameters

stream : an instance of a class that inherits from Stream.

Returns

the first byte of incoming data available (or -1 if no data is available)

See also

Stream

3 flush()

Description

flush() clears the buffer once all outgoing characters have been sent.

This function is part of the Stream class, and is called by any class that inherits from it

(Wire, Serial, etc). See the Stream class main page for more information.

Syntax

stream.flush()

Parameters

stream : an instance of a class that inherits from Stream.

Returns

boolean

http://arduino.cc/en/Reference/Stream
http://arduino.cc/en/Reference/Stream
http://arduino.cc/en/Reference/Stream
http://arduino.cc/en/Reference/Stream
http://arduino.cc/en/Reference/Stream

V1.0

 145

145 Language Reference

See also

4 find()

Description

find() reads data from the stream until the target string of given length is found The

function returns true if target string is found, false if timed out.

This function is part of the Stream class, and is called by any class that inherits from it

(Wire, Serial, etc). See the Stream class main page for more information.

Syntax

stream.find(target)

Parameters

stream : an instance of a class that inherits from Stream.

target : the string to search for (char)

Returns

boolean

See also

Stream

Reference H

5 findUntil()

Description

findUntil() reads data from the stream until the target string of given length or

terminator string is found.

The function returns true if target string is found, false if timed out

This function is part of the Stream class, and is called by any class that inherits from it

(Wire, Serial, etc). See the Stream class main page for more information.

Syntax

stream.findUntil(target, terminal)

Parameters

stream : an instance of a class that inherits from Stream.

target : the string to search for (char)

terminal : the terminal string in the search (char)

Returns

boolean

6 peek()

Read a byte from the file without advancing to the next one. That is, successive calls to

peek() will return the same value, as will the next call to read().

This function is part of the Stream class, and is called by any class that inherits from it

(Wire, Serial, etc). See the Stream class main page for more information.

Syntax

stream.peek()

Parameters

stream : an instance of a class that inherits from Stream.

http://arduino.cc/en/Reference/Stream
http://arduino.cc/en/Reference/Stream
http://arduino.cc/en/Reference/HomePage
http://arduino.cc/en/Reference/Stream
http://arduino.cc/en/Reference/Stream

V1.0

 146

146 Language Reference

Returns

The next byte (or character), or -1 if none is available.

See Also

7 readBytes()

Description

readBytes() read characters from a stream into a buffer. The function terminates if the

determined length has been read, or it times out (see setTimeout()).

readBytes() returns the number of characters placed in the buffer. A 0 means no valid

data was found.

This function is part of the Stream class, and is called by any class that inherits from it

(Wire, Serial, etc). See the Stream class main page for more information.

Syntax

stream.readBytes(buffer, length)

Parameters

stream : an instance of a class that inherits from Stream.

buffer: the buffer to store the bytes in (char[] or byte[])

length : the number of bytes to read (int)

Returns

byte

8 readBytesUntil()

Description

readBytesUntil() read characters from a stream into a buffer. The function terminates if

the terminator character is detected, the determined length has been read, or it times out

(see setTimeout()).

readBytesUntil() returns the number of characters placed in the buffer. A 0 means no

valid data was found.

This function is part of the Stream class, and is called by any class that inherits from it

(Wire, Serial, etc). See the Stream class main page for more information.

Syntax

stream.readBytesUntil(character, buffer, length)

Parameters

stream : an instance of a class that inherits from Stream.

character : the character to search for (char)

buffer: the buffer to store the bytes in (char[] or byte[]) length : the number of bytes to

read (int)

Returns

byte

See also

Stream

Reference Home

http://arduino.cc/en/Reference/StreamSetTimeout
http://arduino.cc/en/Reference/Stream
http://arduino.cc/en/Reference/StreamSetTimeout
http://arduino.cc/en/Reference/Stream
http://arduino.cc/en/Reference/Stream
http://arduino.cc/en/Reference/HomePage

V1.0

 147

147 Language Reference

9 parseInt()

Description

parseInt() returns the first valid (long) integer number from the current position. Initial

characters that are not integers (or the minus sign) are skipped. parseInt() is terminated

by the first character that is not a digit.

This function is part of the Stream class, and is called by any class that inherits from it

(Wire, Serial, etc). See the Stream class main page for more information.

Syntax

stream.parseInt(list)

Parameters

stream : an instance of a class that inherits from Stream.

list : the stream to check for ints (char)

Returns

int

See

10 parseFloat()

Description

parseFloat() returns the first valid floating point number from the current position.

Initial characters that are not digits (or the minus sign) are skipped. parseFloat() is

terminated by the first character that is not a floating point number.

This function is part of the Stream class, and is called by any class that inherits from it

(Wire, Serial, etc). See the Stream class main page for more information.

Syntax

stream.parseFloat(list)

Parameters

stream : an instance of a class that inherits from Stream.

list : the stream to check for floats (char)

Returns

float

See

11 setTimeout()

Description

setTimeout() sets the maximum milliseconds to wait for stream data, it defaults to 1000

milliseconds. This function is part of the Stream class, and is called by any class that

inherits from it (Wire, Serial, etc). See the Stream class main page for more information.

Syntax

stream.setTimeout(time)

Parameters

stream : an instance of a class that inherits from Stream.

time : timeout duration in milliseconds (long).

http://arduino.cc/en/Reference/Stream
http://arduino.cc/en/Reference/Stream
http://arduino.cc/en/Reference/Stream

V1.0

 148

148 Language Reference

Parameters

None

	Language Reference
	Structure
	setup()
	Example

	loop()
	Example

	Control Structures
	if (conditional) and ==, !=, <, > (comparison operators)
	Comparison Operators:
	Warning:

	if / else
	for statements
	Desciption
	Example
	Coding Tips

	switch / case statements
	Example
	Syntax
	Parameters

	while loops
	Description
	Syntax
	Parameters
	Example

	do - while
	Example

	break
	Example

	continue
	Example

	return
	Syntax:
	Parameters
	Examples:

	goto
	Syntax
	Tip
	Example

	Further Syntax
	; semicolon
	Example
	Tip

	{} Curly Braces
	The main uses of curly braces
	Functions
	Loops
	Conditional statements

	Comments
	Example

	Comments
	Example

	#Define
	Syntax
	Example
	Tip

	#include
	Example

	Arithmetic Operators
	= assignment operator (single equal sign)
	Example
	Programming Tips

	Addition, Subtraction, Multiplication, & Division
	Description
	Examples
	Syntax
	Parameters:
	Programming Tips:

	% (modulo)
	Description
	Syntax
	Parameters
	Returns
	Examples
	Example Code
	Tip

	Comparison Operators
	if (conditional) and ==, !=, <, > (comparison operators)
	Comparison Operators:
	Warning:

	Boolean Operators
	&& (logical and)
	|| (logical or)
	! (not)
	Warning
	Examples
	See also

	The pointer operators
	& (reference) and * (dereference)

	Bitwise Operators
	Bitwise AND (&), Bitwise OR (|), Bitwise XOR (^)
	Bitwise AND (&)
	Description and Syntax
	Bitwise AND (&)
	Bitwise OR (|)
	Example Program
	Bitwise XOR (^)
	bitshift left (<<), bitshift right (>>)
	Description
	Syntax
	Parameters
	Example:

	Compound Operators
	++ (increment) / -- (decrement)
	Description
	Syntax
	Parameters
	Returns
	Examples

	+= , -= , *= , /=
	Description
	Syntax
	Parameters
	Examples

	compound bitwise AND (&=)
	Description
	Syntax:
	Parameters
	Example:

	compound bitwise OR (|=)
	Description
	Syntax:
	Parameters
	Example:

	Variables
	Constants
	Defining Logical Levels, true and false (Boolean Constants)
	false
	true

	Defining Pin Levels, HIGH and LOW
	Defining Digital Pins, INPUT, INPUT_PULLUP, and OUTPUT
	Pins Configured as INPUT
	Pins Configured as INPUT_PULLUP
	Pins Configured as Outputs

	Data Types
	void
	Example:

	boolean
	Example

	char
	Description
	Example

	unsigned char
	Description
	Example

	byte
	Description
	Example

	int
	Description
	Example
	Syntax
	Coding Tip

	unsigned int
	Description
	Example
	Syntax
	Coding Tip

	word
	Description
	Example

	long
	Description
	Example
	Syntax

	unsigned long
	Description
	Example
	Syntax

	float
	Description
	Examples
	Syntax
	Example Code

	double
	Desciption
	Tip

	string
	Description
	Examples
	Example

	Arrays
	Creating (Declaring) an Array
	Accessing an Array
	To assign a value to an array:
	To retrieve a value from an array:
	Arrays and FOR Loops
	Example

	Conversion
	char()
	Description
	Syntax
	Parameters
	Returns

	byte()
	Description
	Syntax
	Parameters
	Returns

	int()
	Description
	Syntax
	Parameters
	Returns

	word()
	Description
	Syntax
	Parameters
	Returns

	long()
	Description
	Syntax
	Parameters
	Returns

	float()
	Description
	Syntax
	Parameters
	Returns
	Notes

	Variable Scope & Qualifiers
	Variable Scope
	Example:

	Static
	Example

	volatile keyword
	Example

	const keyword
	Example
	#define or const

	Utilities
	sizeof
	Description
	Syntax
	Example code

	PROGMEM
	Syntax
	Example
	The F() macro

	Functions
	Digital I/O
	pinMode()
	Description
	Syntax
	Parameters
	Returns
	Example
	Note

	digitalWrite()
	Description
	Syntax
	Parameters
	Returns
	Example
	Note

	digitalRead()
	Description
	Syntax
	Parameters
	Returns
	Example
	Note

	Analog I/O
	analogReference(type)
	Description
	Parameters
	Returns
	Note
	Warning

	analogRead()
	Description
	Syntax
	Parameters
	Returns
	Note
	Example

	analogWrite()
	Description
	Syntax
	Parameters
	Returns
	Notes and Known Issues
	Example

	Advanced I/O
	tone()
	Description
	Syntax
	Parameters
	Returns

	noTone()
	Description
	Syntax
	Parameters
	Returns

	shiftOut()
	Description
	Syntax
	Parameters
	Returns
	Note
	Example

	shiftIn()
	Description
	Syntax
	Parameters
	Returns

	pulseIn()
	Description
	Syntax
	Parameters
	Returns
	Example

	Time
	millis()
	Description
	Parameters
	Returns
	Example
	Tip:

	micros()
	Description
	Parameters
	Returns
	Example

	delay()
	Description
	Syntax
	Parameters
	Returns
	Example
	Caveat

	delayMicroseconds()
	Description
	Syntax
	Parameters
	Returns
	Example
	Caveats and Known Issues

	Math
	min(x, y)
	Description
	Parameters
	Returns
	Examples
	Note
	Warning

	max(x, y)
	Description
	Parameters
	Returns
	Example
	Note
	Warning

	abs(x)
	Description
	Parameters
	Returns
	Warning

	constrain(x, a, b)
	Description
	Parameters
	Returns
	Example

	map(value, fromLow, fromHigh, toLow, toHigh)
	Description
	Parameters
	Returns
	Example
	Appendix

	pow(base, exponent)
	Description
	Parameters
	Returns
	Example

	sqrt(x)
	Description
	Parameters
	Returns

	Trigonometry
	sin(rad)
	Description
	Parameters
	Returns

	cos(rad)
	Description
	Parameters
	Returns

	tan(rad)
	Description
	Parameters
	Returns

	Random Numbers
	randomSeed(seed)
	Description
	Parameters
	Returns
	Example

	random()
	Description
	Syntax
	Parameters
	Returns
	Note:
	Example

	Bits and Bytes
	lowByte()
	Description
	Syntax
	Parameters
	Returns

	highByte()
	Description
	Syntax
	Parameters
	Returns

	bitRead()
	Description
	Syntax
	Parameters
	Returns

	bitWrite()
	Description
	Syntax
	Parameters
	Returns

	bitSet()
	Description
	Syntax
	Parameters
	Returns

	bitClear()
	Description
	Syntax
	Parameters
	Returns

	bit()
	Description
	Syntax
	Parameters
	Returns

	External Interrupts
	attachInterrupt()
	Description
	Syntax
	Parameters
	Returns
	Note
	Using Interrupts
	Example

	detachInterrupt()
	Description
	Syntax
	Parameters
	See also

	Interrupts
	interrupts()
	Description
	Parameters
	Returns
	Example

	noInterrupts()
	Description
	Parameters
	Returns
	Example

	Communication
	Serial
	Functions
	Examples

	1 if (Serial)
	Description
	Syntax
	Parameters
	Returns
	Example:

	2 available()
	Description
	Syntax
	Parameters
	Returns

	Example

	3 begin()
	Description
	Syntax
	Parameters
	Returns
	Example:
	See also

	4 end()
	Description
	Syntax
	Parameters
	Returns

	5 Serial.find()
	Description
	Syntax
	Parameters
	Returns
	See als

	6 Serial.findUntil()
	Description
	Syntax
	Parameters
	Returns
	See als

	7 flush()
	Description
	Syntax
	Parameters
	Returns
	See als

	8 Serial.parseFloat()
	Description
	Syntax
	Parameters
	Returns

	9 parseInt()
	Description
	Syntax
	Parameters
	Returns

	Example

	10 peek()
	Description
	Syntax
	Parameters
	Returns

	11 print()
	Description
	Syntax
	Parameters
	Returns
	Example:
	Programming Tips
	See also

	12 println()
	Description
	Syntax
	Parameters
	Returns
	Example:
	See also

	13 read()
	Description
	Syntax
	Parameters
	Returns

	Example

	14 Serial.readBytes()
	Description
	Syntax
	Parameters
	Returns
	See

	15 Serial.readBytesUntil()
	Description
	Syntax
	Parameters
	Returns
	See

	16 Serial.setTimeout()
	Description
	Syntax
	Parameters
	Parameters
	See a

	17 write()
	Description
	Syntax
	Parameters
	Returns
	Example

	18 serialEvent()
	Description
	Syntax
	Parameters
	Examples
	Read ASCII String
	Hardware Required
	Circuit
	Code
	ASCII Table
	Hardware Required
	Circuit
	Code
	Output
	Dimmer
	Hardware Required
	Circuit
	Schematic
	Code
	Processing Code
	Max code
	Graph
	Hardware Required
	Circuit
	Schematic
	Code
	Processing Sketch
	Max Code
	Physical Pixel
	Hardware Required
	Circuit
	Schematic
	Code
	Processing Code
	Max patch
	Virtual Color Mixer
	Hardware Required
	Circuit
	Schematic
	Code
	Processing Code
	Max Code
	Serial Call and Response (handshaking)
	Hardware Required
	Circuit
	Schematic
	Code
	Processing Code
	Max Code
	Serial Call and Response (handshaking) with ASCII-encoded output
	Hardware Required
	Circuit
	Schematic
	Code
	Processing Code
	Max Code

	Stream
	Functions
	1 available()
	Description
	Syntax
	Parameters
	Returns
	See also

	2 read()
	Description
	Syntax
	Parameters
	Returns
	See also

	3 flush()
	Description
	Syntax
	Parameters
	Returns
	See also

	4 find()
	Description
	Syntax
	Parameters
	Returns
	See also

	5 findUntil()
	Description
	Syntax
	Parameters
	Returns

	6 peek()
	Syntax
	Parameters
	Returns
	See Also

	7 readBytes()
	Description
	Syntax
	Parameters
	Returns

	8 readBytesUntil()
	Description
	Syntax
	Parameters
	Returns
	See also

	9 parseInt()
	Description
	Syntax
	Parameters
	Returns
	See

	10 parseFloat()
	Description
	Syntax
	Parameters
	Returns
	See

	11 setTimeout()
	Description
	Syntax
	Parameters
	Parameters

