Learning Pythonr
&5 with Raspberry Pi

Alex Bradbury
and Ben Everard

Learning
Python® with
Raspberry Pi®

Learning
Python® with
Raspberry Pi®

WILEY

This edition first published 2014

© 2014 Alex Bradbury and Ben Everard

Registered office

John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom

For details of our global editorial offices, for customer services and for information about how to apply for permission to
reuse the copyright material in this book please see our website at www.wiley.com.

The right of the author to be identified as the author of this work has been asserted in accordance with the Copyright,
Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form
or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright,
Designs and Patents Act 1988, without the prior permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in
electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and prod-
uct names used in this book are trade names, service marks, trademarks or registered trademarks of their respective own-
ers. The publisher is not associated with any product or vendor mentioned in this book. This publication is designed to
provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that
the publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required,

the services of a competent professional should be sought.

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its
affiliates in the United States and/or other countries, and may not be used without written permission. Python is a regis-
tered trademark of the PSF (Python Software Foundation). Raspberry Pi and the Raspberry Pi Logo are a registered trade-
mark of the Raspberry Pi Foundation, which is a UK registered charity. Minecraft is a trademark of Mohang. Mac OS, iPad,
and iPhone are registered trademarks of Apple Inc. Pi Cobbler is a trademark of Adafruit. All other trademarks are the
property of their respective owners. John Wiley & Sons, Ltd. is not associated with any product or vendor mentioned in the

book.

A catalogue record for this book is available from the British Library.

ISBN 978-1-118-71705-9 (paperback); ISBN 978-1-118-71703-5 (ePub); 978-1-118-71702-8 (ePDF)
Setin 10 pt and ChaparralPro-Light by TCS/SPS

Printed simultaneously in the United States and the United Kingdom

http://www.wiley.com

To Kat for her continuing support, Mum and Dad for encouraging me to learn to
program on the Commodore 64, Zappa for coping with continual disruption, and
every single free and open source software developer for being awesome.

—DBen

Publisher’s Acknowledgements

Some of the people who helped bring this book to market include the following:

Editorial and Production Marketing

VP Consumer and Technology Publishing Marketing Manager:

Director: Lorna Mein
Michelle Leete

Marketing Assistant:
Associate Director-Book Content Polly Thomas
Management:
Martin Tribe

Associate Publisher:
Chris Webb

Executive Commissioning Editor:

Craig Smith

Project Editor:
Kezia Endsley

Copy Editor:
Kezia Endsley

Technical Editor:
Paul Hallett

Editorial Manager:

Jodi Jensen

Senior Project Editor:
Sara Shlaer

Proofreader:
Linda Seifert

Editorial Assistant:

Annie Sullivan

About the Authors

BEN EVERARD is a Linux geek with a penchant for writing. He’s a founder and director of
Linux Voice (http://linuxvoice.com), and his musings can be found on the pages of their
magazine and in their podcast. Previously, he’s worked as a technical editor at Linux Format,
and as a country manager for NoPC, where he oversaw the testing and deployment of com-
puters to schools in Tanzania. Once upon a time, he was an IT consultant, but that was so
long ago he can’t remember it.

He’s moved house and country so many times in the past six years, he’s practically nomadic,
although these days he can usually be found in the West Country, England. This is his first
book.

ALEX BRADBURY is a compiler, hacker, Linux geek, and Free Software enthusiast. His
involvement with the Raspberry Pi started when the first alpha boards were produced. He
quickly got sucked in, leading Linux software development efforts for the platform. Still a
steady contributor, he’s currently focusing on finishing his PhD at the University of
Cambridge Computer Laboratory on compilation techniques for a novel many-core architec-
ture. He's on Twitter as @asbradbury, or else you can email him at asb@asbradbury.org.

mailto:asb@asbradbury.org
http://linuxvoice.com

Acknowledgments

Many people have helped make this book possible. At Wiley, Kezia Endsley and Craig Smith
saw the book through from its inception. Thank you also to Erin Zeltner for making the
words look fantastic and making sure they fit on the pages properly.

There are so many more people that also deserve a huge thank you. There couldn’t be a pro-
gramming book without a programming environment. Python on the Raspberry Pi is the
work of literally thousands of programmers, many of them unpaid. They all deserve acknowl-
edgment, but because of space, welll only mention three—Guido van Rossum, Linux
Torvalds, and Richard Stallman.

Of course, the software needs hardware to run on, so we’'d also like to extend thanks to Eben
Upton and the entire Raspberry Pi Foundation.

Any and all mistakes are, of course, the sole responsibility of the authors.

Contents

Introduction. ittt ittt i i e e 1
What Is Programming? 1
Why the Raspberry Pi?. o 2
How Does this Book Work?. 2

CHAPTER 1

Getting Upand Running.ottt eeennos 5
Setting Up Your Raspberry Pi. 5
Solving Problems.o 6
A Quick Tour of Raspbian 7

Using LXDE (Lightweight X11 Desktop Environment)............. 7
Using the Terminal 8
Changing Configurations with Raspi-Config........... ..., 10
Installing SOTEWATe.ottt 10
PythOm 3. 11
The Python Interpreter. e 11
Running Python Programs. i 11
SUMMATY .« . oot 12

CHAPTER 2

A Really Quick Introductionto Python 13
Drawing Picture with Turtles 13

Using LoOpS . ..o oot 16
Conditionals: if, elif, and else.ot 18
Using Functions and Methods to Structure Codet 20
A Python Game of Cat and MOUSEo vttt 21
Understanding Variables 24
Defining Functions 24
Looping Through the Game i 25
SUMMATY .. oo e e et e e 26

CHAPTER 3

Python Basics. . . . v v v it ittt it i ittt iie it nennnonnes 27
Variables, Values, and Types.ttt 27

Values Have TYPes. . . oottt e e e 28

Storing Numbersot 29

xii

LEARNING PYTHON WITH RASPBERRY PI

Keeping Textin Strings. o 30
Boolean: True or False. i i 31
Converting Between Data Types.......... ... i 32
Test Your Knowledgeo 32
Exercise 1.. o 33
Storing Values in SErUCEULESottt 33
Non-Sequential Values in Dictionariesand Sets. 37
Test Your Knowledge 38
Controlling the Way the Program Flows..........o i, 38
Moving Through Data with for Loops ... 39
Going Deeper with Nested Loopso vvi i 40
Branching Execution with if Statements 41
Catching EXCEPHiONS . ..« o vttt 42
Bxercise 2.. 43
Making Code Reusable with Functions. ..., 43
Optional Parameters.t 46
Bringing Everything Together. 46
Bxercise 3. ... o 48
Building Objects with Classesottt e 49
Getting Extra Features from Modules. o i 54
SUIMNIMATY « + vt vve ettt ettt ettt ettt e e e e e e e e e e e 55
Solutions to EXercises.t 56
Exercise 1 56
Bxercise 2 56
Exercise 3 ... o 56
CHAPTER 4
Graphical Programming. L i i, 57
Graphical User Interface (GUI) Programming, 58
Adding COntrolst 60
Test Your Knowledge ... 62
Exercise 1. 62
Creating a Web BrOwSer.ottt e 62
Adding WIndow Menusottt 71
Test Your Knowledge 73

EXercise 2. . o 73

TABLE OF CONTENTS

SUMMATY .« . oot e e e e e 74
Solutions to EXercises.ot 74
Exercise 1. ... oo 74
Exercise 2. 76
CHAPTER 5
Creating Games cuvieteneeetonnsoesnnssssanss 77
Buildinga Gamet 79
Initialising PyGame. 82
Creatinga Worldo i 86
Detecting CollISIONSt vttt 88
Moving Leftand Right 90
Reachingthe Goalo i 92
Makinga Challenge. ... 93
Making Tt Your OWIL. . ..o oot e 97
Adding Sound 98
AddINg SCENETYot 99
Adding the Finishing Touches.o 101
Taking the Game to the Next Level i 102
Realistic Game Physics.o 103
SUIMNIMATY © ot v vttt ettt 108
CHAPTER 6
Creating Graphies with OpenGL 109
Getting Modulesot 110
Creating a Spinning Cube i 110
Vectorsand Matrices i 112
Bringing It All Togethero i 116
Let There Be Lighto e 120
Calculating the Distance of the Point from the Light Source 120
Calculating Reflecting Angles 121
Making the Screen Danceooi i 126
Buildingthe 3D Model 128
Calculating the Sound Level. 129
Taking Things Further 135
Adding Some TeXTUTEo\ttt e 136

xiii

Xiv LEARNING PYTHON WITH RASPBERRY PI

CHAPTER 7
Networked Python00 i, 139
Understanding Hosts, Ports, and Sockets. it 139
Locating Computers with [P Addresses, 140
Buildinga Chat Server. i 141
Tweeting tothe Worldo 144
Weather Forecasts with JSON. e 147
Testing Your Knowledge 149
Exercise 1o 149
Getting Onthe Web 149
Making Your Website Dynamic. ... 151
Using Templatesot 153
Sending Data Back with Forms o i i 153
Bxercise 2 ... 155
Keeping Things Secure 155
SUMIMATY . oottt e e e et e e e 159
Solutions to Exercises. 160
Exercise 1o 160
Exercise 2 ... o 161

CHAPTER 8
Minecraft. ovvi ittt ittt nnneens 163
Exploring Minecraft oot 164
Controlling Your Minecraft World i 164
Creating Minecraft Worldsin Python oo oo, 165
Building Worldso 166
Drawing PiCtures 166
Taking Things Further. 169
Making the Game Snake 169
Moving the Snake 173
Growing the Snake 173
Adding the Applesot 174
Taking Things Further 175
SUMIMATY .« . oottt ettt e e e e e e e e 175

CHAPTER 9
Multimedia. o0 v ittt i ittt it i i i e e 177
Using PyAudio to Get Sound into Your Computercocvvienni.... 177
Recordingthe Sound. 179

Speaking to Your Pi. ..o 180

TABLE OF CONTENTS

Asking the Program QUeSHIONSovuutti i 181
Putting It All Together 182
Taking Things Further. 184
Making MOVIES . . .ot 184
Using USBWebcams.o 185
Adding Computer Vision Features with OpenCV........... 187
Taking Things Further. 190
Using the Raspberry Pi Camera Module. 190
Creating Live STYeamsttt 193
Taking Things Further. 196
SUIMINATY © ot v vttt ettt ettt et 196
CHAPTER 10
T 1 0] 1 197
Getting Started with the Linux Command Line............... 197
Using the Subprocess Module 200
Command-Line Flags 202
Regular EXpressions it 203
Testing Your Knowledge 206
Scripting with Networking 207
Bringing Tt All Togethero i 209
Working with Filesin Python o 216
SUMMATY . o oo e 217
CHAPTER 11
Interfacing with Hardware o 219
Setting Up Your Hardware Options.ouiiiiiii e 219
Female to Male Jumper WITes.o\ttt 219
PiCobDbler . ..o 220
Solderless Breadboard. 221
Stripboards and Prototyping Boards. o i 221
PCB Manufacturing.ottt e 222
Getting the Best Toolso 222
Wire CUtters/StrPPErSottt ettt e 222
MUIEIMETETS « . ottt e e e 222
Soldering IYOnS. . . oo 222
Hardware Needed for this Chapter i, 223
The First CIrcuito 224

Protecting Your Pi. o 228

XV

Xvi LEARNING PYTHON WITH RASPBERRY PI

Power Limits. 229
Getting Inputo oo 229
Expanding the GPIO Options with I12C, SPI,and Serial 231
The SPI Communications Protocol 231
The I2C Communications Protocol........ i 235
The Serial Communications Protocolo it 236
Taking the Example Further o 236
ATdUINOo 236
PiFace ... o 237
Gertboardo 237
Wireless Inventor's Kit 238
Trying Some Popular Projects.o.ooiueii 238
RODOLS . oot 238
Home Automation. 239
Burglar Alarmiso 239
Digital ATt. ..o 239
SUMINATY © o vt vttt ettt e 239
CHAPTER 12

Testing and Debugging. i, 241
Investigating Bugs by Printing Out the Values. 241
Finding Bugs by Testing.ottt 245
Checking Bits of Code with Unit Tests.........., 245
Getting More Assertive. o 250
Using Test Suites for Regression Testing. ..., 252
Testing the Whole Package. i 253
Making Sure Your Software’s Usable o i 254
How Much Should You Test?ot 254
SUMMATY ..ot 255

Introduction

COMPUTERS AREN’T JUST beige square things we use for work, they're everything that
has a programmable processing unit at its heart. Games consoles, smartphones, GPS units,
tablets and a mind-boggling range of other devices all work in the same way. They're all
computers, and they've taken over the world. They're the things we use for work, for
communications, and for relaxation. In fact, it’s hard to think of an area that hasn’t been
taken over by computers.

Marketing people like to tell you that devices with embedded computers are smart (smart-
phones, smart TVs, smart watches, and so on), but the truth is they're not. The processing
units are just bits of silicon that follow a set of instructions. The “smart” in a smartphone
doesn’t come from the computer chips, but from the people who program them.

Computers are the most powerful tools mankind has ever created, yet they’re under-utilised
because few people know how to unleash their full potential. In a world where everything is
a computer, the most important people are the programmers who can realise their full power.
Programming, then, is an essential skill that’s only going to become more and more impor-
tant in the future.

What Is Programming?

Computers, as we've said, aren’t smart. They just follow a simple list of instructions one-by-one
until they reach the end. That list of instructions is a program. Programming, then, is the
process of taking a task, splitting it up into steps, and writing it down in a language the computer
can understand.

The Raspberry Pi can understand many languages, but in this book, you'll learn about Python 3.
It's a powerful language, and easy to learn.

This book is for people who want to learn about computer programming and who have a
Raspberry Pi. You don’t need any special skills or prior experience to work your way through
this book, and it doesn’t matter if you're not a classic geek who reads comics and watches
Sci-Fi, and it doesn’t matter if you are. As long as you fit those two basic criteria, this is the
book is for you.

LEARNING PYTHON WITH RASPBERRY PI

By the end of this book, you'll have a good grasp of Python 3, and you'll be familiar with
many of the most useful modules (add-ons). Using these, you'll be able to control almost
every aspect of your Pi. You'll make it interact with the world around through the General
Purpose Inputs and Outputs (GPIOs), and communicate over the Internet. You'll give it
vision so it can snap photos and know what it’s looking at. You'll make games and manipu-
late three-dimensional worlds. In short, this is a book about how to utilise your Raspberry Pi
to its fullest potential.

Why the Raspberry Pi?

There are a few things that make the Raspberry Pi a great device on which to learn program-
ming. Firstly it’s cheap. At around a tenth of the price of a low-end PC, it’s cheap enough to
have in addition to your main computer. This is useful because programmers tend to tinker
with their development machine, and tinkering can break things. Generally this doesn’t
damage the machine itself, but it can require you to reinstall the system, which can mean a
bit of lost data, and it can put the machine out of action for a few hours. If you have a Pi
that’s used just for development, this isn’t a problem; however, if your only computer is
shared with a few other people, they may be a bit put out by this.

Secondly, the Pi is raw. It doesn’t come hidden away in a box, or in a complete system. This
means that you get to decide what sort of system you want to make. You can enclose it in a
case should you wish, or you can run it naked. You have access to GPIOs that many machines
don’t have. Most computers come pre-packaged for a particular purpose (a tablet for surfing
the web or playing games, a games console for watching movies or playing games, a laptop
for working or playing games, and so on). A Raspberry Pi can turn its hand to any of these
things with just a little technical know-how.

Thirdly, the Raspberry Pi runs Linux. This is an operating system a bit like Windows or Mac
OS X. It provides a windowing system and a text-based interface for controlling the Pi. If you
haven’t used Linux before, you'll notice a few differences between it and the system you're
used to. For budding programmers, though, the most important difference is that Linux is
far more flexible than the alternatives. Just as the physical design of the Raspberry Pi encour-
ages experimentation, so does the operating system.

How Does this Book Work?

Chapters 1-3 are all about getting started with Python on your Raspberry Pi. At the end of
them, you'll have a pretty good idea of what Python programming is about. The rest of the
book is split into chapters that deal with different uses, such as games or multimedia. These

INTRODUCTION

chapters deal with different areas of Python, so generally, you don’t need to have read one
chapter to understand the next (there are a couple of times where we refer back to some-
thing, but we make it clear what’s going on when we do).

This means that you can go through this second part of the book in whatever order you want.
For example, if you have a particular interest in multimedia, you can skip ahead to that, and
then come back and read the others later.

Learning to program is all about actually getting your hands dirty and programming. This
means that you can'’t learn it by just sitting down and reading a book; you actually have to do
some yourself. Throughout this book we challenge you to put what you've learned to the test.
Sometimes it's through specific exercises designed to train your skills, other times it’s
through taking the programs we’ve introduced and adding your own features to them. An
important part of programming is the creativity to decide what you want the program to do,
so you don’t have to follow our suggestions. In fact, we encourage you to treat our sugges-
tions and code as a starting point to creating your own digital works of art.

Chapter
Getting Up and Running

WELCOME TO Learning Python with Raspberry Pi. In this book, you'll learn how to unlock
the full power of the tiny computer, from 3D graphics to games programming to controlling
electronics to tweeting. You'll see what’s going on under the hood and learn how to create
programs that take advantage of every feature of this minuscule computer.

Setting Up Your Raspberry Pi

To follow this book, you'll need a few bits of equipment:
m Raspberry Pi
m USB keyboard
m USB mouse
m SD card
= Monitor

m Power supply
There are also a few optional bits of kit that may help:

m Powered USB hub (highly recommended)
m Camera module
m USB webcam
m USB WiFi dongle
It is possible to do everything in this book with a model A Raspberry Pi. The real advantage

of a model B as far as programming is concerned is the network port. This port will make it
easier to connect to the Internet, which you'll need to do to install some software.

LEARNING PYTHON WITH RASPBERRY PI

Any USB keyboard and mouse should work fine. Most SD cards should work, although there
are a few that will cause problems. If you're unsure, buy one from a Raspberry Pi online shop
(there are links to a few on http://raspberrypi.org).

The Raspberry Pi has a HDMI (high-definition multimedia interface) video output, but most
monitors have VGA or DVI input. If at all possible, use a monitor that has DVI or HDMI
input. A HDMI-to-DVI converter should cost only a few pounds/dollars and shouldn’t
detract from the image quality. HDMI-to-VGA converters are available, but they’re more
expensive and can cause problems, so use them only if you have no other option.

Most micro USB power supplies from reputable manufacturers should work; however, some
cheap ones from no-name companies have caused problems, so if possible, don’t skimp too
much on this. You could use a USB cable from a normal computer to power your Pi.

Powered USB hubs are recommended for the power-related problems described later in this
chapter. Not all USB hubs are powered, so make sure that whatever one you get plugs into
the mains electricity to get extra power.

We talk more about camera options in Chapter 9 on multimedia. The only thing to say here
is that if you do choose to get a USB webcam, make sure it’s compatible with the Raspberry
Pi. There’s a partial list of working web cams athttp://elinux.org/RPi_USB Webcams.

You'll need to connect your Pi to the Internet to install the software you need in this book.
You can do this either by plugging your Pi into your router with a network cable or by using
a USB wireless dongle, which will add WiFi connectivity.

Solving Problems

The most common problems with the Raspberry Pi are power-related issues. Not all micro
USB power sources can provide enough power, and it becomes more of a problem as you con-
nect peripherals to your Pi, or when you overclock it (see Chapter 5 for more details). Power-
related problems will usually manifest themselves as the computer crashing, so if you find
that your Pi becomes unstable, this is the best place to start. A good way to get around such
issues is to connect your Pi to one power source and connect all the peripherals (keyboard,
mouse, and so on) via a powered USB hub.

The second most common cause of problems with Pis is the SD card. These issues can be
caused by power supply problems, or they can be problems with the cards themselves. It’s
important to take preventative measures here to ensure that your data is safe, and that
means backups! You can use a service such as Google Drive (although this runs slowly on the
Pi), or you can simply keep extra copies of any work on a USB memory stick. SD card issues
will usually manifest themselves by the Pi displaying error messages when you try to start it.
Most of the time you can solve the problem by reinstalling Raspbian, but if this doesn’t work,
you'll need to get a new SD card.

http://raspberrypi.org
http://elinux.org/RPi_USB_Webcams

CHAPTER 1 GETTING UP AND RUNNING

If neither of these help, then you'll need to dig a little deeper. The most useful places to look
are the kernel buffer and the system log file. The kernel buffer is usually best if you're having
problems with hardware, such as a USB device not working. If you open LXTerminal and type:

dmesg

It will output all the messages from the Linux Kernel. The last ones are the most recent and
should show any problems.

The system log file (often called syslog) can be displayed with:

cat /var/log/syslog

Again, the most recent messages will be at the end. The information in both of these can be
somewhat cryptic. If you still can’t work out the problem after reading these, the best place to
go is the Raspberry Pi forums at www. raspberrypi.org/phpBB3/. There’s a community
of helpful people who should be able to point you in the right direction.

A Quick Tour of Raspbian

This is a book about programming, not about generally using Raspbian, so we won’t dwell on
it too much, but you'll find it useful to know a bit about what’s going on.

There are a few operating systems available for the Raspberry Pi, but the instructions in this
book are all based on Raspbian, which is the default operating system, and the best choice for
a new user. If you have some experience with Linux, you could use Arch or Fedora if you like,
but you'll have to change the apt -get commands to ones suitable for your package manager.

The easiest way to install Raspbian on your Pi is using NOOBS, which is available from www .
raspberrypi.org/downloads. You'll also find a quick start guide at that website that
will tell you everything you need to know to get up and running.

There are two different ways of interacting with Raspbian—from the terminal and using the
graphical system (LXDE).

Using LXDE (Lightweight X11 Desktop Environment)

The Lightweight X11 Desktop Environment is the standard windowing system for Raspbian.
Its basic setup is the same as most versions of Windows pre-Windows 8. There’s a button in
the bottom-left side of the screen that opens an applications menu, and currently running
applications are displayed in the bar along the bottom (see Figure 1-1).

http://www.raspberrypi.org/phpBB3/
http://www.raspberrypi.org/downloads
http://www.raspberrypi.org/downloads

LEARNING PYTHON WITH RASPBERRY PI

@ osbin efrence

&l Education (A - File Manager
Graphics P | [Galculator
@ Internet » | B Image Viewer
& other | (# Leafpad
& Programming P | = | xTerminal
% sound & video 3 Root Terminal
. System Tools » | B¢ xarchiver

13

Preferences
Run

@ Logout

M [pi@raspberrypi: ~]

FIGURE 1-1: The LXDE desktop with the menu open.

If you get a black screen with white text asking you to log in when you boot up your Pj, it
means that you haven't set it up to start LXDE automatically. Don’t worry; just log in with
the username pi and the password raspberry, and then type the following:

startx

You can set it up to boot into LXDE automatically using raspi-config (see the next section).

Using the Terminal

LXDE is great for many tasks, but sometimes you'll need to use the command line. This is an
incredibly powerful interface that’s accessed through the terminal. In LXDE, that means
opening the LXTerminal application.

When you open LXTerminal, you should see the following line:

pie@raspberrypi~$

This signifies that you are using the username pi on a computer called raspberrypi, and
you are in a directory called ~.

In Linux, all directories start from / or root. This is the base of the directory tree and every
directory is located in some subdirectory of this. You can move between directories using the
cd (change directory) command. Start by moving to this root directory with:

CHAPTER 1 GETTING UP AND RUNNING

cd /

You should now seen that the command prompt has changed to

pi@eraspberrypi/$

You can list the contents of this directory with the command 1s. One of the subdirectories is
called home. This is where every user on the system has his home directory. Move into it and
view its contents with:

cd home
1s

There should only be one directory called pi. The command prompt should now have
changed to show that you're in the directory /home. Move into the only subdirectory with:

cd pi

Now the command prompt will have reverted to:

pieraspberrypi~$

This is because the character ~ is a shorthand for the current user’s home directory. When
you type ~ in the terminal, the computer converts it to /home/pi.

There is much more to learn about the command line. So much so that it would take another
book this size to cover it with any semblance of completeness. However, you don’t need to
know everything to start using it, and whenever we tell you to use LXTerminal, we tell you
exactly what to type.

If you are interested in learning more about the Raspberry Pi, or Linux in general, the command
line is an excellent place to start, and there's loads of information about it both online and in
print. The Linux command-line book, which you can browse for free online, is an excellent
place to start. See http://linuxcommand.org/tlcl.php.

TIP

We'll leave you with two pieces of advice. Firstly, don’t be afraid of the terminal. It can be a
bit daunting at first, but the only way to learn how to use it is to use it. Secondly, almost all
commands have built-in help that you can access using the flag -~help. For example, if you
want to learn more about how to use the command 1s, you can enter:

1s --help

http://linuxcommand.org/tlcl.php

10

LEARNING PYTHON WITH RASPBERRY PI

This will output:

Usage: ls [OPTION]... [FILE]...

List information about the FILEs (the current directory by
default). Sort entries alphabetically if none of -cftuvSUX nor
--sort is specified.

It then goes on to list all the various flags you can use with the command.

Changing Configurations with Raspi-Config

Raspbian comes with a tool to help you set up the hardware on your Raspberry Pi; it’s called
raspi-config. To start it, open LXTerminal and type:

sudo raspi-config

Here, you'll find options to start LXDE automatically when you boot up, overclock your Pi,
and other things. Overclocking your Pi will make a few things in this book run a little better,
most notably, installing new software.

Installing Software

You can install new software on your Raspberry Pi using the apt-get command in the
terminal. Before installing anything, it’s a good idea to update all your software to the latest
version. You can do this with:

sudo apt-get update
sudo apt-get upgrade

Then you can use apt-get to install whatever you want. For example, if you want to use
iceweasel (a re-branded version of Firefox), you need to open LXTerminal and type:

sudo apt-get install iceweasel

If you prefer to do this using a graphical program, you can get the program synaptic with:

sudo apt-get install synaptic

When you want to install something, you can start it with:

sudo synaptic

CHAPTER 1 GETTING UP AND RUNNING

From there you'll be able to search for whatever you want.

Whenever you install software, you need to use the word sudo before the command. It tells
the computer that you want to make a system-wide change and gives the program sufficient
permissions to do this.

Python 3

In this book, you'll learn how to use the Python 3 programming language. In Raspbian, there
are a couple of ways to use this language.

The Python Interpreter

There are two ways of using Python, from the shell and saved programs. The shell executes
each instruction as you type it, which means it’s a really good way of trying out things and
doing experiments. Saved programs are bits of Python code that are saved in a text file and
run all at once. It’s easy to tell which environment you're in because in the shell, all the lines
will start with three chevrons:

>>>

Most of the time in this book, we’ll deal with saved programs, but there are some occasions
(particularly early on) when we tell you to use the shell. To make it clear which bits of code
are for which, we've started every bit of code for the shell with three chevrons.

Running Python Programs

There are two different ways you can write programs for Python. You can create text files that
contain the code, and then run these files with Python, or you can use an Integrated
Development Environment (IDE) such as IDLE 3. Either way will result in the code being run
in the same way and it’s just a matter of personal preference.

If you want to write the programs as text files, you need to use a text editor such as Leafpad. A
word processor such as LibreOffice’s Writer is unsuitable because the various formatting it uses
will confuse Python. As an example, open Leafpad and create a new file that just has the line:

print ("Hello World!")

Once you've created your file, just save it with the extension .py; for example testfile.py.
You can then run it by opening LXTerminal and navigating to where the file is saved.
Then you run python <filenames>. You can use the cd command to move to different

11

12

LEARNING PYTHON WITH RASPBERRY PI

directories. For example, if you save the file in a folder called programming in your home
directory, you could run it by typing the following into LXTerminal:

cd programming
python3 testfile.py

If everything has worked correctly, you should see the following line appear on the screen:

Hello World!

The second way is a little simpler. Using an IDE, the text editor and Python interpreter are in
the same program. For example, open IDLE 3 (make sure to use the one with the 3), and go
to FileroNew Window. In the new window, enter this code:

print ("Hello IDLE")

Then go to Run®Run Module. It will prompt you to save the module, so select a filename.
Once you've done this, it will switch back to the Python interpreter and display the following:

Hello IDLE

It doesn't really matter which one you use, so just go with the way you feel most comfortable with.

Summary
After reading this chapter, you should understand the following a bit better:

m You'll need a few extra bits of hardware to get the most out of your Raspberry Pi.
m Insufficient power is the most common cause of problems.

m If you're having problems, dmesg and syslog are the best places to find out what’s
going on.

m Raspbian uses the LXDE desktop environment.

m The terminal provides the most powerful way of interacting with the underlying oper-
ating system.

m The raspi-config toollets you configure your Raspberry Pi.
m Use apt-get to install new software.

m You can run Python either through the interpreter or by running saved programs.

Chapter

A Really Quick Introduction
to Python

IN THIS CHAPTER, you'll dive right into some code examples. Don’t expect to grasp all the
details yet. This chapter is meant to give you a taste of programming. You'll learn how to
draw on the screen, and even how to make a simple game. Along the way you'll pick up some
basic programming concepts, but don't worry if you don’t understand every line of every
program you create in this chapter. You'll learn more about the details in later chapters.

Drawing Picture with Turtles

It’s time to get programming! We strongly recommend that you enter the code into IDLE 3 as
you read along, as it will help you understand what’s happening. So, without further ado,
open IDLE 3, go to File>New Window, and enter the following:

import turtle

window = turtle.Screen()
babbage = turtle.Turtle()
babbage.left (90)
babbage.forward (100)
babbage.right (90)
babbage.circle(10)
window.exitonclick ()

Then go to Runt®Run Module or press F5 to execute the program. A dialog will open and ask
you to provide a filename. This name can be whatever you want, although it helps if it’s
descriptive so you'll remember it in the future (we used chapter2-examplel.py).

14

LEARNING PYTHON WITH RASPBERRY PI

Each of these lines is an instruction to Python. Python goes through them one-by-one and
executes them in the order it finds them. The result of the computer following all these steps
is to draw a line with a circle on top, as shown in Figure 2-1. You might think the drawing
looks like a lollipop, but actually, it’s the first part of a flower. If you don’t get this result, go
back and check that everything is typed correctly and try again.

[l Python Turtle Graphics -0Ox

FIGURE 2-1: Your first turtle drawing with Python.

Let’s take a closer look at what Python’s doing as it goes through the code.

import turtle

You'll often see several import lines at the start of Python programs. They bring extra
features into programs a bit like add-ons or plug-ins in other software. These features are
grouped into modules. You'll learn more about how to use the import command in the
following chapter. This time we’re importing the turtle module, which lets us draw graphics.

CHAPTER 2 A REALLY QUICK INTRODUCTION TO PYTHON

The next portion of the code is
window = turtle.Screen()

window.exitonclick ()

This creates a new window that we can draw onto, and set it to close when it’s clicked.

The next line uses the turtle module that you imported in the first line to create a new turtle,
named babbage (after Charles Babbage, who invented the concept of the computer):

babbage = turtle.Turtle()

Babbage has a number of methods, or things you can tell it to do. For example, in the line:

babbage.left (90)

You're using the method left () which turns babbage left a certain number of degrees.
Parameters are added in the brackets after the method and you can use them to send certain
bits of information to control how the method runs. In this case, you passed the parameter
90, so babbage turns left 90 degrees. The following lines use the methods forward (),
right (), and circle ().

babbage.forward (100)
babbage.right (90)
babbage.circle (10)

The first method moves the turtle forwards 100 pixels, the second turns it right 90 degrees,
and the final one draws a circle with a radius of 10 pixels.

Now it’s time to add a petal. Edit the code so that it reads as follows (changes are in bold):

import turtle

#create window and turtle
window = turtle.Screen()
babbage = turtle.Turtle()
#draw stem and centre
babbage.left (90)
babbage.forward (100)
babbage.right (90)
babbage.circle (10)

#draw first petal
babbage.left (15)

15

16

LEARNING PYTHON WITH RASPBERRY PI

babbage. forward (50)
babbage.left (157)
babbage. forward (50)
#tidy up window
window.exitonclick ()

Run this now. You should see that the flower now has a solitary petal. You'll notice that we've
added some lines that begin with a # symbol. The computer ignores any line that starts like
this, so you use them to leave little comments to yourself (or anyone else who looks at the
code). These make the code more readable, and mean that if you come back to the code in a
few days, weeks, or even years, you can easily see what it’s doing.

Using Loops
You should find the section that draws the petal quite easy to understand (we calculated the

angles of the two left turns using trigonometry, but don’t worry, we won't be going into the
maths here).

You could now add a block of code to draw a second petal (there’ll be 24 in total). It will be
exactly the same as the first petal, and directly below it, so with a bit of copy and paste, you'll
get the following:

#draw second petal
babbage.left (15)
babbage. forward (50)
babbage.left (157)
babbage. forward (50)

And then do the same for the next 22 petals ... Okay, hang on here. As a general rule of
thumb, when programming, you should never repeat identical code. Suppose you decided to
change the size of the petal; you'd have to change it 48 times (twice for each petal), and if you
forgot any one, you'd get a wonky picture. Instead, you can use a loop, which is a piece of code
that tells the computer to repeat a certain section of code over and over again.

Instead you can replace all the code from #draw first petal downwards with the follow-
ing code:

#draw all petals

for i in range(1l,24):
babbage.left (15)
babbage . forward (50)
babbage.left (157)
babbage . forward (50)

window.exitonclick ()

CHAPTER 2 A REALLY QUICK INTRODUCTION TO PYTHON

We'll deal with exactly what the first line (after the comment) means in the next chapter, but
for now, it’s enough to say that it repeats the block 24 times, then the computer moves on to
the instructions after this block.

Code blocks like loops (and others that you'll explore later) always follow the same layout in
Python. The first line ends with a colon, and every line after it is indented. Once the tabbing/
indention stops, Python considers this code block over. If you've programmed in other
languages before, you'll probably have noticed that they do things a little differently.

Try running the code. You should find that babbage runs round drawing all the petals, and
we finish with a complete flower, as shown in Figure 2-2.

= Python Turtle Graphics. -ox

example-loop-color.py - /home/pi/example-loop-color,
ple-loop-color.py - /hy /pif ple-loop-color.py

Eile Edit Farmat Run Options Windews Help

| turtle i

= turtle.Screen()
turtle.Turtle()

bakbage.coler (Ty=llew®, “Elack™)
bakbage. coles (Tr=d”, "Elack™)
babbage.left (15)
bakbage. forward (50)

Eabbage.l=ft (157)
babbage. forward (50)

bakbage.hideturtle ()

windew. escitonelick ()

[Ln: 1]Col: 0

FIGURE 2-2: Loops make drawing flowers a breeze.

Not bad for just 13 lines of code! Of course, not many flowers are all black, so it would be
better if you could add a little colour to the picture. The Python turtle module does include
some methods that allow you to change the colour of your drawing. Amend the first half of
your program so it reads as follows (changes are shown in bold):

import turtle

#icreate window and turtle
window = turtle.Screen|()
babbage = turtle.Turtle()
#draw stem

17

18

LEARNING PYTHON WITH RASPBERRY PI

babbage.color ("green", "black")
babbage.left (90)
babbage . forward (100)
babbage.right (90)

#draw centre

babbage.color ("black", "black")
babbage.begin fill()
babbage.circle(10)

babbage.end £fill()

As you can see, we're using the color (colourl, colour2) method (Brits should notice
the American spelling of the method), where colourl is the pen colour and colour2 is the
fill colour. When you start the centre circle of the flower, you tell the computer to fill in the
circle with the begin £i11l () method. Afterwards, we used end £i11 () so it doesn’t
keep filling in all the petals.

Conditionals: if, elif, and else
Now type the second half of the flower-drawing program into IDLE 3:

#draw all petals
for i in range(1,24):

if babbage.color() == ("red", "black"):
babbage.color ("orange", "black")
elif babbage.color() == ("orange", "black"):

babbage.color ("yellow", "black")
else:
babbage.color ("red", "black"))
babbage.left (15)
babbage . forward (50)
babbage.left (157)
babbage . forward (50)
#hide the turtle
babbage.hideturtle ()
#tidy up window
window.exitonclick ()

We've used a little artistic licence and decided that the flower should have petals with three
different colours: red, orange, and yellow. As this book is in black and white, you'll have to
run the program on your Raspberry Pi, or you can take a look at £lower.png on the com-
panion website, to see the result in living color. To alternate our petal colours, we've used an
if .. elif .. else block. This is a way of telling Python how to make decisions about
what to do based on certain data. The basic structure is as follows:

CHAPTER 2 A REALLY QUICK INTRODUCTION TO PYTHON

if <condition>
code

where <conditions is a statement that can be true or false. In this case, we're using the
following condition:

babbage.color () == ("red", "black")

babbage.color () (note that now this method doesn’t have any parameters) tells the
program what colour our turtle currently has. This is a little different to the methods you've
seen so far because it sends information back that you can use. This return value is a pair of
colours—the first is the drawing colour, and the second is the fill colour (which hasn’t
changed since you set it to draw the centre of the flower, so it will stay the same for the whole
of the program). The double equals sign (==) means ‘is equal to’. You use a double equals here
because a single equals is used differently, like when you created the window and the turtle.

If the condition is true (in this case, if the turtle’s colour is (“*red”, “black”)), then
Python executes the code. However, if the condition is false, Python moves on to the elif
(elif is short for else if). This has the same structure as the original i f condition.

If the condition in the elif is false, then Python moves on to the else. If it gets this far
(that is, if the conditions for the i f and elif are both false), Python will execute the code.
else doesn’t have a condition. Figure 2-3 shows the flow of this logic.

Start

Set the colour
orange

Is the colour red?

Set the colour

Is the colour orange?
yellow

Set the colour
red

FIGURE 2-3: The flow of conditional logic for determining the colour of each flower petal.

19

20

LEARNING PYTHON WITH RASPBERRY PI

This 1 £ clause then, will alternate the colour of the pen after each petal is drawn. The final
alteration is to add the following line to the end of the program:

babbage.hideturtle ()

This simply makes the turtle (cursor) invisible so it doesn’t obscure our picture. There you
have it; your very first Python program finished completely!

Using Functions and Methods to Structure Code

Before we dive in and start our second Python program, we're going to pause for a second to
talk a bit more about methods. As you've seen, methods are really useful for controlling parts
of our program. In the previous example, you used them to move turtles, change colour, and
create windows. Each time, you called them on something. For example, you called
forward (50) on babbage with babbage.forward(50) and exitonclick() on
window with window.exitonclick (). Each time, the methods run bits of code that are
stored in the Python modules. Python has another similar feature called functions. These
work in a fairly similar way, but they’re not called on anything. For example, in your Python
interpreter, type:

>>> print ("Hello World")

This runs the print () function that simply outputs its parameter to the screen. Remember
when we said that you shouldn’t repeat any code in your programs? We explained that loops
are one way of reducing repetition, and functions are another. As an example, think of a
program that deals with circles and often needs to calculate the area for a given radius. If you
listened in maths classes, you should know that the area of a circle is 2 x pi x the radius
(if you didn't listen in maths class, then you'll just have to take our word for it). Rather than
repeat this every time you need to calculate the area of a circle, which could lead to problems
(if you mistype the value of pi somewhere, it could cause all sorts of problems and be hard to
find), you can create a function to do it. In Python this would be:

def circlearea(radius) :
return radius * 3.14 * 2

print (circlearea(l))

Here we've used two functions nested together. circlearea (1) calculates the area of a
circle with a radius of one, and print () sends this number to the screen.

CHAPTER 2 A REALLY QUICK INTRODUCTION TO PYTHON

As you can see, you define your own functions using the word def, followed by the name of
the function, followed by the parameters enclosed in brackets. You can then use the name
of the parameter inside the function where it will act with the value that’s passed to it. The
word return tells Python what value you want to send back. So, in the previous example,
when Python gets to the phrase circlearea(l), it runs the code under def
circlearea (radius), butinstead of radius it substitutes the number you passed across
(1). Then it returns the value of that calculation (6.28) to the print function. You'll see
later that you can nest methods in the same way so that one method sends information
straight to another one. This can be a really useful way of getting data to flow in the right way
between different sections of your program.

A Python Game of Cat and Mouse

Now, let’s move on to our second Python program. This time you're going to make a game of
cat and mouse. The player will control the mouse using the arrow keys, and she has to stay
ahead of the cat (controlled by the computer). The longer she stays ahead, the higher score
she gets.

Most of the longer code examples in the book are available for download from the book’s
companion website at www.wiley.com/go/pythonraspi.To avoid potential typos, you can
download and copy and paste the text into your IDE or code editor. The code for the following
example is Chapter2-catandmouse.py.

Open a new window in IDLE 3 and type the following code:

import turtle
import time

boxsize = 200
caught = False
score = 0

#functions that are called on keypresses
def up():

mouse.forward (10)

checkbound ()

def left():
mouse.left (45)

21

http://www.wiley.com/go/pythonraspi

22

LEARNING PYTHON WITH RASPBERRY PI

def right():
mouse.right (45)

def back() :
mouse.backward (10)
checkbound ()

def quitTurtles() :
window.bye ()

#stop the mouse from leaving the square set by box size
def checkbound() :
global boxsize
if mouse.xcor() > boxsize:
mouse.goto (boxsize, mouse.ycor())
if mouse.xcor() < -boxsize:
mouse.goto (-boxsize, mouse.ycor())
if mouse.ycor() > boxsize:
mouse.goto (mouse.xcor (), boxsize)
if mouse.ycor() < -boxsize:
mouse.goto (mouse.xcor (), -boxsize)

#set up screen

window = turtle.Screen/()
mouse = turtle.Turtle ()
cat = turtle.Turtle()
mouse .penup ()

mouse .penup ()
mouse.goto(100,100)

#add key listeners

window.onkeypress (up, "Up")
window.onkeypress (left, "Left")
window.onkeypress (right, "Right")
window.onkeypress (back, "Down")
window.onkeypress (quitTurtles, "Escape")

difficulty = window.numinput ("Difficulty",
"Enter a difficulty from easy (1), for hard (5) ",

minval=1, maxval=5)

window.listen ()

CHAPTER 2 A REALLY QUICK INTRODUCTION TO PYTHON

#main loop

#inote how it changes with difficulty

while not caught:

cat.setheading(cat.towards (mouse))
cat.forward (8+difficulty)

score = score + 1

if cat.distance (mouse)

caught = True

< 5:

time.sleep(0.2-(0.01*difficulty))
window. textinput ("GAME OVER", "Well done. You scored:
"+ str(score*difficulty))

window.bye ()

That’s quite a lot of code, but before you look at it too deeply, play the game a few times to get
a feel for it. This will also help you make sure that you've entered it correctly. If you get any
errors, check your typing, and then try again. Take a look at Figure 2-4 to see it in action.

—| Python Turtle Graphics -0x

= canmouse.py - fhome/pi/canm|

File Edit Format Run Options Windows

GAME OVER

turtle

time
bossize = 200
caught =

score = O

up
meuse. forward (10}
checkbeund()

left()z
mouse. left (45)

right():
meuse.right (45)

back():
mouse.backward (10)
checkbound ()

quitTurtles():

windew.bye ()

p the mouse from

checkbound () =

boxsize

mouse.xcor () > boxsize:
mouse. goto (boxsize, mouse.ycor())
mouse.xcer () < —bowsize:
mouse. gote (~boxsize, mouse.ycor())
mouse.ycer () > bossize:

gote (mouse.xcer (), boxsize)

cor() € —boxsize:

goto (mouse.xcor (), —boxsize)

windew = turtle.Screen()
mouse = turtle.Turtle()

Well done. You scored: 171.0

oK | Cancel |

FIGURE 2-4: A simple game of cat and mouse.

23

24

LEARNING PYTHON WITH RASPBERRY PI

Understanding Variables

The first two lines just bring in modules for using turtles and time, and then the following
three lines are

boxsize = 200
caught = False
score = 0

These lines use something that we've touched on, but haven'’t really talked about: variables.
Variables are places where you can store values you want to use later. For example, in the first
line, you store the value 200 in the variable boxsize. After you've set them up like this, you
can simply put in boxsize and Python will substitute the correct value. These constructs
are called variables because they can change. In this particular program, boxsize will stay
the same, but both caught and score will vary throughout it. Each time you want a new
value, you simply use the single equals sign. This is the same thing you did in the first example
with window and babbage; there the variables held the screen and the turtle. We’ll cover
variables, and what exactly you can store in them in the next chapter.

Defining Functions

The next part of the code defines some functions that you'll use in the program. In the
function checkbounds (), you'll notice that there’s the following line:

global boxsize

This line is needed because functions don’t automatically get access to variables defined
outside of them. This line tells Python that we want to use the boxsize variable in this
function, and it’s declared outside of the function itself.

Perhaps the most confusing section is

#add key listeners

window.onkeypress (up, "Up")
window.onkeypress (left, "Left")
window.onkeypress (right, "Right")
window.onkeypress (back, "Down")
window.onkeypress (quitTurtles, "Escape")

This code tells the window what to do when various keys are pressed. For example, the first
line says to run the function up (which we’ve already defined) whenever the key “up” (which
corresponds to the up arrow on the keyboard) is pressed.

CHAPTER 2 A REALLY QUICK INTRODUCTION TO PYTHON

Looping Through the Game

Next you get to the main loop that runs the game:

while not caught:
cat.setheading(cat.towards (mouse))
cat.forward(8+difficulty)
score = score + 1
if cat.distance(mouse) < 5:
caught = True
time.sleep(0.2-(0.01*difficulty))

This code uses a different type of loop. The while loop take this form:

while condition:
loop code

They keep on looping the code as long as the condition is True. In the initial list of
variables at the beginning of the code, you set the variable caught to False:

caught = False

Thus in this case, not caught is the condition (and it’s true at the start since not Falseis
True), so the program keeps running until you change it to true because not True
is False. It all sounds a bit complex when phrased like this, but an easy way to think of it is
that the word not just swaps True and False around.

time.sleep () tells Python to stop for a certain number of seconds. In this case you reduce
the amount of time it sleeps as the difficulty level (which is a variable set to a number that
the user enters) increases. You should also be able to see that the distance the cat moves
increases with difficulty.

At this point you may be wondering how on earth you're supposed to remember all the
methods that are associated with the various modules. For example, how did you know to
use forward(10) instead of forwards (10) or move forwards(10), or for that matter,
how did you know there was a method to move forwards at all? Well, you don't have to have
superhuman memory to use Python; you just need to know where to look. When you're in
IDLE 3, press F1 to open your web browser and display the Python documentation. There's
some really useful information here and it's well worth exploring. For information on the turtle
module, just enter turtle into quick search, and then select the top response. You'll see that
we've only touched on its methods here.

TIP

25

26

LEARNING PYTHON WITH RASPBERRY PI

Summary

This brings us to the end of our really quick tour of Python. Hopefully the programs made
some sense to you. Don’t worry if you didn’t understand a hundred percent of everything,
because we're going to look at the different parts of Python in a bit more detail in the next
chapter. However, hopefully you now understand the following:

m Python programs consist of a series of instructions and they run from top to bottom.

m You can control the way Python moves through your program using loops and if
statements.

m You don't have to do everything yourself. You can import modules and use methods to
take care of much of the work.

= Functions allow you to reuse code, which makes your programs easier to understand
and maintain.

m Variables allow you to store information so you can use it later.

m [t's really easy to draw flowers and make games in Python.
Remember, when programming there’s often more than one way to do something, and if you
can pick the right way (or at least, not the wrong way) you’ll make your life easier. However,

it's not always easy to know if a way is right or wrong, so we'll finish this chapter with
Python’s own advice on the matter. In your Python interpreter, type:

>>> import this

this is a special module that outputs some useful Python advice when it’s imported. Now
that you have a feel for Python, let’s move on and dig into the code a bit deeper.

Chapter
Python Basics

IN THE PREVIOUS chapter, we got straight into programming in Python. Hopefully that
gave you a good idea of what Python is, but you probably have quite a few questions about
how it all worked. In this chapter, we'll aim to answer those questions, and go into detail
about exactly how to create your own programs in Python. Then, in later chapters, we’ll look
at the specific features of Python that help you write particular types of programs for the
Raspberry Pi.

Variables, Values, and Types

In the last chapter, we saw that variables can store data we want to use elsewhere. They're
one of the most powerful tools programmers can use, and now we’ll look at what they actu-
ally are. If you've programmed before in a different language, you may notice that Python
does things a little differently here.

In the Python interpreter, enter the statement:

>>> gcore = 0

All this does is tell Python that you want to use score as a new name for the value 0. After
this point, whenever Python sees score, it will insert the value 0. To demonstrate this, try
entering the following:

>>> print (score)

Remember that Python executes our instructions in order, and you must give score a value
before you use it. Otherwise, Python will produce an error.

28

LEARNING PYTHON WITH RASPBERRY PI

If you want score to point to some other value, you just assign it a new one, such as:

>>> score = 1

Now, Python will substitute 1 every time it sees the word score (you can verify this by
running print (score) again). You can update a variable using its own value:

>> score = score + 1

Variables can have almost any name you want, but they must start with a letter or an under-
score, and it can’t be the same as a word that’s used elsewhere in Python (such as if, for,
and so on). The convention in Python is to name variables in lowercase and to separate indi-
vidual words with an underscore, like so:

high score = 1000

In the previous examples, the values have all been numbers, but this doesn’t have to be the
case. They can also be text, such as:

player name = "Ben"

We can even switch a name between numbers and text, such as:

>>> our_ variable = 1000
>>> print (our variable)
>>> our_variable = "Some Text"
>>> print (our variable)

However, the value that a variable currently points to has a particular type.

Values Have Types

When you see a number 3, you probably just see that, a 3. It doesn’t matter if it’s in a sentence
or a sum, 3 always means 3. Python, however, sees it differently. Every piece of data has to have
a type associated with it so it knows what it’s dealing with. You can find out what type Python
has associated with a bit of data by using the type () function. In a Python interpreter, enter:

>>> type(3)
<class 'int'>

>>> type("3")
<class 'str's>

CHAPTER 3 PYTHON BASICS

The first one, Python will inform you, is an int (short for integer—basically a whole num-
ber), whereas the second is a str (short for string—a piece of text). That is because Python
sees the number three differently from the character 3. To see the difference, enter these two
lines:

>>> 3+3
6

>>> "3nm o4 on3n
33

The first will add the two numbers together whilst the second will join the two pieces of text
together. As you can see, it’s vitally important that you don’t mix up your types or you could
get some pretty interesting results. To discover some more types, enter:

>>>type (3.0)
<class 'float's>

>>>type (3>2)
<class 'bool's>

The first will give you £1loat (a floating-point number, which is any number with a decimal
point). The second gives you bool (a Boolean, which can take just one of two values: True
and False).

Storing Numbers

The type of a particular piece of data affects what Python can do with it. We'll start with
numbers (both int and f£loat types, but not strings even if they contain numbers). There
are two types of operations we can do with numbers: comparisons and numerical operations.
Comparisons, as listed in Table 3-1, take two numbers and return a bool.

Comparison Operators for Numerical Types

< Less than 3<2->False
> Greater than 3>2->True
== Equal 3=3->True
<= Less than or equal to 3<=3->True
>= Greater than or equal to 3>=4->False

L= Not equal to 3!=4-5True

29

30

LEARNING PYTHON WITH RASPBERRY PI

Meanwhile, numerical operations return a numerical data type and are shown in Table 3-2.

Numerical Operators

+ Addition 2 + 2-4

- Subtraction 3-2-1

* Multiplication 2*%36

/ Division 10/2-5

% Divide and take the remainder 5%2->1

*x To the power 4 *x 2516
int () Convert to integer int (3.2) -3
float () Convert to float float (2) 2.0

You can test any of these operators by typing them into the Python interpreter. For example:

>>> 31=3

False

If you're using numerical operators in your program, you'll usually want to capture the value
they return in a variable. For example:

10
>>> number 2 = number 1%**2

>>> number 1

Keeping Text in Strings

The string type allows you to store any chunks of text that you need. To create a string,
simply enclose the data in either single or double quote marks. As far as Python is con-
cerned, either type of quotation is fine. We prefer to use double quotes because this doesn’t
cause problems when creating strings that have apostrophes in them, but this is by no means
universal and some programmers prefer single quotes because they're easier to type.

This data type is a little different from the others because, in many ways, a string isn't a single
piece of data but a collection of letters. The name comes from the fact that they are a string
of characters.

As with numbers, Python gives us operations we can perform on them. Table 3-3 shows a
few of the most useful.

CHAPTER 3 PYTHON BASICS

String Operations

string[x] Get the xth character (starts from Oth) "abcde" [1] »"b"
string[x:y] Get all the characters from the xth to theyth "abcde" [1:3] - "bc"
stringl:y] Get every character up until the yth "abcde" [:3] > "abc"
string[x:] Get every character from the xth to theend "abcde" [3:]1->"de"
len(string) Return the length of the string len("abcde") -5
string+string Join two strings together "abc" +"def">"abcdef"

Boolean: True or False

The last data type that we’ll look at here is bool. This is the simplest because there are just
two values it can take: True and False. Note that in Python, these values must always have
a capital first letter and aren’t surrounded by any quotation marks. Although this data type
isn’t often stored in variables (although it can be as we saw last chapter), it is often used in
conditions for if statements and loops, which we’ll cover in more detail a bit later in this
chapter. The main operators on this are and, or, and not.

not simply switches the value, so:

>>> not True
False

>>> not False
True

and takes two bools and returns True if they are both True, and False otherwise, so:

>>> True and False
False

>>> False and False
False

>>> True and True
True

31

32

LEARNING PYTHON WITH RASPBERRY PI

or also takes two bools, but it returns True if either one of them is True, so:

>>> True or False
True

>>> True or True
True

>>> False or False
False

Converting Between Data Types

It is possible to convert between data types using the functions int (), float (), and
str (). They convert other data types to integers, floating-points, and strings, respectively.
However, these can’t just change anything to anything. If you change a float to an int,
Python will round down any fractions. Strings can be converted to numbers only if they con-
tain only digits. On the other hand, more or less anything can be converted into a string.
Take a look at the following examples:

>>> print (int(3.9))
3

>>> print (str(True))
True

>>> print (float ("Three point two"))
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: could not convert string to float: 'Three point two'

Test Your Knowledge

Following are a series of Python statements. See if you can work out what each of them
means to Python. When you think you know, type them into a Python interpreter to check.
Hint: some will produce errors.

m int("two")

® print(str(3+3) + "3")

m type (3=3)

m "4" == 4

CHAPTER 3 PYTHON BASICS

m "Python" [4]

m (3 >2) or (2 > 3)

®m not "True”

m 2345([2]

B str((not True) and (not False))

m 10 % 3

Exercise 1

What are the variables, what values do they hold, and what are the types of these values in
the following program? The answers are at the end of the chapter. If you're unsure, try typing
them into Python and inserting print statements in various parts of the code to see what's
going on. This is an excellent way of finding out what a particular piece of code is doing when
it's not running as you expect.

prompt_ text = "Enter a number: "
user _in = input (prompt_ text)

user num = int (user_in)

for i in range(1,10):

print (i, " times ", user num, " is ", i*user num)
even = (user num % 2) == 0
if even:

print (user num, " is even")
else:

print (user num, " is odd")

Storing Values in Structures

As well as the simple data types, Python allows us to bring data together in various ways to
create structures. The simplest structures are called sequences. These store information one
piece after the next. There are two sorts: lists and tuples. In many ways, they're very similar.
Take a look at the following example:

>>> list 1 = [1,2,3,4]

>>> tuple 1 = (1,2,3,4)
>>> list 1[1]
2

>>> tuple 1[1]

33

34

LEARNING PYTHON WITH RASPBERRY PI

You create a list by enclosing it in square brackets, whilst tuples are surrounded by round
ones. So far, they seem to be working the same. You can retrieve an individual item from
either by putting square brackets after it with an index. Note that indexes start at O, so
list 1[0] and tuple 1 [0] will retrieve the first item in either sequence.

The difference between lists and tuples comes when you try to update them:
>>> list 1[1]1=99

>>> list 1
[1, 99, 3, 4]

>>> tuple 1[1]1=99
Traceback (most recent call last):
File "<pyshell#35>", line 1, in <module>
t1[1]1=99
TypeError: 'tuple' object does not support item assignment

Asyou can see, you can update an item in a list, but not in a tuple. However, whilst you can’t
update a tuple, you can simply overwrite the lot. In this case, you're simply telling Python to
point the variable tuple 1 to a new tuple and discard the old one.

>>> tuple 1
(1, 2, 3, 4)

>>> tuple 1=(1,99,2,4)

>>> tuple 1
(1, 99, 2, 4)

In the previous section we covered strings. These are just sequences of characters, and the
operations you can perform on them you can also perform on lists and tuples. For example,
continuing to use list_ 1 and tuple 1:

>>> len(list 1)
4

>>> tuple 1[:3]
[1, 99, 2]

You can flick back to Table 3-3 for a recap on the string operators we can use here.

CHAPTER 3 PYTHON BASICS

The individual items in lists and tuples can be any data type, including lists and tuples them-
selves. If you so wish, you can have a list of lists of lists of lists; although if you do, the
chances are that your code is going to be pretty hard to understand. Having a list of lists,
however, can often be very useful. You can think of this a bit like a table, so:

>>> list 2 =
[[I'a","b"’"c"]l [I'd"’"e"’"f"]l [I'g"’"h"’"i"]l [I'jl',"k","l"]]

You can get items out of it by indexing both the main list and the sublist:

>>> list 2([2] [0]
|g|

>>> list 2[0]
[lal’ !b!l lcl]

>>> list 2[0] [1:]
[lbl’ !c!]

Take a look at Table 3-4 to see how this corresponds to a table.

An Hlustration of a Two-Dimensional List

list_21[0] [0] list_2[1] [0] list_2[2] [0] list_2[3] [0]
= ngn = ngn = ng" — njn
list 2[0] [1] list 2[1] [1] list 2[2] [1] list 2[3] [1]
= Ilbll = llell = llhll = Ilkll
list 2[0] [2] list 2[1]1[2] list 2[2] [2] list 2[3]1[2]
= "gn = Wfmn = nin = nlmn

There are a few operations that we can carry out to manipulate lists. Some of the most useful
are listed in Table 3-5.

Operations on Lists (in All the Examples, Use
list 3 = [3,2,1])

list. Add item to the end of the list list 3.append(0) -
append (item) [3,2,1,0]

list. Join list_2 to the end of list list_3.extend([0,-1]) -
extend (list 2) [3,2,1,0,-11]

continued

35

LEARNING PYTHON WITH RASPBERRY PI

continued
list.pop (x) Return and remove the xth item See below
list.insert Insert item at the xth position list 3.insert(99,1) -
(x, item) [3, 99, 2, 1]
list.sort () Sort the list list _3.sort()-»1[1,2,3]
list.index(item) Return the position of the first List_3.index(2) »1
occurrence of item in list
list.count (item) Count how many times item list_3.count(2) -1
appears in list
list. Remove the first occurrence of list_3.remove(2) »[3,1]
remove (item) item in list

Most of these examples are a little different to the ones we've given before, because each of
them (except index () and sort ()) changes the value of 1ist_3 rather than returning
anything. So, for example, to run the first one in the Python interpreter, you'll also need a
line to show the final value of 1ist_3.

>>> list_3 = [3,2,1]
>>> list 3.append(0)
>>> list 3

[3, 2, 1, 0]

index () and count (), however, return a value, so:

>>> list 3.index(2)
1

pop (x) is a little unusual as it does two things. Firstly, it returns the value at the xth posi-
tion, but it also removes it from the list. Try out the following example to get a feel for what
it does:

>>> list 3 = [1,2,3]
>>> out = list 3.pop (1)
>>> out

2

>>> list 3

(1, 3]

As mentioned, tuples are a lot like lists except that they can’t be changed. Any of the list
operators that don’t change the value can also be used on tuples, so:

CHAPTER 3 PYTHON BASICS

>>> tuple 2 = (1,2,3)
>>> tuple 2.index(2)
1

>>> tuple 2.sort()
Traceback (most recent call last):
File "<pyshell#91>", line 1, in <modules>
tuple 2.sort()
AttributeError: 'tuple' object has no attribute 'sort'

Non-Sequential Values in Dictionaries and Sets

You can think of lists and tuples as groups of items that each have a number associated with
them as an index. For example, in the list ["a", "b", "c", "d"], a has theindex 0, b
has the index 1, and so on. However, what if you want to use an index that isn't a number?
For example, perhaps you wanted to create a data structure that linked your friends’ nick-
names to their real names. It could work like this:

>>> real name ["Benny"]
'Benjamin Everard'

In Python, you can do this using dictionaries, and you create them using curly braces. You can
create the real name dictionary using:

>>> real name = {"Benny" : "Benjamin Everard",
"Alex" : "Alexander Bradbury"}

Items in a dictionary are known as key/value pairs, where the first part (in this case, the nick-
name) is the key and the second part (the full name) is the value. You can add a new item to
a dictionary by simply specifying a new key and giving it a value:

>>> real name["Liz"] = "Elizabeth Upton"

>> real name

{'Alex': 'Alexander Bradbury', 'Benny': 'Benjamin Everard',
'Liz': 'Elizabeth Upton'}

You may be wondering why you need indexes or keys at all. In fact, you don’t. Python also
allows you to just lump a load of data together with no indexing or ordering using the set
structure. For example:

>>> herbs = {'thyme', 'dill', 'corriander'}
>>> gpices = {'cumin', 'chilli', 'corriander'}
>>> "thyme" in herbs

True

37

38

LEARNING PYTHON WITH RASPBERRY PI

As you can see, Python has the in operator to test if a particular value is in a set. There are
also a few operators that are specific to sets. Take a look at Table 3-6.

set 1

set 1

set 1

set_1

Operations on Sets (Examples Use the Sets Previously Defined)

set_2

set 2

set 2

set_2

Return the items that are in
both sets

Combine the items in both
sets

The items in set_ 1 that
aren’t in set_2

The items that are in set_ 1
or set_ 2, but not both

Test Your Knowledge

herbs & spices-'corriander'

herbs | spices-{'dill"',
'thyme', 'chilli', 'corrian-
der', 'cumin'}

herbs - spices-{'dill"',
'thyme'}

herbs * spices-{'dill"',
'cumin', 'thyme', 'chilli'}

What do you think the following will do? Try to work it out, then enter them into the Python
interpreter to find out. Remember, some of them will produce errors.

n [nan,

"b"l

"C"] .index("c")

m (3,2,1).pop(2)

{1,3,5} & {2,4,6}
{1,2,3} & {1}

3 in {1,2,3} * {3,4,5}

m "abcde".remove ("c")

m 3 not in (1,2,3)

Controlling the Way the Program Flows

while loops are the simplest kind of loop. They have a condition that can be anything with a
bool data type, and they will continue looping until that condition is False. If that condi-
tion never becomes False, then they will simply keep looping forever. For example:

>>> while True:

print ("Ben is awesome")

Hopefully, you'll remember this code block from the previous chapter. There’s a colon after
the condition, and then the next line is indented. Anything that is indented is considered

CHAPTER 3 PYTHON BASICS

part of the code block. To run this in the Python interpreter, you'll need to press Return after
the print line, then backspace to remove the automatic tab, then Return once more. This lets
Python know that the code block has finished and you want to execute it.

If you find yourself stuck in an infinite loop like this, you can stop it by pressing Ctrl+C.

The condition can be as complicated as you like, as long as it comes back to either True or
False. However, in order for it to eventually terminate, it will have to include one or more
variables that can change inside the loop. For example, take a look at the main loop in the
following number-guessing game.

import random

secret = int (random.uniform(0,10))

print ("I'm thinking of a number between zero and ten."
"Can you guess what it is?")

guess = 11
while guess != secret:
guess = int (input ("Take a guess: "))

print ("Well done!")

Note that this program will throw an error if you enter text that isn’t a number. We'll look at
how to fix that shortly, but first we'll take a look at a different type of loop.

Moving Through Data with for Loops

for loops are used to move through pieces of data, and perform the instructions in the loop
on each piece of data in turn. These are commonly used with range (x,y), which moves
through every number between x and y. For example, you can calculate the 12 times table
with:

>>> for i in range(1,13):
print (i, " times twelve is ", i*12)

range () can take another parameter that sets the gap between two numbers. For example,
if you change range (1, 13) to range (2, 14, 2) it will go through all the even multiples of
12. We can also use for loops to move through any of our sequence data types (including
strings) and sets, so the following are also all valid:

>>> for i in [1,2,3,4,5,6,7,8,9,10,11,12]: print (i, " times 12 is
noo1o* 12)
>>> for i in (1,2,3,4,5,6,7,8,9,10,11,12) :

39

40

LEARNING PYTHON WITH RASPBERRY PI

print(i, " times 12 is ", i*12)
>>> for i in {1,2,3,4}:
print (i, " times 12 is ", i*12)
>>> for 1 in "123456789":
print(i, " times 12 is ", int(i)*12)

Although the last one is a pretty good example of using the wrong data type for a task. The
set is a little different from the others because you can't specify the order—it’s just a bunch
of items. The following will produce the same result.

>>> for i in {1,2,3,4}:
print(i, " times 12 is ", i*12)

>>> for i in {4,3,2,1}:
print(i, " times 12 is ", i*12)

Dictionaries are the odd data type out because they don't just hold items, but key/value
pairs. You can still use for loops to move through them, but you have to do it in a slightly
different way:

>>> real name = {"Benny": "Benjamin Everard",
"Alex": "Alexander Bradbury"}
>>> for key,value in real name.items() :
print ("The real name of " + key + " is " + value)

As with sets, you can't specify the order that the loop goes through the data in. In fact, caring
about the order the loop goes through the data is a pretty good indication that you should be
using a sequence data structure such as a list or tuple rather than an unordered data struc-
ture like a set or dictionary.

In the previous examples, i, key, and value are just variable names and can be changed to
whatever you want.

Going Deeper with Nested Loops

When programming, you often have to go through more than one thing at a time, such asin
the following program, which calculates all the prime numbers between 1 and 30.

for i in range(1,30):
is_prime = True
for k in range(2,1i):

CHAPTER 3 PYTHON BASICS

if (i%k) == 0:
print (i, " is divisible by ", k)
is prime = False

if is prime:
print(i, " is prime ")

Note how the indent level is increased, so inside the first loop there is one indent, then inside
the second loop there are two. This is important so Python knows which bits of code belong
to which code blocks and where each block ends.

When nesting loops like this, you do need to be a little careful to avoid slowing down your
programs too much. The previous example runs quite quickly, but if you try to calculate all
the prime numbers under 3,000 (simply add an extra two zeros to the 30 in the first line)
then it takes much longer. Not only because there are a hundred times as many outer loops,
but as you get into the higher numbers, each inner loop takes longer as well. The whole thing
quickly grinds to a crawl (if you try this out, remember Ctrl+C will stop the program).
Fortunately, there are a couple of things you can do. Try out the following:

for i in range(1,3000,2):
is_prime = True
for k in range(2,1):
if (i%k) ==
print (i, " is divisible by ", k)
is prime = False
break
if is prime:
print (i, " is prime ")

The first thing this does is skip over all the even numbers using range (1,3000,2). Of
course, this will miss the first prime number, but we already know that one. Straight away,
this saves half the time. The second thing we did, though, saves far more. You'll notice the
line containing just break in the if block. Since we're calculating prime numbers, we don’t
care about all the factors of a number, so once we've found one we know that the number’s
not prime. The break statement then ends the current loop, in this case the inner one, and
continues execution from the bottom (at the line 1f is_ prime:). These two optimisations
allow the program to run much faster.

Branching Execution with if Statements

As well as looping round sections of code, you can also control the flow of a Python program
by branching off and executing different pieces of code depending on a condition. This is done
using the if statement that you've already seen quite a few times, but we'll briefly recap it. 1 £

41

42

LEARNING PYTHON WITH RASPBERRY PI

statements, like while loops, take a condition that has to have the bool data type. They can
also have additional e1if (else-if) statements, and an else statement. For example:

num = int (input ("enter a number: "))
if num%2 ==
print ("Your number is divisible by 2")
elif num%3 == 0:
print ("your number is divisible by 3")
elif num%5 ==
print ("your number is divisible by 5")
else:
print ("your number isn't divisible by 2,3 or 5")

if statements only execute at most one block. Once Python finds a condition that is True,
it'll execute that block and then exit the if statement. So if you entered 10 as your number,
it will only say it’s divisible by 2, and won't test if it’s divisible by 5 (if you wanted to do that,
you'd need to use a separate if block, not an elif statement). The else block is executed if
none of the conditions are True. As you've seen in other examples, if blocks don’t have to
have elif or else statements. If there’s no else statement, and none of the conditions are
True, then it simply exits the if block without executing anything.

Catching Exceptions

If you happen to be a mischievous sort of person, you may have noticed that the previous
example will throw an error if you enter anything other than a digit. This is because Python
can’t convert arbitrary strings into numbers and so doesn’t know what to do. Whenever
Python doesn’t know what to do, it throws an exception. So far, we've been letting these go,
and when they do, they crash the program.

However, if you know that a particular section of code is likely to throw an exception, you can
tell Python to look out for it, and let the program know what to do if it encounters such a
problem. This is done in the following way:

try:

code where there might be a problem
except type of error:

code to run if there's an error

You can tell what type of error it is, because Python will tell you. For example:

>>> num = int (input ("Enter a number: "))
Enter a number: dasd
Traceback (most recent call last):

CHAPTER 3 PYTHON BASICS 43

File "<pyshell#176>", line 1, in <modules>
num = int (input ("Enter a number: "))
ValueError: invalid literal for int () with base 10: 'dasd'

Here you can see it’s a ValueError, so the previous example becomes:

is_number = False
num = 0

while not is_number:
is_number = True
try:
num = int (input ("enter a number: "))
except ValueError:
print ("I said a number!")
is_number = False

if num%2 == 0:
print ("Your number is divisible by 2")
elif num%3 ==
print ("your number is divisible by 3")
elif num%5 == O0:
print ("your number is divisible by 5")
else:
print ("your number isn't divisible by 2,3 or 5")

Exercise 2
Try to fix the number-guessing game from the start of this section using a try statement to
catch exceptions caused by the users entering bad data.

Making Code Reusable with Functions

We've already used quite a few functions. For example, print () and input (). These stan-
dard functions are built into Python, but you can also build your own to perform whatever
you want to do. You did this in the previous chapter, so we'll just re-cap it here. Take a look at:

>>> def square (num) :
return num**2

>>> square (4)

16

11

LEARNING PYTHON WITH RASPBERRY PI

This code defines a function called square and then uses it to calculate the square of 4.
When you use it, you need to enter a single number enclosed in brackets after it—this is
known as a parameter. When the function is run, the name that you've given the parameter
(in this case num) takes the value of the parameter. Somewhere in the function there can also
be a return statement that’s used to send data back to the main program. If there’s more
than one return statement, Python will finish executing the function after the first return
it reaches.

You can also create functions with more than one parameter. For example, the following
program has a function that takes two parameters and returns the largest.

def biggest(a,b):

if as>b:
return a
else:
return b
print ("The biggest of 2 and 3 is ", biggest(2,3))
print ("The biggest of 10 and 5 is ", biggest (10,5))

So far, this all works well, but what about a function that changes the data? Take alook at the
following program:

def add_one (num) :
num = num + 1
return num

number_ 1 = 1

number 2 = add_one (number 1)
print ("number 1: ", number 1)
print ("number 2: ", number_ 2)

Before you run it, think about what you expect it to output. It’s pretty clear that number 2
will be 2, but what should number 1 be? Should it be 1 because we set it to 1 in our main
program, or should it be 2 because we passed it to add_one () and there it changed?

When you run it, you'll find that number 1 stays as 1. That’s because in the line:

num = num + 1

CHAPTER 3 PYTHON BASICS 45

you're effectively telling Python that you don’t want num to have its old value (which was the
same as number 1), but to give it a new value that’s one larger.

However, mutable data types such as lists, sets, and objects can change. If we pass one of
these to a function and change it, the original will change. Take a look at:

def add item(list 1):
list 1.append(1l)
return list 1

list 2 = [2,3,4]

list 3 = add item(list 2)
print ("list 2: ", list 2)
print ("list 3: ", list 3)

If you run this, you'll get:

list 2: [2, 3, 4, 1]
list 3: [2, 3, 4, 1]

Usually, this shouldn’t cause a problem, but occasionally you may come across a situation
where you don’t want this to happen. For these cases, you can use copy.deepcopy (),
although first, you'll have to import copy. So, if you change the previous example to:

import copy

def add item(list 1):
list 1.append(1l)
return list 1

list_2 = [2,3,4]
list 3 = add item(copy.deepcopy(list 2))

print ("list 2: ", list 2)
print ("list 3: ", list 3)
You'll get:

list_2: [2, 3, 4]
list 3: [2, 3, 4, 1]

46

LEARNING PYTHON WITH RASPBERRY PI

Optional Parameters

Sometimes you may want to create a function that has parameters that are sometimes
needed, and sometimes not. For example, you may want to create a function increment ()
that can take two numbers and add them. However, if only one parameter is given, the func-
tion just adds one to it. You do this by specifying a default value (in this case 1) for the
parameter like so:

def increment (numl=1, num2) :
return num2 + numl

The only thing you need to know about these is that the parameters that can be omitted
must come after the ones that have to be there.

Bringing Everything Together

We've covered a lot of bits so far in this chapter, but it might not be completely clear how to
bring them all together to create the programs you want. In this section, you'll see an exam-
ple that uses most of what we've introduced so far to create a simple database of student
results at a college.

It'll load some default data, and allow you to edit it. We'll use appropriate data types and
structures to hold the various pieces of information, and functions to perform actions on
that data. We'll even include a simple menu to let the user manipulate the data.

Most of the longer code examples in the book are available for download from the book’s
companion website at www.wiley.com/go/pythonraspi. To avoid potential typos, you
can download and copy and paste the text into your IDE or code editor.

The code is as follows (you can also find it on the book’s website as chapter3-
student-1.py).

students = [["Ben", {"Maths": 67, "English": 78, "Science": 72}],
["Mark", {"Maths": 56, "Art": 64, "History": 39,
"Geography": 55}1,

["Paul", {"English": 66, "History": 88}]]

grades = ((0, "FAIL"), (50, "D"), (60,"C"), (70, "B"), (80,"A"),
(101, "CHEAT!"))

def print report card(report student =None) :

http://www.wiley.com/go/pythonraspi

CHAPTER 3 PYTHON BASICS 47

for student in students:
if (student[0] == report student) or
(report student == None) :
print ("Report card for student ", student[0])
for subject, mark in student[1l] .items () :
for grade in grades:
if mark < grade[0]:
print (subject, " : ", prev_grade)
break
prev_grade = grade[1]

def add student (student name) :
global students
for student in students:
if student [0] == student name:
return "Student already in database"
students.append ([student name, {}])
return "Student added successfully"

def add mark (student name, subject, mark):
global students
for student in students:
if student[0] == student name:
if subject in student[1l] .keys () :

print (student name, " already has a mark for ",
subject)
user input = input ("Overwrite Y/N? ")
if user_input == "Y" or "y"
student [1] [subject] = mark
return "Student's mark updated"
else:
return "Student's mark not updated"
else:
student [1] [subject] = mark

return "Student's mark added"
return "Student not found"

while True:
print ("Welcome to the Raspberry Pi student database")
print ("What can I help you with?")
print ("Enter 1 to view all report cards")
to view the report card for a student")
print ("Enter 3 to add a student")

N

print ("Enter

print ("Enter 4 to add a mark to a student")

48

print ("Enter 5 to

try:
user choice =

except ValueError:

print ("That's
user choice =

if user choice ==

LEARNING PYTHON WITH RASPBERRY PI

exit")

n))

int (input ("Choice:

not a number I recognise")
0

1:

print report card()

elif user choice ==
enter_student = input ("Which student? ")
print report card(enter_ student)

elif user choice == 3:
enter_student = input ("Student name? ")
print (add_student (enter student))

elif user choice ==
enter student = ")

input ("Student name?
enter subject = input ("Subject? ")
num_error = True
while num error:
num_error = False
try:
enter_mark =

int (input ("Mark? "))
except ValueError:
print ("I don't recognise that as a number")
num_error = True
print (add_mark (enter student, enter_ subject, enter mark))
elif user_choice ==
break
else:
print ("Unknown choice")
input ("Press enter to continue")
print ("Goodbye and thank you for using the Raspberry Pi"

"Student database")

The students’ data structure is currently a list of lists with dictionaries. It could equally be a
dictionary of dictionaries, or a list of lists containing lists. Try to alter the program to match
each of these two scenarios. Which feels more natural?

Exercise 3
Could the data also be held in tuples? Why or why not? See the end of the chapter for the
answer.

CHAPTER 3 PYTHON BASICS

Building Objects with Classes

Classes allow you to link together data and functions into a single object. In fact, we used
them in the previous chapter. Remember the lines:

window = turtle.Screen()
babbage = turtle.Turtle()

At the time we skipped over them quite briefly, but now we’ll look at what they do. The state-
ment turtle.Turtle () returns a new object made from the Turtle class that’s in the
turtle module. Likewise, turtle.Screen () returns an object made from the Screen
class in the turtle module. Basically, classes are the blueprints from which you can create
objects. These objects then hold data and have methods that you can call to manipulate that
data. Methods are really just functions that are held inside classes.

You've already seen how objects can be useful. In the examples in the last chapter, you didn’t
have to worry about keeping track of any of the turtle data because it was all held in an
object. You just stored the turtle object in a variable called babbage and whenever you called
a method, it knew everything it needed to. This helped you keep the code clear and easy to
use. For example, look at the following code:

babbage.forward (100)

This moved the turtle forwards and drew the result on the screen. It knew what colour to
draw, where the turtle was starting from, and a whole myriad of other information that it
needed to draw the line on the screen because it was all stored inside the object.

Let’s take a look at what’s in a class with a simple example:

class Person() :
def init (self, age, name):
self.age = age
self.name = name

def birthday(self) :
self.age = self.age + 1

ben = Person(31, "Ben")
paul = Person(42, "Paul")
print (ben.name, ben.age)
print (paul.name, paul.age)

There are a few things to notice here. In Python, the normal style is to start all variable, func-
tion, and method names with lowercase letters. Classes are the exception, so the Person

49

50

LEARNING PYTHON WITH RASPBERRY PI

class starts with a capital P. Python won't give you any errors if you don'’t follow this, but the
convention makes it easier to understand other people’s code. You can see that methods are
defined much like functions, except that the parameters always start with self. This brings
in the local variables. In this example, these local variables are self.age and self .name.
These are re-created for each instance of the class. In this example, we create two objects
from the class Person (these are known as instances of the class). Each one of these has its
own copy of self.age and self.person. We can access these from outside the object (as
we have done in the print methods). They’re known as the attributes of the class Person.

There are also two methods. __init _ is a special method that every class has. It’s called
when an instance is created or “initiated”. So, the lineben = Person (31, "Ben") creates
a new object from the Person class and calls the _init method with the parameters
(31, "Ben"). This sets up the attributes. The second method, birthday (), shows how
using classes means we don’t have to keep track of the data outside of these classes. To give a
Person object a birthday, just run (for example):

ben.birthday ()

This increases their age by one.

Sometimes, you won't want to create a class from scratch, but build a new class that’s built
upon an existing one. For example, if we wanted to build a class that holds information
about parents, they would also have ages, names, and birthdays, so it would be a waste if we
had to rewrite this code just for the Parent class. Python allows us to inherit from other
classes, such as in the following:

class Person() :
def init (self, age, name):
self.age = age
self.name = name

def birthday(self) :
self.age = self.age + 1

class Parent (Person) :
def init (self, age, name):
Person. _init (self,age,name)
self.children = []

def add child(self, child):
self.children.append(child)

def print children(self) :
print ("The children of ", self.name, " are:")

CHAPTER 3 PYTHON BASICS

for child in self.children:
print (child.name)

john = Parent (60, "John")
ben = Person (32, "Ben")
print (john.name, john.age)
john.add child (ben)
john.print children()

Person is the superclass of Parent, and Parent is a subclass of Person. By adding a class
name in the brackets after a class definition, it becomes a superclass of the one you're defin-
ing. Youcancallthe init method of the superclass, and automatically get access to all
the attributes and methods of the superclass without having to rewrite the code for the class.
This is called inheritance because the subclasses inherit the features of the superclass.

The big advantage of classes is they make it really easy to reuse code. As we saw in the previ-
ous chapter, it was simple to manipulate the turtle without worrying too much about how it
actually did what it did. Because the turtle class encapsulated everything, you just had to
know the methods and you could use it without any problems. Throughout this book, you'll
see how using classes from outside modules makes it really easy to create quite complex pro-
grams without worrying about the technicalities of how these things work.

Take a look at the following code, which is a rewrite of the student database using classes to
get a feel for how classes work (chapter3-student-2.py on the website).

student data= [["Ben", {"Maths": 67, "English": 78,
"Science": 72}1,
["Mark", {"Maths": 56, "Art": 64, "History": 39,
"Geography": 55}1,
["Paul", {"English": 66, "History": 88}]]

grades = ((0, "FAIL"), (50, "D"), (60,"C"), (70, "B"), (80,"A"),
(101, "CHEAT!"))

class Student () :
def ~_init__ (self, name, marks):
self.name = name
self .marks = marks

def print report card(self):
print ("Report card for student ", self.name)
for subject, mark in self.marks.items():
for i in grades:

59 |

52 LEARNING PYTHON WITH RASPBERRY PI

if mark < i[0]:

print (subject, " : ", prev_grade)
break
prev_grade = 1i[1]

def add mark(self, subject, mark):
if subject in self.marks.keys():
print (student name, " already has a mark for ",
subject)
user input = input ("Overwrite Y/N? ")
if user input == "Y" or "y"
self .marks [subject] = mark
return "Student's mark updated"
else:
return "Student's mark not updated"
else:
self .marks [subject] = mark
return "Student's mark added"

class Students() :
def init (self, all students):
self.students = []
for student, mark in all students:
self.add student (student, mark)

def add_student (self, student name, marks = {}):
if self.exists(student name) :
return "Student already in database"
else:
self.students.append(Student (student name, marks))
return "Student added"

def print report cards(self, student name = None) :
for student in self.students:
if student_name == None or student.name:
student .print report card()

def exists(self, student name) :
for student in self.students:
if student_name == student.name:
return True
return False

def add mark(self, student name, subject, mark):
for student in self.students:

CHAPTER 3 PYTHON BASICS

if student name == student.name:
return student.add mark (subject, mark)
return "Student not found"

students = Students (student data)

print (students.students)

while True:
print ("Welcome to the Raspberry Pi student database")
print ("What can I help you with?")
print ("Enter 1 to view all report cards")

print ("Enter 2 to view the report card for a student")
print ("Enter 3 to add a student")
print ("Enter 4 to add a mark to a student")
print ("Enter 5 to exit")
try:
user_choice = int (input ("Choice: "))

except ValueError:
print ("That's not a number I recognise")
user choice = 0

if user_choice == 1:
students.print report cards ()
elif user_choice == 2:
enter student = input ("Which student? ")
students.print_ report cards (enter student)
elif user_choice == 3:
enter student = input ("Student name? ")
print (students.add student (enter student))
elif user_choice ==4:
enter student = input ("Student name? ")
enter subject = input ("Subject? ")
num_error = True
while num error:
num_error = False
try:
enter mark = int (input ("Mark? "))
except ValueError:
print ("I don't recognise that as a number")
num_error = True
print (students.add mark(enter student, enter subject,
enter mark))
elif user choice == 5:
break
else:

53

54 LEARNING PYTHON WITH RASPBERRY PI

print ("Unknown choice")
input ("Press enter to continue")

print ("Goodbye and thank you for using the Raspberry"
"Pi Student database™)

Getting Extra Features from Modules

You've seen import lines quite a few times by now, but we haven’t really explained what
they do. Actually, it’s incredibly simple—import just brings Python code from another file
into the current program. If you create a file called module_example.py that contains the
following:

print ("Hello World")

Save it in your home directory (that is, /home/pi for the default user). Now, you enter a
Python interpreter session in IDLE 3 and enter the following:

>>> import module_ example
Hello World

Of course, this is a fairly pointless module. Usually they contain functions or objects that can
then be used. Change module example to:

def hello():
print ("Hello World")

You'll have to restart IDLE for it to pick this up. Once you've done so, you can run:

>>> import module example
>>> module_example.hello()

The line import module example brings all the functions and classes into your project
and you can access them by prefixing them with the module name. Sometimes, though,
you'll only want some of the module. You can import individual parts like this:

>>> from module example import hello

Now you can just enter the following to run the function:

>>> hello()

CHAPTER 3 PYTHON BASICS

Notice that you don’t need to prefix it with the module name. This is because it’s imported
into the current namespace. When you do this, you need to make sure that it doesn’t clash
with any of the other functions or classes you're using. You can even bring everything from a
particular module into the current namespace to make it easier to use:

>>> from module example import *

With this, you obviously have to be very careful to avoid namespace clashes.

There are a number of advantages to creating modules rather than just putting everything in
the same file. It means you can reuse code between projects (remember what we've said
about code reuse?). It also means that big projects don’t just live in one massive file that’s
hard to work with. You can also split the various modules up between different members of
a group to make it easier to work as a team.

In the remaining chapters, much of what we'll do will revolve round particular modules that
help you add really cool features to your Raspberry Pi projects.

Summary
We haven't covered absolutely everything that’s in Python. To do that would require a much
larger book, and we wouldn’t have space to include all the fun stuff we're going to do in the
next few chapters. However, we've shown you enough to get started, and hopefully enough to
understand most Python programs you see. If you get stuck at any point, just flick back to this
chapter, or take a look at the Python documentation (which really does cover everything, but
can be a little hard to read). You should now know:

m Variables are places you can store values.

m Values have data types such as int, f£loat, or bool.

m You can group values in lists, tuples, dictionaries, or sets to make them easier to access.

m while loops keep repeating until their condition is False.

m for loops operate on every item in a collection of data.

m Functions help you reuse code so you don't have to repeat it.

m Classes allow you to encapsulate data and methods to make them easier to use.

m There are hundreds of modules that you can import to add extra features to your project.

m You can also create your own modules. This helps split your programs up into
manageable files.

55

LEARNING PYTHON WITH RASPBERRY PI

Solutions to Exercises

Exercise 1

The variables are

m prompt_ text holds "Enter a number: " whichis a string.
m user_ in holds whatever the user types and is a string.

m user num holds the number version of whatever the user types, converted into an
int.

®m 1 holds the numbers 1 to 9 as int.

m evenisabool thatholds True or False (depending on whether the user’s number is
even).

Exercise 2

import random

secret = int (random.uniform(0,10))
print ("I'm thinking of a number between zero and ten."
"Can you guess what it is?")

guess = 11
while guess != secret:
try:
guess = int (input ("Take a guess: "))

except ValueError:
print ("A number! Guess a number!")

print ("Well done!")

Exercise 3

Technically they could, but it would make the code needlessly complex because you can’t
change the values. Therefore, you'd have to create new tuples each time rather than simply
adding to or amending the current one.

Chapter
Graphical Programming

IN THE LAST chapter, we dealt a lot with how to handle data, and how to process it. After
all, manipulating data is the fundamental job of a computer. You saw how to build a simple
text-driven menu to help control the program. However, such interfaces went out of style in
the 1980s. They still have a use in some applications, but these days, most people want to use
a mouse (or touch screen).

There are modules using three different graphical toolkits that you're likely to come across—
Tk, GTK, and Qt. Tk is quite an old fashioned library that is still used, but lacks some modern
features. GTK is a popular toolkit, and the one that LXDE (the default Raspbian desktop) is
built in. Qt (sometimes pronounced cute) is a toolkit that was originally developed by Nokia
for their ill-fated smartphones. Nokia has since sold it to Digia who continues to develop it.
Both GTK and Qt are free to use, and to be honest, there’s not much to choose between them.
This chapter uses Qt because it’s a bit more portable and it’s a bit better supported.

You'll need to install the pyside module before you can start using it. In LXTerminal, enter
the following:

sudo apt-get install python3-pyside

This may take a little while, so you might want to get a cup of tea.

58

LEARNING PYTHON WITH RASPBERRY PI

Graphical User Interface (GUI) Programming

Throughout this book you're going to learn that you can create things in Python very easily if
you let the right modules take care of the hard work. Graphical User Interface (GUI) pro-
gramming is no different. All manner of useful widgets are available; all you have to do is pick
which ones you want and add them to your project.

You can also use inheritance. In the last chapter, we introduced classes, and showed that you
can create a new class that inherits all the features of a superclass. Here, you'll see how to use
this to quickly create new classes that build upon the old ones.

Let’s get straight into an example. In Chapter 2 you saw the turtle module, and even how to
set it to listen for keypresses. This is a little better than basic text entry, but not by much, so
in the first example here, you'll see how to create a simple GUI to control the turtle. Start
with the following code (either enter it by hand, or find it in file chapter4-turtle-
start .py on the website):

import turtle

import sys

from PySide.QtCore import *
from PySide.QtGui import =*

class TurtleControl (QWidget) :
def init (self, turtle):
super (TurtleControl, self). init ()
self.turtle = turtle

self.left btn = QPushButton("Left", self)
self.right btn = QPushButton("Right", self)
self .move btn = QPushButton("Move", self)
self.distance spin = QSpinBox()

self.controlsLayout = QGridLayout ()
self.controlsLayout.addWidget (self.left btn, 0, 0)
self.controlsLayout.addWidget (self.right btn, 0, 1)
self.controlsLayout.addWidget (self.distance spin,1 , 0)
self.controlsLayout.addWidget (self .move btn,1 , 1)
self.setLayout (self.controlsLayout)

self.distance spin.setRange (0, 100)
self.distance spin.setSingleStep(5)
self.distance spin.setValue(20)

CHAPTER 4 GRAPHICAL PROGRAMMING

#set up turtle
window = turtle.Screen()
babbage = turtle.Turtle()

Create a Qt application

app = QApplication(sys.argv)

control window = TurtleControl (babbage)
control window.show ()

Enter Qt application main loop
app.exec_ ()
sys.exit ()

You can run it now, but none of the buttons will do anything (you'll add that in a bit). First of
all, let’s take a look at what’s going on here. The main part of the code is in the class
TurtleControl, which inherits from Qwidget (most of the Qt classes start with the letter
Q). By extending from this class, you get all the basic functionality you need. All that you
have to do is change it from a generic widget into one that fits the specific needs of this
program. In short, you just have to tell it what items you want where.

There are three buttons and a spinbox (allows you to enter a number and raise and lower it—
take a look at the running program to see how a spinbox works).

In addition to the items that the user will see, there’s also a layout that you add these to. Qt
has a few different layouts (you'll see another one later), but this program uses the
QGridLayout. The grid layout is great for simple control panels like this one. It works on
the basis of dividing the window up into a grid, and you tell Qt where you want the item to
go in the grid. If the user resizes the window, Qt dynamically resizes the grid to take advan-
tage of the extra space, but still keeping everything in the right portion of the grid.

To display any of the widgets on in the window, you have to add them to the layout. These are
the lines like this:

self.controlsLayout.addWidget (self.right btn, 0, 1)

The 0 and 1 are the horizontal and vertical coordinates taken from the top-left corner (that
is, upside down when compared to graph coordinates). This button, then, is on the top line,
one column across from the left side.

When everything’s added to the layout, you need to tell the window to use that layout. This
is done with the line:

self.setLayout (self.controlsLayout)

59

60

LEARNING PYTHON WITH RASPBERRY PI

There are also some settings for widgets that you can change to alter their behavior. In this
case, the spinbox is adjusted with the following:

self.distance spin.setRange (0, 100)
self.distance spin.setSingleStep(5)
self.distance spin.setValue (20)

This sets the minimum and maximum values, the amount each click moves it, and the
initial value.

Hopefully, you'll recognise the turtle code from before. The last five lines just create the
control window and execute it.

Adding Controls

All this code has created a nice looking control window, but it doesn'’t actually do anything.
The next stage, then, is to tell Qt what you want the controls to do. This is done by connect-
ing an event with an action. The events here will be button clicks, and actions will be the
methods you want to run when that event happens.

To set this up, add the following code to the end of the ~ init method of the

TurtleControl class:
self .move btn.clicked.connect (self.move turtle)
self.right btn.clicked.connect (self.turn turtle right)

self.left btn.clicked.connect (self.turn turtle left)

def turn turtle left (self):
self.turtle.left (45)

def turn turtle right (self):
self.turtle.right (45)

def move turtle(self):
self.turtle.forward(self.distance spin.value())

You'll notice that in each of the connect calls, the method in the parameter doesn’t have any
brackets after it like methods normally do. That is, it’s this:

self .move btn.clicked.connect (self.move turtle)

Rather than this:

self .move btn.clicked.connect (self.move turtle())

CHAPTER 4 GRAPHICAL PROGRAMMING

This is because when you put the brackets after it, you're telling Python to run the method
and send the result as a parameter, as so:

def move_ turtle(self):
self.turtle.forward(self.distance spin.value())

However, when you don’t put the brackets after the method, you're telling Python to send
the method itself as the parameter. That’s what you need to do here so Qt knows what to run
when the event happens.

You'll find the complete code on the website as chapter4-turtle.py. You can see it
running in Figure 4-1.

—) Python Turtle Graphics -ox

FIGURE 4-1: A mouse-powered interface to a turtle.

61

62

LEARNING PYTHON WITH RASPBERRY PI

That’s more or less all the basics of PySide and Qt. It doesn’t get much more complex, but
there are a huge number of widgets. We won't be able to demonstrate them all, but in the
next example, we'll try to show you a large enough range that you get a feel for the toolkit
and you should then be able to use the other widgets as you need them.

Test Your Knowledge

Exercise 1
Extend the turtle controller program so that you can change the colour of the turtle as well
as move it. We'll give you a hint to get you started. If you change the set up turtle lines to:

#set up turtle

window = turtle.Screen/()
babbage = turtle.Turtle()
window.colormode (255)

Then you'll be able to set the turtle’s colour with red, green, and blue values between 1 and
255, such as:

turtle.color(100,0,0)

Another thing you may find useful are QLablels. They let you add pieces of text to the win-
dow, and are created like this:

self.red label = QLabel ("Red", self)

They might be useful for labeling spinboxes (nudge, nudge, wink, wink).

Creating a Web Browser

In the previous example, you saw how easy it was to link things together to create an inter-
face. In this example, we'll use Qt’s widgets to build our own web browser (which is really just
a set of widgets linked together). You'll see that you don’t really need any programming at all;
it'll just be linking together different parts of Qt.

First of all you need to create a window for the browser. In the previous example, you created
a widget that Qt put in a window for you. That’s fine for simple tools, but as you build more
powerful applications, it can help to create the window explicitly and add everything to that.
By starting with a QMainWindow, you can add things like menus. However, that’s jumping
ahead, and there’s quite a bit to add before menus.

CHAPTER 4 GRAPHICAL PROGRAMMING

The first and most important part of any web browser is the bit that actually shows the web
page. You'll learn a bit more about what'’s actually involved in web pages in Chapter 7, but for
the purposes of this chapter, all you need to know is that the QWebView widget can take care
of all that for you.

In the previous example, you used a grid layout. This works well for adding a lot of controls
to a window, but in this application, you're going to use a box layout. This is a little different.
It's created using two different layouts: QVBoxLayout and QHBoxLayout. These are vertical
and horizontal boxes, respectively. As you add items to one of these box layouts, they are
placed next to each other horizontally or vertically. To create complex layouts, you just need
to nest these layouts inside each other in the appropriate way. It can take a little while to get
used to this way of laying out widgets on windows, but once you become familiar with it, it’s
incredibly powerful.

The web browser will have a typical web browser layout. That is, a bar of controls along the
top, then most of the window will be taken up with the web page you're viewing. To create
this interface, you'll need two layouts—a QHBoxLayout for the controls, and then a
QVBoxLayout thatll take both the previous layout box and the QWebVview widget. As you
resize the window, Qt will adjust the layouts so that the widgets always make the best use of
the space.

Hopefully, this will all become clear as you create the browser, so let’s get started! The follow-
ing code creates the window, and adds the appropriate layouts (the file is on the website as
chapter4-web-browser-begin.py).

import sys

from PySide.QtCore import *
from PySide.QtGui import =*
from PySide.QtWebKit import *

class Browser (QWidget) :

def init (self):
super (Browser, self). init ()

self .webview = QWebView (self)
self.webview.load ("http://www.google.com")
self.setGeometry (0, 0, 800, 600)

self.menu bar = QHBoxLayout ()

self.main layout = QVBoxLayout ()
self.main layout.addLayout (self.menu bar)
self.main layout.addWidget (self.webview)

63

http://www.google.com

LEARNING PYTHON WITH RASPBERRY PI

self.setLayout (self.main layout)

class BrowserWindow (QMainWindow) :
def init (self):
super (BrowserWindow, self). init ()
self.widget = Browser ()
self.setCentralWidget (self.widget)

Create a Qt application
app = QApplication(sys.argv)
window = BrowserWindow ()
window. show ()

Enter Qt application main loop
app.exec_ ()
sys.exit ()

This is all the code you need for a really simple web browser. You can run it and it'll start with
the Google home page, and you can navigate from there (see Figure 4-2). The code should
look familiar to you. The only new pieces are the QMainWindow (which will allow you a bit
more control later on), the QWebView (which, as you can see, is a really easy way to add web
browsing), and the box layouts.

= chapterd-web-browser-begin.py
File

il i“ EI |http: ffwww.google.com =l Search| Zoom: _|

+'You Search |Im

sign in | ¥

Google

Advanced search
Language took

Google Search | I'm Feeling Lucky

FIGURE 4-2: The basics of a web browser.

CHAPTER 4 GRAPHICAL PROGRAMMING

The box layouts are now fully set up; all you need to do is add items to Browser’s self.
menu_bar and they’ll appear along the top of the screen

The most basic controls for web browsing are back and forwards buttons. For this task, you

can use QPushButtons in the same way you used them in the previous example. Update
your code for the Browser class to the following by adding the lines in bold:

class Browser (QWidget) :

def init (self):
super (Browser, self). init ()

self
self
self

self
self
self

self

self.
self.

self
self
self
self
self
self

self.

.webview = QWebView(self)
.webview.load ("http://www.google.com")
.setGeometry (0, 0, 800, 600)

.back btn = QPushButton("<", self)
.back btn.clicked.connect (self.webview.back)
.back btn.setMaximumSize (20,20)

.forward btn = QPushButton(">", self)
forward btn.clicked.connect (self.webview.forward)

forward btn.setMaximumSize (20,20)

.menu_bar = QHBoxLayout ()

.menu_bar.addWidget (self.back btn)
.menu_bar.addWidget (self.forward btn)

.main layout = QVBoxLayout ()
.main layout.addLayout (self.menu bar)
.main layout.addWidget (self.webview)

setLayout (self.main layout)

You can now run the code, and you'll have a browser with a history that you can move back
and forwards through. Here again, the QWebView did all of the hard work. It only required
connecting the button clicks to the QWebView's forward and back methods.

65

http://www.google.com

66

NOTE

LEARNING PYTHON WITH RASPBERRY PI

We've mentioned this before, but it's worth mentioning again—when you're programming,
there's no point in implementing new features when you can get the functionality from a
module. A little time spent learning about a module can save you a lot of time later on.

Unlike the grid layout that you used previously, in box layout, Qt has more freedom to work
out what size to draw particular widgets. Sometimes this is a good thing, but other times,
you need to give it a bit of guidance. In a web browser, you want the buttons to take up as
little space as possible, giving all the free screen area to the web page. To do this, we call the
setMaximumSize () method on the widgets we add. In the case of the buttons, we make
sure they get no bigger than 20x20.

The next feature of the web browser will be a text input where the users can type the address
of a site they want to visit. There are a few different Qt widgets for text entry. The most com-
mon is QTextEdit. This allows the users to display and edit text. Actually, it does more than
just straight text, and it can handle images, tables, headings, and other such things.

QPlainTextEdit is another common widget that works like QTextEdit except that it’s
designed for just plain text rather than rich text. Both of these are really powerful options
that you'll probably use at some point in your programming career. However, they're a bit too
much for an address bar since they're designed for multi-line text entry. For a single line of
plain text entry (like a URL field), a QLineEdit is the best option.

You'll also need a Go button to tell the browser to load the page. To do all this, update the
Browser class to the following (updates are in bold):

class Browser (QWidget) :

def init (self):
super (Browser, self). init ()

self.webview = QWebView (self)
self.webview.load ("http://www.google.com")
self.setGeometry (0, 0, 800, 600)

self.back btn = QPushButton("<", self)
self .back btn.clicked.connect (self.webview.back)
self .back btn.setMaximumSize (20,20)

self.forward btn = QPushButton(">", self)
self.forward btn.clicked.connect (self.webview.forward)
self.forward btn.setMaximumSize (20,20)

http://www.google.com

CHAPTER 4 GRAPHICAL PROGRAMMING

self.url entry = QLineEdit (self)
self.url entry.setMinimumSize(200,20)
self.url entry.setMaximumSize(300,20)

self.go btn = QPushButton("Go", self)
self.go btn.clicked.connect(self.go btn clicked)
self.go btn.setMaximumSize (20, 20)

self .menu bar = QHBoxLayout ()
self.menu_bar.addwidget (self.back btn)
self.menu_bar.addwidget (self.forward btn)
self.menu bar.addWidget (self.url entry)
self.menu bar.addWidget (self.go_btn)
self.menu bar.addStretch()

self .main layout = QVBoxLayout ()

self .main layout.addLayout (self.menu bar)
self .main layout.addWidget (self.webview)

self.setLayout (self.main layout)

def go btn clicked(self):
self.webview.load(self.url entry.text())

There are a few new bits here. With the URL entry bar, there’s a call to the method setMin
imumSize (). Like setMaximumSize, this gives Qt some extra information about how you
want the window laid out. Another new piece to help Qt lay out the window properly is the
addstretch () method call. This adds a pseudo-widget that just changes shape to fill up
space. In this case, it takes up all the spare room on the right side of the menu bar so Qt
pushes all the controls to the left.

You can run it now and try it out. The only thing to note is that it does need you to enter
http:// at the start of the web address. (The technical reason for this is because a URL or
Universal Resource Locater requires this as it specifies the protocol. For example, http://
yoursite.com/document could point to something different than ftp://yoursite.
com/document. Most modern browsers allow you to omit this and just assume you mean
http. However, when a module asks for a URL, it usually needs the protocol prefix.)

In this case, we've added a new method to Browser called go_btn clicked () because
this gives us a little more power than just connecting methods to events. In this case, it
allows you to add a parameter to the call to webview’s load method with the parameter
self.url entry.text (), which just returns the text that the user typed.

67

68

LEARNING PYTHON WITH RASPBERRY PI

At this point, you have what could realistically be called a web browser. There’s nothing
essential missing, although it’s less powerful than mainstream browsers like Firefox, Chrome,
or Midori. The next feature we decided to add is a bookmarks picker. We chose this partially
because it’s a useful feature, and partially because it gives us an excuse to show off another
useful Qt widget, the QComboBox.

Combo box is an odd name for something you're almost certainly familiar with. They’re boxes
with a drop-down arrow that opens a set of choices that users can pick from. If that doesn’t
seem familiar now, it will be as soon as you see it.

Later on in the book we’ll look at some ways you can store information between sessions,
but to keep things simple, we won't let the user change or add to the bookmarks. After all,
this is a chapter on user interfaces, and we want to stick to that topic.

Add the bold sections of the following to the Browser class (the non-bold sections will let
you know where to add it):

self.go_btn = QPushButton("Go", self)
self.go_btn.clicked.connect (self.go_btn clicked)
self.go_btn.setMaximumSize (20,20)

self.favourites = QComboBox (self)

self.favourites.addItems (["http://www.google.com",
"http://www.raspberrypi.org",
"http://docs.python.org/3/"1)

self.favourites.activated.connect (self.favourite selected)

self.favourites.setMinimumSize (200,20)

self.favourites.setMaximumSize (300,20)

self.menu bar = QHBoxLayout ()

self .menu bar.addWidget (self.back btn)
self .menu bar.addWidget (self.forward btn)
self .menu bar.addWidget (self.url entry)
self .menu bar.addWidget (self.go btn)
self.menu bar.addStretch()

self.menu bar.addWidget (self.favourites)
self.main layout = QVBoxLayout ()
self.main layout.addLayout (self.menu bar)
self.main layout.addWidget (self.webview)

self.setLayout (self.main layout)

def go btn clicked(self) :

http://www.raspberrypi.org
http://docs.python.org/3/
http://www.google.com

CHAPTER 4 GRAPHICAL PROGRAMMING 69

self .webview.load(self.url entry.text())

def favourite selected(self):
self.webview.load(self.favourites.currentText())

This is all quite straightforward, and if you run the code, you'll see a QComboBox in action.

As with the URL entry, we just call self.webview.load, but this time with a parameter
that grabs the currently selected text from the combo box.

There are only two controls left to add to the menu bar, so let’s make them in one edit. The
first is a search bar that lets users enter a search term and then press a button to run a
Google search. The second is a zoom slider bar that lets the user zoom in and out of the page.

Update the Browser class with the bold text from the following:

self.favourites = QComboBox (self)

self.favourites.addItems (["http://www.google.com",
"http://www.raspberrypi.org",
"http://docs.python.org/3/"1)

self.favourites.activated.connect (self.favourite selected)

self.favourites.setMinimumSize (200, 20)

self.favourites.setMaximumSize (300,20)

self.search box = QLineEdit (self)
self.search box.setMinimumSize (200,20)
self.search box.setMaximumSize (300,20)

self.search btn = QPushButton("Search", self)
self.search btn.clicked.connect(self.search btn clicked)
self.search btn.setMaximumSize (50,20)

self.zoom slider = QSlider (Qt.Orientation(1l),self)
self.zoom slider.setRange(2, 50)

self.zoom slider.setValue(10)

self.zoom slider.valueChanged.connect (self.zoom changed)
self.zoom label = QLabel ("Zoom:")

self.webview.loadStarted.connect (self.page loading)

self .menu bar = QHBoxLayout ()
self.menu_bar.addwidget (self.back btn)

http://www.raspberrypi.org
http://docs.python.org/3/
http://www.google.com

70

LEARNING PYTHON WITH RASPBERRY PI

self .menu bar.addWidget (self.forward btn)

(
self .menu bar.addwWidget (self.url entry)
self .menu bar.addWidget (self.go btn)
self.menu bar.addStretch()

self .menu bar.addWidget (self.favourites)
self.menu bar.addStretch()

self.menu bar.addWidget (self.search box)
self.menu bar.addWidget (self.search btn)
self.menu bar.addWidget (self.zoom label)
self.menu bar.addWidget (self.zoom slider)
self .main layout = QVBoxLayout ()

self .main_layout.addLayout (self.menu bar)

self .main_layout.addWidget (self.webview)
self.setLayout (self.main layout)

def go _btn clicked(self):
self .webview.load(self.url entry.text())

def favourite selected(self):
self.webview.load (self.favourites.currentText ())

def zoom changed(self):
self.webview.setZoomFactor (self.zoom slider.value()/10)

def search btn clicked(self):
self.webview.load ("https://www.google.com/search?qg="
+ self.search box.text())

def page loading(self):
self.url entry.setText (self.webview.url() .toString())

Whilst there are two controls, there are four widgets to make them happen. The search box
has a QLineEntry and a QPushButton as well. Together, these work in a very similar way
to the URL entry control that you added earlier, except that it adds https: //www.google.
com/search?qg= to the start of whatever you enter. For example, if you search for Rasp-
berries, it will go to the URL https://www.google.com/search?g=Raspberries and
this tells Google to search for Raspberries. This has https:// at the start rather than
http://. The s stands for secure, and if you use https:// then any data between your
browser and the website is encrypted. However, not every website supports https.
QWebView allows you to use either protocol as long as the server supports it.

The zoom slider is a QS1ider, which is another type of control that you're probably familiar
with. It takes a little more setting up, though, which is what the following lines do:

https://www.google.com/search?q=
https://www.google.com/search?q=
https://www.google.com/search?q=Raspberries
https://www.google.com/search?q=

CHAPTER 4 GRAPHICAL PROGRAMMING

self.zoom slider.setRange (2, 50)
self.zoom slider.setValue(10)

The first sets the maximum and minimum values for the slider, and the second sets the ini-
tial value.

You connected the valueChanged action to the zoom changed () method. Once again,
this just links into one of QWebView's methods and lets it do all the hard work. The only
thing zoom changed () does is divide the value of the slider by 10 to make the zoom a bit
more manageable.

If you were looking closely, you'll have noticed that this actually does a little more than add-
ing two extra controls. It also has these lines:

self.webview.loadStarted.connect (self.page loading)

def page loading(self) :
self.url entry.setText (self.webview.url () .toString())

Which will make sure the URL entry box is always updated with the address of the current
page.

Adding Window Menus

The main browser layout is finished, but there’s still a bit more to add before the application’s
done. Remember that at the start we said that we extended a QMainWindow so that we could
add menus? Well now’s the time to do that.

The Window already has a menu; all you need to do is add things to it. These menu items are
similar to widgets, except they’re made from QActions.

To add a file menu with an entry to close the window, change the BrowserWindow class to
the following:

class BrowserWindow (QMainWindow) :
def init (self):
super (BrowserWindow, self). init ()
self.widget = Browser ()
self.setCentralWidget (self.widget)

self.exitAction = QAction(QIcon('exit.png'), '&Exit', self)
self.exitAction.setShortcut ('Ctrl+Q"')

71

72

LEARNING PYTHON WITH RASPBERRY PI

self.exitAction.setStatusTip('Exit application')
self.exitAction.triggered.connect(self.close)

self.menu = self.menuBar ()
self.fileMenu = self.menu.addMenu('&File')
self.fileMenu.addAction(self.exitAction)

There’s one more menu entry to add, one to open a locally stored file. This is a bit different to
everything in the web browser because it opens a new window. In the new window, the users
will get to browse through their files and select the one they want to open. At this point, you
might be thinking that it'll require quite a bit of work to create this new window, add a whole
layout, and link up all the required widgets. However, this is another place where we can just
let Qt do all the hard work for us. There are a range of Qt widgets known as dialogs. These are
simple windows to perform common functions, and they can make your life a lot easier. To
add an open file dialog to the web browser, update the following BrowserWindow class:

self.exitAction = QAction (QIcon('exit.png'), '&Exit', self)
self.exitAction.setShortcut ('Ctrl+Q")
self.exitAction.setStatusTip('Exit application')
self.exitAction.triggered.connect (self.close)

self.openFile QAction (QIcon('open.png'), 'Open', self)
self.openFile.setShortcut('Ctrl+0"')
self.openFile.setStatusTip('Open new File')
self.openFile.triggered.connect (self.showDialog)

self .menu = self.menuBar ()

self.fileMenu = self.menu.addMenu('&File')
self.fileMenu.addAction(self.openFile)
self.fileMenu.addAction (self.exitAction)

def showDialog(self):
fname, = QFileDialog.getOpenFileName (self, 'Open file',
' /home"')
self.widget.webview.load("file:///" + fname)

In this case, we don’t have to create a new object, instead we can just call the getOpenFile
Name () method from QFileDialog. This will open a new window with the title "Open File
in the directory /home" (see Figure 4-3). Once the users pick the file they want, it will return
two things: the filename and the filter. However, since the web browser doesn’t need to know
the filter, assigning it to _ just drops it.

CHAPTER 4 GRAPHICAL PROGRAMMING

| Open file -0x
Look in: |thome j Q00 @ E
& computer = pi
- pi

File name: ||
Files of type: |AII Files (*¥) ~| cancel

FIGURE 4-3: Opening a local file using QFileDialog.

The QWebView can open local files using the protocol file: /// (note the three slashes), so
you just need to prefix this on the filename before you can use it.

That brings us to the end of the web browser. If you haven't been following along, the com-
plete code is on the website as chapter4-web-browser-complete.py. As with every
application, there’s still plenty we could add, but we've shown enough to introduce the
pyside module and the Qt toolkit. It’s a huge toolkit, so out of necessity, we've only been
able to show you the basics. Everything is documented at http://srinikom.github.
io/pyside-docs/.

Test Your Knowledge

Exercise 2

As you've seen, dialogs are great ways to add functionality to your programs quickly. In this
exercise, go back to the turtle program and add a button that launches a QColorDialog,
which sets the colour of the turtle.

Here are a few hints to help you out. QColorDialog.getColor () will return a value with
the type 0Color. To get the RGB values out of a variable that holds a QColor, use vari-
able name.getRgb () [:3].Youneed the [:3] at the end because it returns a tuple with
four values (the final one being the transparency, which you don’t need in this case).

73

http://srinikom.github.io/pyside-docs/
http://srinikom.github.io/pyside-docs/

74

LEARNING PYTHON WITH RASPBERRY PI

Summary

After consuming this chapter, you should know the following:

m PySide is a Python library that helps you write graphical user interfaces using the Qt
toolkit.

m Qt contains a wide range of widgets that you can add to your projects to quickly create
powerful interfaces.

m You can connect actions such as button presses, combo box changes, or slider move-
ments to method calls.

m There are several ways you can lay out your Qt windows, including grid and box.
m If you build your interface on a class that extends QMainWindow, you can add menus.

m Qtincludes a range of dialogs that are ready-made windows that you can add to your
project.

Solutions to Exercises

Exercise 1

import turtle

import sys

from PySide.QtCore import *
from PySide.QtGui import *

class TurtleControl (QWidget) :
def init (self, turtle):
super (TurtleControl, self). init ()
self.turtle = turtle

self.left_btn = QPushButton("Left", self)
self.right_btn = QPushButton("Right", self)
self.move_btn = QPushButton("Move", self)
self.distance spin = QSpinBox()

self.red spin = QSpinBox()

self.green spin = QSpinBox()

self .blue_spin = QSpinBox()

self.red label QLabel ("Red", self)
self.green_label = QLabel ("Green", self)
self.blue_label = QLabel ("Blue", self)
self.colour_btn = QPushButton("Colour", self)

def

def

def

def

CHAPTER 4 GRAPHICAL PROGRAMMING

self.
self
self.
self.
self
self.
self.
self.
self.
self.
self.
self.
self.

self
self
self

for spinner in [self.red spin,

spinner.setRange (0,

controlsLayout

.controlsLayout.
controlsLayout.
controlsLayout.
.controlsLayout.
controlsLayout.
controlsLayout.
controlsLayout.
controlsLayout.
controlsLayout.
controlsLayout.
.addWidget (self.

controlsLayout

setLayout (self.

.distance_ spin.setRange (0,

= QGridLayout ()

addwWwidget (self.
addwWidget (self.

addwWwidget (self
addwWwidget (self

addwidget (self
addwidget (self

addwWwidget (self
addwidget (self

controlsLayout)

100)

.distance_spin.setSingleStep(5)
.distance_ spin.setValue (20)

self .blue spin]:

255)

spinner.setSingleStep (5)

spinner.setValue (150)

self.
self.
self.
self.

.green_spin,

left btn, 0, O

)
right btn, 0, 1)

.distance_ spin,

red_spin, 2,1)

self.green spin,

move_btn.clicked.connect (self.move_turtle)

right_btn.clicked.connect (self.turn_turtle_right)
left_btn.clicked.connect (self.turn_turtle left)

1

.move btn, 1 , 1)
addwidget (self.
3,1)
.blue spin, 4,1)
addwidget (self.

red label, 2,0)

.green label, 3,0)
.blue label, 4,0)
colour_btn, 5,0)

colour_btn.clicked.connect (self.colour_turtle)

turn_turtle left (self):

self.turtle.left (45)

turn_turtle right (self):
self.turtle.right (45)

move turtle(self):
self.turtle.forward(self.distance spin.value())

colour turtle(self):

self.turtle.color(self.red spin.value(),

self.green_spin.value(),

self.blue spin.value())

’

0)

75

76

LEARNING PYTHON WITH RASPBERRY PI

#set up turtle

window = turtle.Screen/()
babbage = turtle.Turtle()
window.colormode (255)

Create a Qt application

app = QApplication(sys.argv)

control window = TurtleControl (babbage)
control window.show ()

Enter Qt application main loop
app.exec_ ()
sys.exit ()

Exercise 2
The following function will need to be connected to the clicked action of a button:

def colour turtle(self):
self.colour = QColorDialog.getColor ()
self.turtle.color (self.colour.getRgb () [:3])

Chapter
Creating Games

IN THE LAST chapter you built graphical software using a GUI toolkit. This made it really
easy to add buttons, text boxes, and all sorts of widgets to our software, but there’s another
sort of graphical application that doesn’t use any of these things: games. We still need to
draw things on the screen, but instead of check boxes and menus, we want fireballs, heroes,
pits of doom, and all manner of fantastical graphics. Clearly, PySide isn’t up to the task, but
there is another module that will do exactly what we want, PyGame.

Raspbian comes with PyGame installed, but only for Python 2. Since we're building with
Python 3, we'll need to install it. In this case, you'll have to compile the module from scratch,
but this is a good chance to learn the process. First you need to install all the packages that
PyGame will need, so open LXTerminal, and use apt-get (the package manager) to install
the dependencies like so:

sudo apt-get update

sudo apt-get install libsdl-dev libsdl-imagel.2-dev \
libsdl-mixerl.2-dev libsdl-ttf2.0-dev libsmpeg-dev \
libportmidi-dev libavformat-dev libswscale-dev \
mercurial python3-dev

You'll notice that a lot of this code ends in -dev. These are the development files. You need
them when compiling software that uses those libraries.

The next step is to get a copy of the latest version of PyGame. Since we're using Python 3, we
need to get the very latest version, so we'll grab it straight from the development platform
with the following:

hg clone https://bitbucket.org/pygame/pygame
cd pygame

https://bitbucket.org/pygame/pygame

78

LEARNING PYTHON WITH RASPBERRY PI

These two lines will download the current version of PyGame into a new directory called
pygame, then move into it. Once it’s there, you can build and install the module for Python
3 with:

python3 setup.py build
sudo python3 setup.py install

If everything’s gone well, you'll now be able to use PyGame in Python 3. To test that it works,
open up the Python Shell in IDLE, and enter:

>>> import pygame

If there are any errors, then something has gone wrong and you'll need to go back and repeat
the steps before continuing with the chapter. Whilst you're in the shell, you can try out a few
things to see how PyGame works.

>>> pygame.init ()

>>> window = pygame.display.set mode ((500, 500))

>>> screen = pygame.display.get surface()

>>> rect = pygame.Rect (100, 99, 98, 97)

>>> pygame.draw.rect (screen, (100, 100, 100), rect, 0)
>>> pygame.display.update ()

You should see this open a new window and draw a grey rectangle. The first line just gets
PyGame up and running. The second line opens a new window. The parameter - (500,
500) - is a tuple containing the width and height of the new window. Notice how there’s
two opening and closing brackets? One set denotes the parameter and the other, the tuple.
The third line gets the surface that you can draw on and stores it in the variable screen.

There are two main PyGame classes that you'll be using: Rect and Sprite. The second one
we'll look at later, but the first, Rect, is absolutely critical to the way PyGame works. In the
fourth line, you create one of these rectangles, which has its top-left corner at coordinates
100, 99, and is 98 pixels wide by 97 tall. The one thing you need to know about PyGame
coordinates is that they start from the top-left corner of the screen, so compared to normal
graph coordinates, they’re upside down.

Rectangles aren’t always displayed on the screen (they serve a number of other useful purposes
asyou'll discover later), but this one will be drawn, and that’s done in the next line. The parameter
(100, 100, 100) holds the red, green, and blue colours (each one is from O to 255), and the

CHAPTER 5 CREATING GAMES

0 is the line thickness (0 means fill, 1 or higher means line thickness). If you were paying atten-
tion as you typed, youd notice that the rectangle doesn’t appear in the window. That’s because
you need to update the screen for any changes to take effect. This we do in the final line.

Try drawing a few other rectangles on the screen to get a feel for how all the different param-
eters affect the shape.

Building a Game

Those are the very basics of PyGame. Now onto the game you'll build, which is a simple plat-
form game where you control a character who has to run and jump through a level to try and
reach a goal. To make it a little tricky, we'll rain down fireballs that she has to dodge as she
makes her way there, and if she falls off the platform, there’ll be a burning pit of doom wait-
ing to finish her off.

When programming, we don’t usually start with the first line. Instead, we make a plan of
how we think the program will work. This is like the skeleton of the program that we’ll then
flesh out. We do this by designing all the classes and their methods, but leaving the imple-
mentation blank. As we program, we add flesh to this design until, hopefully, we end up with
a finished program. For our game, we have the following design (you can type it out, but it’ll
be easier to download it from the website as chapter5-pygame-skell.py and add to it
as you go through the chapter):

import pygame

import sys

from pygame.locals import *
from random import randint

class Player (pygame.sprite.Sprite):
'"'The class that holds the main player, and controls
how they jump. nb. The player doesn't move left or right,
the world moves around them'''

def __init__ (self, start_x, start_y, width, height):
pass

def move_y(self):
'"'this calculates the y-axis movement for the player
in the current speed'''
pass

79

80

LEARNING PYTHON WITH RASPBERRY PI

def jump(self, speed):
""'This sets the player to jump, but it only can if
its feet are on the floor''!
pass

class World() :
""'This will hold the platforms and the goal.
nb. In this game, the world moves left and right rather
than the player''!'

def init (self, level, block size, colour platform,
colour_goals) :
pass

def move (self, dist):
'"'move the world dist pixels right (a negative dist
means left)''!'
pass

def collided get y(self, player rect):
''"'get the y value of the platform the player is
currently on'''
pass

def at goal(self, player rect):
'"'return True if the player is currently in contact
with the goal. False otherwise''!
pass

def update(self, screen):
'"'draw all the rectangles onto the screen'''
pass

class Doom() :
""'this class holds all the things that can kill the player'''

def init (self, fireball num, pit depth, colour):
pass

def move (self, dist):
""'"move everything right dist pixels (negative dist
means left)'"!
pass

CHAPTER 5 CREATING GAMES

def update(self, screen):
'"""move fireballs down, and draw everything on
the screen'!''
pass

def collided(self, player rect):
'"'check if the player is currently in contact with
any of the doom.
nb. shrink the rectangle for the fireballs to
make it fairer''"!
pass

class Fireball (pygame.sprite.Sprite) :
'"'this class holds the fireballs that fall from the sky'''

def init (self):
pass

def reset(self):
'"'re-generate the fireball a random distance along
the screen and give them a random speed'''
pass

def move x(self, dist):
'""move the fireballs dist pixels to the right
(negative dist means left)''!
pass

def move_ y(self):
'""move the fireball the appropriate distance down
the screen
nb. fireballs don't accellerate with gravity, but
have a random speed. if the fireball has reached the
bottom of the screen, regenerate it'''
pass

def update(self, screen, colour):
''"'"draw the fireball onto the screen'''
pass

#options
#initialise pygame.mixer
#initialise pygame

381

LEARNING PYTHON WITH RASPBERRY PI

#load level

#initialise variables

finished = False

#setup the background

while not finished:
pass
#blank screen
#check events
#check which keys are held
#move the player with gravity
#render the frame
#update the display
#icheck if the player is dead
#check if the player has completed the level
#set the speed

There are only a few pieces of actual code here, but it’s enough for us to know what’s going on.
This is actually a legal Python program, so you can enter it and run it. It won't do anything
except spin itself round in a loop until you hit Ctrl+C to stop it, but this gives you a base to
work from. As we add pieces, we'll make sure it stays as a running program so you can con-
stantly check how it’s playing, and that it’s working correctly. Notice the pass statement in
every method. This statement does nothing, but Python complains if you have a method
with no code in it, so this simple line is required for the code to run.

This is quite a good way to start when you write your own programs. Rather than trying to
create the whole thing in one go, you can start by planning how everything will work, and
then build up bit-by-bit until you have a fully working program. If needed, you can always
change your plan, but it helps to know what you're working towards.

Initialising PyGame
We'll now add a couple of things to get it started. Add the following code to the file where the
comments match.

#options

screen X = 600

screen y = 400

game name = Awesome Raspberry Pi Platformer"

#initialise pygame

pygame.init ()

window = pygame.display.set mode((screen x, screen y))
pygame.display.set caption(game name)

screen = pygdame.display.get surface()

CHAPTER 5 CREATING GAMES

#initialise variables
clock = pygame.time.Clock ()

#check events
for event in pygame.event.get () :
if event.type == QUIT:
finished = True

#set the speed
clock.tick(20)

You should recognise the section under initialise pygame from earlier. The only change
here is that we've taken the screen size out and stored it in two variables. This is so that you
can easily change it later without having to try to remember what code does what. All the key
options will be stored as global variables in the same place to allow you to tweak the way the
game works.

The section under #check events just waits until the user clicks on the cross to close the win-
dow, then exits the loop. The two lines for the clock use PyGame’s timer to moderate the speed
the loop runs at. Since each turn of the loop will correspond to a singe frame of the game, we
need to make sure it doesn’t run too fast (otherwise, all the action would be over before the user
had a chance to do anything). You could just tell Python to sleep for a certain amount of time like
you did in the simple turtle game in Chapter 2, but this has the slight problem that you don’t
know how long the rest of the loop will take. If you run it on a slower computer, the game will
run at a different speed to on a fast machine. clock.tick (£ps) is the solution to this. It tries
to hold the loop at £ps loops per second by pausing the loop for the appropriate amount of time,
taking into account how long the rest of the loop has taken to run. In the previous code, the final
line will calculate how long to wait for so that the loop runs exactly 20 times a second.

Now, let’s start building the classes, starting with the Player class. Add the following ini-
tialisation method to it:

def init (self, start x, start y, width, height):

pygame.sprite.Sprite. init (self)

self.image = pygame.transform.scale (
pygame.image.load (player image), (width, height))

self.rect = self.image.get rect()

self.rect.x = start x

self.rect.y = start y

self.speed y = 0

self .base = pygame.Rect (start x, start y + height, width,2)

83

81

LEARNING PYTHON WITH RASPBERRY PI

The key thing about Player is that it inherits from pygame . sprite. Sprite. This allows you
to use it to draw an image, but first you have to set up two key variables: self.image and
self.rect. Once these are set up, the parts it inherits from pygame.sprite.Sprite will
allow you to draw it. Fairly obviously, self . image is the image that you want the sprite to have
and self.rect is the rectangle that PyGame will draw it in. Once set up, you can then move
and manipulate this rectangle just like any other, and PyGame will move the image round the
screen for you. As you'll see later, you move rectangles round by updating their x and y attributes.

The penultimate local variable (speed_y) is used to keep track of the player’s up and down
speed as she jumps, whilst the final one (base) is a very short rectangle that represents the
character’s feet. You'll use this to check whether she’s standing on a platform.

The player is now ready to draw on the screen, but first you'll need a bit more code. Add the
following to the appropriate areas:

#options
player spawn_ x 50
player spawn_y = 200

player image = "lidia.png"

#initialise variables
player = Player(player spawn x, player spawn_y, 20, 30)
player plain = pygame.sprite.RenderPlain(player)

#render the frame
player plain.draw(screen)

#update the display
pygame.display.update ()

In order to draw a sprite, you need to give it an image to draw. If you're artistic, you may want to
create this yourself. However, there’s a great collection of images you can use for games athttp: //
opengameart . org. These are all free to download and use in your games, but some of them have
licenses that say if you make a game with it, and you distribute that game to other people, you have
to let them have the Python code so they can modify it, and build other games with your code if
they want to. This concept is known as open source (see note). There are links on every file of
http://opengameart . org that tell you exactly what license they’re under. The important thing
to realise is that you don’t have to worry about it unless you distribute your game to other people.
Not all of the files there will work well with PyGame. We recommend sticking with .png files for
images. After a bit of searching, we like using http://opengameart.org/sites/default/
files/styles/medium/public/lidia.png for our game’s main character, but feel free to
pick a different one (although you'll have to update the player image variable). As the code is
currently, it'll look for the player image image file in the same directory it’s being run from.

http://opengameart.org
http://opengameart.org
http://opengameart.org
http://opengameart.org/sites/default/files/styles/medium/public/lidia.png
http://opengameart.org/sites/default/files/styles/medium/public/lidia.png

CHAPTER 5 CREATING GAMES

Open Source

Open source is a concept in which people share the programs they've written. Not just the
executable files that can be run, but also the actual program code so that other people can
modify it in whatever way they see fit. For example, the Linux operating system on the
Raspberry Pi is open source, so are all of the tools that come standard, like the Midori web
browser and even Python itself. Roughly speaking, there are two different types of open
source—ones where you have to share any modifications you make, and ones where you
don't. Creative Commons is a similar concept to open source, instead for works of art like pic-
tures, sounds, and writing. WWhen incorporating pieces of open source software or Creative
Commons artwork into your programs, it's important that you understand what your responsi-
bilities are. There will always be a link to the exact license that it's released under. In the case of
Creative Commons, these are easy to read and understand. If you need to share your work in
order to comply with a license (or if you want to make your work open source), the easiest way
is to put it on an open source hosting website such as github.com, which will host it for free.

To draw a sprite, you also need to add it to a RenderPlain. This just creates the object that
you draw on the screen. Here, the player object has its own RenderPlain object called
player plain.

You should now be able to run the code and it'll display the sprite at the coordinates
player spawn x, player spawn y. Technically, it'll be redrawing it 20 times a second,
but since it’s always in the same place, you can'’t tell. It should look like Figure 5-1.

Awesome Raspbarry Pi Platformer

FIGURE 5-1: The simple beginnings of the platform game.

85

http://github.com

386

LEARNING PYTHON WITH RASPBERRY PI

With the character drawn, the next task is to make her move. This is just some test code to
make sure the animation is working properly. A little later you'll update this to let your char-
acter jump. Add the following method to the Player class:

def move_ y(self):
self.rect.y = self.rect.y + 1

This will just move the character slowly down. For this to do anything, though, we’ll have to
add the following to the appropriate places in our game loop:

#blank screen
screen.fill ((0, 0, 0))

#move the player with gravity
player.move y ()

You can now run the code, and you'll see the player move down the window until she disap-
pears off the bottom. We can’t do much more with her until we've built a world for her to
move round in.

Creating a World

We want to make it as easy as possible to extend this game and make it awesome, so we want
it to be really easy to design new levels. We've done this by defining each level as a list of
strings. Each string corresponds to a line on the screen, and each character in the string cor-
responds to a block on that line. A - means that there’s a platform there, a G means there’s a
goal there (the place the player has to reach to finish the level), and anything else means it’s
blank. To create the basic level, then, add the following under #options:

level=[

platform colour = (100, 100, 100)
goal colour = (0, 0, 255)

CHAPTER 5 CREATING GAMES 87

If you've entered it correctly, all the lines should be the same length. This is a really simple
level, but it'll do for testing. The final two lines also set the colours for the platform and the
goal, respectively. As we saw with the rectangle at the start of this chapter, these colours are
in RGB values.

Now add the following code to the __init__ method of the Wor1d class to load this:

def init (self, level, block size,
colour platform,
colour goals) :

self.platforms = []

self.goals = []

self.posn y = 0

self.colour = colour platform

self.colour goals = colour goals

self .block size = block size

for line in level:
self.posn x = 0
for block in line:
if block == "-":
self.platforms.append (pygame.Rect (
self.posn x, self.posn vy,
block size, block size))
if block == "G":
self .goals.append (pygame.Rect (
self.posn x, self.posn vy,
block size, block size))
self.posn x = self.posn x + block size
self.posn y = self.posn y + block size

The code is fairly simple; it just loops through every line, then every character in the line, and
builds the appropriate rectangles when it finds the appropriate characters. Before you can
use these blocks, you need to also add the update method to the World class, which will
draw the blocks onto the screen:

def update(self, screen):
''"'"draw all the rectangles onto the screen'''

for block in self.platforms:
pygame.draw.rect (screen, self.colour, block, 0)
for block in self.goals:
pygame.draw.rect (screen, self.colour goals, block, 0)

38

LEARNING PYTHON WITH RASPBERRY PI

Now you just need to add the following code to create the objects and render them. As always,
put them in the right place by looking at the comments.

#initialise variables
world = World(level, 30, platform colour, goal colour)

#irender the frame
world.update (screen)

You can now run the game, but you still won’t find much to play. The world will be drawn, but
the character will slowly fall through the level, and continue falling until she disappears off
the screen.

Detecting Collisions

Fortunately, it’s really easy to get two game elements to interact using PyGame’s Rect’s
colliderect () method. This is incredibly simple, and the format is

rectl.colliderect (rect2)

Where rect1 and rect2 are rectangles. This will return True if the two rectangles overlap,
and False otherwise. You can use this to detect when the player is in contact with the world
so she doesn't just fall through it. Start with the Wor1d class and add:

def collided get y(self, player rect):
"'"'get the y value of the platform the player is
currently on'''
return_ y = -1
for block in self.platforms:
if block.colliderect (player rect) :
return y = block.y - block.height + 1
return return y

This doesn’t just check if the player is in contact with any part of the world, but also returns
the top of the rectangle that the player is touching, or -1 if the player isn’t touching any-
thing. The next step is to update the Player class to move or not, as appropriate

def move_ y(self):
""'this calculates the y-axis movement for the player
in the current speed'''
collided y = world.collided get_y(self.base)

CHAPTER 5 CREATING GAMES

if self.speed y <= 0 or collided y < O0:
self.rect.y = self.rect.y + self.speed y
self.speed y = self.speed y + gravity

if collided y > 0 and self.speed y > O0:
self.rect.y = collided y

self .base.y = self.rect.y+self.rect.height

You'll also need to add one thing to help the player fall realistically:

#options
gravity =1

You can now run this. The player will now fall until she rests on top of the platform, as shown
in Figure 5-2.

Awesome Raspbarry Pi Platformer

FIGURE 5-2: Our heroine can now stand atop the world we've created.

Let’s take a look at move y () to see why this happens. The code deals with two possibilities,
and each one hasitsown if block. The first possibility is that the players are free to move up
or down depending on their current speed and gravity. This is the case if they’re not touching
any part of the world (that is, collided get y returns -1). We also want the players to be
able to jump up through platforms to get to higher ones, so if the players are currently mov-
ing upwards (that is, if self.speed_y <= 0), we treat the character as though she’s not
touching the world. If either of these conditions is true, then we run:

39

90

LEARNING PYTHON WITH RASPBERRY PI

self.rect.y = self.rect.y + self.speed y
self.speed y = self.speed y + gravity

This moves the character by a distance determined by the current speed, then updates the
current speed by gravity (gravity is an acceleration, so this mimics the physics of the real

world).

The second possibility (which is checked by the second if block) is that the players are
currently in contact with a platform and they’re not moving up. If this is the case, the
program just adjusts the coordinates of the character so that she’s correctly aligned with
the world. This is because if the players fall at more than one pixel per frame, it’s possible
that they could be several pixels below the top of the platform before this is checked. Later
on, you may notice that sometimes you can see the character going down then back up
slightly as she lands from higher falls, but this mimics people recovering from a landing.

Moving Left and Right

You've almost got something that represents a game now. There’s a player and a world, but
the players still can’t explore it. The next thing to add is movement. There’ll be two kinds of
movements. Firstly we'll allow the players to jump, but only if they’re in contact with the
floor, and secondly they’ll be able to move left and right.

First add the jump () method to the Player class. Since you already have the character fall-
ing, jumping is simple. All you have to do is make sure she’s on the ground, then set her mov-
ing upwards and let her fall on her own:

def jump(self, speed):
if world.collided get y(self.base)>0:
self.speed y = speed

Now to move the player left and right. Actually, it’s easier if the players stay still and the
world moves left and right behind them. This gives the effect of moving without the problem
of the character disappearing off the screen.

All you need to do is loop through every rectangle in the world (that is, both the platforms and
the goal), and move them by a given offset. We could just update the rectangle’s x and y attri-
butes, but there are also two methods in the Rect class that you and use: move (x-distance,
y-distance) andmove ip(x-distance, y-distance).move () returns a new rectan-
gle that is the same but offset by the given distances, whilst move ip () changes the current

CHAPTER 5 CREATING GAMES

rectangle by the distances (ip stands for in place). Since we don’t want to keep creating new
rectangles every time we move, we'll use move ip (). The code is

def move (self, dist):
for block in self.platforms + self.goals:
block.move ip(dist, 0)

The only thing left is to add code to the main loop to run the appropriate methods when keys
are pressed. There are two ways of doing this in PyGame. The first way involves listening for
keypress events and then taking action depending on which keypresses are detected. This is
good if you only care about when keys are pressed. The second way is using pygame . key .
get pressed() to return a list with an entry for each key. The value of the item that
corresponds to a key will be True if it’s held down and False if it isn’t. This second method
works better if you want users to be able to hold down keys to keep moving. Since we do
want users to be able to hold down keys, add the following to the appropriate part of the
game loop:

#check which keys are held

key state = pygame.key.get pressed()

if key state[K_LEFT]:
world.move (2)

elif key state[K RIGHT]:
world.move (-2)

if key state[K_SPACE] :
player.jump (jump_speed)

Note that K_LEFT, K_RIGHT, and K_SPACE are all constants that we imported with pyg
ame.locals. There are also K_a to K_z for the letter keys.

Add the option for the speed of the jump (negative because the PyGame coordinate system is
from the top-left):

#options
jump_speed = -10

If you run the code now, you'll have what could be called the basics of a platform game (see
Figure 5-3). You can move the character about, and jump over gaps. However, two crucial
parts are missing. Firstly, there’s no way to complete the level, and secondly, there’s nothing
trying to stop you.

91

92

LEARNING PYTHON WITH RASPBERRY PI

Awesome Raspberry Pi Platformer

FIGURE 5-3: The basics of a platform game running on a Raspberry Pi with less than two
hundred lines of Python.

Reaching the Goal

Let’s deal with the first of these shortcomings first. Partly because it’s easier and partly
because you'll then have a game you can play-test. Since the code creates, displays, and moves
the goal as appropriate, all we have to do is find out if the character’s at the goal. This is done
in two stages. First, add the following method to the Wor1d class:

def at goal (self, player rect):
for block in self.goals:
if block.colliderect (player rect):
return True
return False

This works in exactly the same way as the collide get y () method that we created ear-
lier, except that it only returns True or False. You then need to check this method in the
game loop, so add:

#icheck if the player has completed the level
if world.at goal (player.rect):
print ("Winner!")
finished = True

CHAPTER 5 CREATING GAMES

If you save and run the code now, you'll find that you can run and jump to the goal, then fin-
ish the level. You can even fall off the platform and disappear into the abyss never to be seen
again, but it still doesn’t have much of a challenge to it.

Making a Challenge

To add some game play, there'll be a class called Doom, which holds all the things that can kill
the player. In this game, there are two challenges to avoid. Firstly, there’s the burning pit of
doom that covers the bottom of the screen. This will kill the players if they fall into it.
Secondly, and more importantly from the perspective of the game play, there’ll be fireballs
that drop down from the sky. The players will have to dodge these as they make their way
towards the goal.

Firstly, add the burning pit of doom. We'll draw this as a rectangle along the bottom of the
screen. Add the following to the Doom class:

def init (self, fireball num, pit depth, colour):
self .base = pygame.Rect (0, screen y-pit depth,
screen_x, pit depth)
self.colour = colour

def collided(self, player rect):
return self.base.colliderect (player rect)

def update(self, screen):
'""move fireballs down, and draw everything on the screen'''
pygame.draw.rect (screen, self.colour, self.base, 0)

Also add the following to the appropriate parts of the options, variables, and game loop:

#options
doom_colour = (255, 0, 0)
#initialise variables
doom = Doom (0, 10, doom colour)
#render the frame
doom.update (screen)
#icheck if the player is dead
if doom.collided(player.rect) :
print ("You Lose!™")
finished = True

93

94 LEARNING PYTHON WITH RASPBERRY PI

This should all be fairly self explanatory. Notice that you don’t need to move the burning pit
of doom rectangle, as it should always cover the bottom of the screen. The call to the
update () method is to move the fireballs, so let’s look at them now.

We'll add the whole class in one go here:

class Fireball (pygame.sprite.Sprite) :
'""'this class holds the fireballs that fall from the sky'''
def init (self):
pygame.sprite.Sprite. init (self)
self.image = pygame.transform.scale (
pygame.image.load(fireball image),
(fireball size, fireball size))
self.rect = self.image.get rect()
self.reset ()

def reset (self):
self.y = 0
self.speed y = randint (fireball low_ speed,
fireball high speed)
self.x = randint (0, screen x)
self.rect.topleft = self.x, self.y

def move x(self, dist):
self.rect.move ip(dist, 0)
if self.rect.x < -50 or self.rect.x > screen x:
self.reset ()

def move_ y(self):
self.rect.move ip (0, self.speed y)
if self.rect.y > screen y:
self.reset ()

As you can see, this class extends the Sprite class in the same way that the Player class
does. The move x () method works in a similar way to the equivalent method in World,
except that here it has to move only a single fireball because we will have one of these fireball
objects for each fireball.

To keep up the challenge, the fireballs should constantly fall from the sky. There are a few
ways of achieving this, but we've chosen to create a fixed number of fireballs and simply reset

CHAPTER 5 CREATING GAMES

them whenever they go off the screen. This reset () method places the fireballs at a random
position along the top of the screen and gives them a random velocity.

The randint (a, b) method returns a random integer between a and b, inclusive (that is,
including the values of a and b). The screen_x variable makes sure it’s on the screen, and
two global variables (fireball low speed and fireball high speed) set the range
of speeds a fireball can move at. These numbers are pixels per frame. You don’t need a collide
method here because you’ll deal with that in the Doom class.

Now, update the Doom class to:

class Doom() :

'"'"this class holds all the things that can kill the player'''
def init (self, fireball num, pit depth, colour) :
self.base = pygame.Rect (0, screen y-pit depth,

screen x, pit depth)
self.colour = colour
self.fireballs = []
for i in range(0,fireball num) :
self.fireballs.append(Fireball())
self.fireball plain = pygame.sprite.RenderPlain(
self.fireballs)

def move (self, dist):
for fireball in self.fireballs:
fireball .move x(dist)

def update(self, screen):
for fireball in self.fireballs:
fireball.move y ()
self.fireball plain.draw(screen)
pygame.draw.rect (screen, self.colour, self.base, 0)

def collided(self, player rect):
for fireball in self.fireballs:
if fireball.rect.colliderect (player rect):
hit box = fireball.rect.inflate(
-int (fireball size/2),
-int (fireball size/2))
if hit box.colliderect (player rect):
return True
return self.base.colliderect (player rect)

95

96

LEARNING PYTHON WITH RASPBERRY PI

As you can see, this creates a list of fireballs and adds them to fireball plain. Thisisa
RenderPlain that works in the same way as player plain, and allows you to draw the
fireballs on the screen. Notice that there are global variables for the number and size of fire-
balls. Changing these has a dramatic effect on how the game plays, and in many ways, they’re
the key variables for changing difficulty.

The collided () method is a little different to the previous ones we’ve done so far. It com-
pares the player to a rectangle half the size of the fireball rectangle. This is because neither
the player nor the fireball are perfect rectangles, and the two bounding rectangles can collide
even if the actual sprites are some distance apart. This is extremely frustrating for the person
playing the game. The method we've used isn’t perfect, but it errs towards the player not
dying. In other words, it may be possible for the player to skim a fireball and get away with it,
but if this collide method returns True then there’s definitely a collision.

It is actually possible to do perfect sprite collision in PyGame using pygame.sprite.
collide mask(spritel, sprite2). However, this uses significantly more computing
power, and is a bit overkill for this task.

With these two classes added, you just need the following code to get it all working:

#options

fireball size = 30

fireball number = 10
fireball low speed = 3
fireball high speed = 7
fireball image = "flame.png"

Change the initialisation of Doom to include fireballs:

doom = Doom(fireball number, 10, doom colour)

You'll also need to add lines to the keypress section to make the fireballs move with the back-
ground (the lines in bold are the ones you need to add):

#check which keys are held
key state = pygame.key.get pressed()
if key state[K LEFT]:
world.move (2)
doom.move (2)
elif key state[K RIGHT]:
world.move (-2)
doom.move (-2)

CHAPTER 5 CREATING GAMES

Again, we're using a sprite that we got from http://opengameart .org. In this case it’s
the one from http://opengameart.org/sites/default/files/flame.png. Feel
free to pick another or draw your own. For this to work, the file has to be downloaded and
saved in the same directory you're running the game from. Alternatively, you can give the
sprites an absolute path. For example, if you're saving everything in the directory /home/
pi/my game/, you could change the line:

fireball image = "flame.png"
to
fireball image = "/home/pi/my game/flame.png"

That way it would work wherever you ran the game from. Now save and run, and the game
should look like Figure 5-4.

Awesome Raspberry Pi Platformer

FIGURE 5-4: It’s a little rough round the edges, but it’s a working platform game.

Making It Your Own

The mechanics of the game are now in place. Players have to move through the world, dodge
the fireballs, and get to the goal. There’s still a little polish left to add, but the basics are there.
Now’s a great time to start making it your own. After all, this isn’t a chapter about how to
copy code until you have a game; this is a chapter about building your own game. By now you
should know enough about what the various bits do to start customising it. The options
section is the best place to start.

97

http://opengameart.org
http://opengameart.org/sites/default/files/flame.png

98

NOTE

LEARNING PYTHON WITH RASPBERRY PI

Depending on your monitor, you may want to change the size of the window. If you think it’s a
bit too easy, add some more fireballs, or make them larger. Perhaps you want to jump higher, or
run faster. All of these should be pretty easy. In fact, you should have learned enough in earlier
chapters to now make a simple game menu that you can add to the start of the game. You could
make it a simple text-based menu that goes just before #initialise pygame, and letsyou set
the level of difficulty. At harder levels you could ... actually, we'll let you work that out for your-
self. If you're feeling ambitious, you could make this menu graphical rather than text-based.

Adding Sound

Hopefully, you now have your own customised version of our game, but don't worry if you
don’t. The rest of this chapter will still work and you can go back and add your own tweaks later.

Now it’s time to add a bit of flare. These are things that don’t affect the mechanics of the
game, but make it more enjoyable to play. The first is a sound effect, and the second is a back-
ground.

Before we can add sounds, we need to initialise the mixer. This basically just gets the sound
infrastructure set up and ready to play. It’s done with the following code:

#initialise pygame.mixer
pygame.mixer.pre init (44100, -16, 8, 2048)
pygame.mixer.init ()

This allows us to play up to eight sounds at once, although at first, we'll just add a jumping
sound effect. Again, we've gone to http://opengameart.org. This time the file is
http://opengameart.org/sites/default/files/qubodup-cfork-ccby3-
jump . ogg, so again you'll need to download this or a corresponding file. We'll add this file to
the options with:

#options
jump_sound = "qubodup-cfork-ccby3-jump.ogg"

MP3 sound files will sometimes work, but can be a little persnickety. They have also been
known to crash PyGame games, so it's best to stick with OGG files if you can.

Then we need to update the Player class to play the noise at the appropriate time. Add the
following to the end of the _init () method:

self.sound = pygame.mixer.Sound (jump sound)

http://opengameart.org
http://opengameart.org/sites/default/files/qubodup-cfork-ccby3-jump.ogg
http://opengameart.org/sites/default/files/qubodup-cfork-ccby3-jump.ogg

CHAPTER 5 CREATING GAMES

You'll also need to change the jump () method so that it is

def jump(self, speed):
if world.collided get y(self.base)>0:
self.speed y = speed
self.sound.play()

That’s all you need to add a bit of sound to the game. You should now find it quite easy to add
more effects, like one that plays when players reach the goal, or one that plays when they die.
You could also add some background music. However, remember that most music you buy is
copyrighted. You can include it in a game you make for yourself without any problems, but if
you want to distribute your game, you could get into trouble. Instead, take alook at http: //
freemusicarchive.org. Like http://opengameart.org, this site contains a wide
range of files that you can download and include in your own games. There’s a wide range of
styles, so you'll almost certainly find something you like. Many of these are also licensed so
that if you distribute your game, you also have to distribute the source code.

Adding Scenery

The second nicety we'll add to the game is a background. Of course, you'll need a background
image to do this, and we've gone for the file background.png that’s in http://
opengameart.org/sites/default/files/background. zip. This gives a nice, coun-
tryside backdrop, but you could alter the feel of the game by going for something darker and
moodier. You'll need to add the following to the options to bring in the file:

#options
background image = "background.png"

Before, when using images, you extended the Sprite class to create a new class (such as
Player and Fireball) to draw them. However, since you don’t need to manipulate the
rectangle for this, or do any collisions, you can simply load it as an image. This is done with
the following code:

#set up the background

background = pygame.transform.scale (pygame.image.load (
background image), (screen x, screen y)).convert ()

bg 1 x = -100

bg 2 _x = screen_x - 100

99

http://freemusicarchive.org
http://freemusicarchive.org
http://opengameart.org
http://opengameart.org/sites/default/files/background.zip
http://opengameart.org/sites/default/files/background.zip

100

LEARNING PYTHON WITH RASPBERRY PI

The first line loads the image and scales it to the screen size. It also runs convert () on it.
This converts the image from a PNG to a PyGame surface. This makes it render on the screen
much faster, which is especially important for an image of this size. You could have done this
with the other images you've used, but then you'd lose the transparent sections round the
images, making them purely rectangular. The second and third lines set up the variables that
hold the x positions of the image. There are two of these because we'll draw the image twice
to create a constantly looping background that the players can never move off the end of.

To move the background, update the appropriate section of the game loop to:

#check which keys are held
key state = pygame.key.get pressed()
if key state[K LEFT]:

world.move (2)
doom.move (2)
bglx=Dbglx=+1
bg 2 x =bg 2 x +1
if bg 1 x < screen_x:
bg 1 x = -screen x
if bg 2 x < screen x:
bg 2 x = -screen x
elif key state[K RIGHT]:
world.move (-2)
doom.move (-2)
bglx=bglx-1
bg 2 x =bg 2 x -1
if bg 1 x > -screen x:
bg 1 x = screen x
if bg 2 x > -screen x:
bg 2 x = screen x

There’s quite a bit going on here. Firstly, did you notice that we move the background by less
than we move the world or the doom? This is called parallax scrolling. It creates the appear-
ance of depth by moving objects farther behind at different speeds. It’s like when you look
out of the window of a moving vehicle and the objects close to you appear to be moving
faster than those farther away. It’s not exactly advanced 3D graphics, but it helps create a
sense of depth. If you want to take things further, you can add layers of backgrounds here.
For example, you could draw some trees that move only a bit slower than the platforms, then
some hills that move bit slower than the trees, and finally a sun that moves really slowly. As
with the sounds, you can take this as far as you want to go.

The second thing that’s going on in the code is the if blocks that move the background.
Whenever the image moves so it’s off one side of the screen, the program moves it back to the

CHAPTER 5 CREATING GAMES

other side of the screen. This creates the infinitely scrolling background that constantly loops
between the two background images. The only thingleft to do is draw the image on the screen:

#render the frame
screen.blit (background, (bg 1 x, 0))
screen.blit (background, (bg 2 x, 0))

These have to be the first lines under #render the frame because otherwise they’ll be
drawn over the top of the other parts. Figure 5-5 shows the final game.

Awesome Raspberry Pi Platformer

FIGURE 5-5: The game with all the elements.

Adding the Finishing Touches

This, in essence, is the game fully complete. However, there is one more bit we'll add to make
it easier to use. So far, we've been using a level that’s hard coded into the game. However, it
would be much better if we could set it up so that the users can specify a file to load, and the
program would pull the level out of the text in that file. Since the levels are defined by text,
this should be quite easy.

Running python3 chapter5-platformer.py (or whatever you've called the file) will run
the default level that’s inside the main game file, but python3 chapter5-platformer.
py mylevel will run the game with the level specified in the file mylevel. To do this, we
need to use sys.argv. This is in the sys module, and it’s a list containing all the arguments

101

102

LEARNING PYTHON WITH RASPBERRY PI

that get passed to Python. sys.argv [0] will be the name of the script we're running, so the
argument that contains the filename (if it exists) will be sys.argv [1]. All we have to do,
then, is add the following to our program:

#load level
if len(sys.argv) > 1:
with open(sys.argv[1l]) as f:
level = f.readlines()

The specified file will be read in the same way as the array we've been using up until now. That
is, a - is a platform and a G is a goal, and multiple lines define the multiple levels of the game.

If you haven't been following along, you can download the entire game from the website
as chapter5-platformer.py, although we strongly encourage you to work through this
chapter as it'll help you understand much more about what's going on.

Taking the Game to the Next Level

We could go on and on and add more and more to the game. However, we’ll end the tutorial
here. Not because the game’s finished, but because you should now know enough to finish it
by yourself. We're not going to dictate to you what the game should have—it’s your game,
add what you want. However, we will give you some ideas for how to move on:

m [f you haven't already tried tweaking the options, try that now.

m Creating new levels is a great way to make the game feel like it’s your own.

m The artwork we've used is only a suggestion. See what you can find online, or try mak-
ing some of your own.

m Add sprites to the items that are currently just rectangles, like the platform and the
burning pit of doom.

m Build up levels into worlds. Each world could have a different theme, and different
artwork to match the theme.

m Add things that players can collect. These could be coins that count towards the score,
or power-ups that allow the players to run faster or jump higher.

m Add more things that could kill the players. This could be, for example, something that
constantly moves right so the players have to keep moving in order to avoid it, some-
thing that comes for the players and they have to kill by jumping on, or something that
shoots up from below.

CHAPTER 5 CREATING GAMES

m Score each level on completion. You could do this with timing, or objects that the play-
ers collect, or something else.

m Animate the sprites. Many of the images on http://opengameart.org have a
range of poses to allow you to animate objects by constantly scrolling between a set of
images.

m [t could speed up if you hold the arrow key down rather than just always moving at a
constant speed, or there could be some Run button that enables the players to move
faster.

These are just a few ideas to get you started. It's not intended to be a complete list of every-
thing you can do with the game, so get your creative juices flowing and see what you can
come up with. If it gets good, you could submit it to the Raspberry Pi store and let other
people play it. Just remember the licenses of any images or sounds you've used.

Realistic Game Physics

PyGame is a great module for creating simple games. As you've seen, it’s really easy to draw
objects on the screen and move them round. However, sometimes you need a bit more
power. In the previous example, the character fell as though affected by gravity, but the rest
of the physics were a bit off. If you need objects that can interact with each other in more
realistic ways, such as bouncing of each other, you'll need to use a physics library.

PyMunk is one such module that allows you to create more life-like games. Using it, you can
create a space and add objects, then let PyMunk work out how they’ll interact.

You can download PyMunk from http://code.google.com/p/pymunk/downloads/
list (you'll need the source release). Once it has downloaded, you can unzip it and move
into the new directory with the following (use LXTerminal rather than Python to run these
commands):

unzip pymunk-4.0.0.zip
cd pymunk-4.0.0

Unfortunately, there is a slight error in the build file that stops it building correctly on the
Raspberry Pi. In order to install it, you need to open setup.py with a text editor (such as
LeafPad) and find the lines:

elif arch == 32 and platform.system() == 'Linux':
compiler preargs += ['-m32', '-03']]

103

http://opengameart.org
http://code.google.com/p/pymunk/downloads/list
http://code.google.com/p/pymunk/downloads/list

104 LEARNING PYTHON WITH RASPBERRY PI

Make sure it’s the line with arch == 32, not 64. Delete '-m32' from the second line so
that it reads:
compiler preargs += ['-03']]

Then save the file. Now you’ll be able to install PyMunk with:

python3 setup.py build chipmunk
python3 setup.py build
python3 setup.py install

Again, these both have to be entered in LXTerminal in the PyMunk directory. This may take a while,
but once it’s complete, you can check that it worked by opening Python and entering the following:

>>> import pymunk

Hopefully, you won'’t get any errors.
The following example is on the website at chapter5-pymunk . py:

import pygame, pymunk

from pygame.locals import *
from pygame.color import *
from pymunk import Vec2d
import math, sys, random

def to pygame (position) :

return int(position.x), int(-position.y+screen_vy)

def line to pygame (line) :
body = line.body
point 1 = body.position + line.a.rotated(body.angle)
point 2 = body.position + line.b.rotated(body.angle)
return to_pygame (point 1), to pygame (point 2)

###optionsH####
screen x = 600
screen y = 400
num_balls = 10

CHAPTER 5 CREATING GAMES 105

pygame.init ()

screen = pygame.display.set mode((screen x, screen y))
clock = pygame.time.Clock ()

running = True

space = pymunk.Space ()
space.gravity = (0.0, -200.0)

#icreate the base segment

base = pymunk.Segment (pymunk.Body(), (0, 50), (screen x, 0), 0)
base.elasticity = 0.90

space.add (base)

#create the spinner

spinner_ points = [(0, 0), (100, -50), (-100, -50)]

spinner body = pymunk.Body (100000, 100000)

spinner body.position = 300, 200

spinner shape = pymunk.Poly(spinner body, spinner points)

spinner shape.elasticity = 0.5

spinner joint body = pymunk.Body ()

spinner joint body.position = spinner body.position

joint = pymunk.PinJoint (spinner body, spinner joint body, (0, 0),
(0, 0))

space.add(joint, spinner body, spinner shape)

#icreate the balls

balls = []

for i in range(1l, num balls):
ball x = int(screen x/2)
radius = random.randint (7, 20)
inertia = pymunk.moment for circle(radius, 0, radius, (0, 0))
body = pymunk.Body (radius, inertia)
body.position = ball x, screen y
shape = pymunk.Circle (body, radius, (0, 0))
shape.elasticity = 0.99
space.add (body, shape)
balls.append (shape)

while running:
for event in pygame.event.get () :
if event.type == QUIT:
running = False

106

LEARNING PYTHON WITH RASPBERRY PI

screen.fill((0, 0, 0))
#draw the ball
for ball in balls:
pygame.draw.circle(screen, (100, 100, 100), to pygame (ball.
body.position), int(ball.radius), 0)

#draw the spinner
points = spinner shape.get vertices()
points.append (points [0])
pygame points = []
for point in points:
X,y = to pygame (point)
pygame points.append((x, y))
color = THECOLORS ["red"]
pygame.draw.lines (screen, color, False, pygame points)

#draw the line
pygame.draw.lines (screen, THECOLORS["lightgray"], False,
line to_pygame (base))

space.step(1.0/50.0)
pygame.display.£flip()
clock.tick(50)

As you can see, this code uses PyGame to handle the drawing of the graphics and PyMunk to
work out how they move.

PyMunk works with spaces like the one set up in the following lines:

space = pymunk.Space ()
space.gravity = (0.0, -200.0)

This creates a new object from the Space class and sets its gravity. We can then create objects
and add them to the space. This example uses circles, segments (that is, lines), and a polygon
that’'s defined by a series of points. (Note, however, that on the Raspberry Pi, there’s a bug
that means you can only add a single segment to a space.) There’s also a pin joint which,
roughly speaking, makes the shape behave as though a single pin has been attached at that
position, allowing it to pivot round, but not fall, due to gravity.

In the main loop, we call space.step(1.0/50.0), which tells PyMunk to move all the
objects in the space by 1/50th of a second.

CHAPTER 5 CREATING GAMES

The one slightly confusing thing about using PyGame with PyMunk is that they use different
coordinate systems. As you saw before, PyGame has the point 0, 0 in the top-left corner, but
Pymunk has it in the bottom-left. This means that to draw objects in the right place, you
need to calculate the newy value. Thisis the purpose of the function to_pygame (position).

As well as defining the position of the various objects, in PyMunk you can also define the
various physical properties they have, such as elasticity and inertia. By tweaking these prop-
erties, you can define how your world interacts.

If you run the code, you'll see that PyMunk has done all the difficult tasks of working out the
movement, such as handling collisions and calculating how the balls bounce off the floor and
each other. The results are in Figure 5-6. However, it comes at a price—this takes much more
processing power than our previous game. Whilst the Raspberry Pi can handle simple phys-
ics simulations, you need to use them sparingly; otherwise, they’ll run too slowly. Using the
raspi-config tool, you can overclock your Raspberry Pi, which will help simulations run
faster.

pygame window

FIGURE 5-6: The PyMunk physics engine takes the hard work out of simulating real-world
interactions.

Raspberry Pis will, by default, run at 700MHz. This means they can execute instructions at
a rate of 700,000,000 per second. For tasks that require a lot of computing power, you can
overclock the CPU using the raspi-config tool. It can go up to 1,000MHz (or 1GHz if you
prefer). However, not all Raspberry Pis will work well when overclocked, and they can become
unstable. If your Pi starts freezing, try reducing the overclocking.

107

108

LEARNING PYTHON WITH RASPBERRY PI

We've only touched on the basics here, but hopefully it’s enough to get you started. There are
some samples in the PyMunk ZIP file that you downloaded earlier. Not all of them run well
under Python 3, but they should give you more of a taste of what's going on. There is also some
slightly outdated but otherwise good documentation at http: //pymunk . googlecode . com
/svn/tags/pymunk-2.0.0/docs/api/index.html.

Summary
After reading this chapter, you should know the following:

m PyGame is a module to help you create games in Python.

m Classes that extend Pygame . sprite.Sprite can draw images on the screen.
m Sprites are drawn inside a class’s self . rect rectangle.

m You can also use this rectangle to detect collisions between objects.

m Parallax scrolling can be used to create a sense of depth with 2D graphics.

m PyGame can also handle audio.

m For more realistic physics, you can use a physics engine like PyMunk, but it will slow
down the execution.

http://pymunk.googlecode.com/svn/tags/pymunk-2.0.0/docs/api/index.html
http://pymunk.googlecode.com/svn/tags/pymunk-2.0.0/docs/api/index.html

Chapter
Creating Graphics with OpenGL

THERE’S NO DENYING that 3D graphics look cool. The sense of depth they create uses
more than 2D graphics, and allows you as a programmer to create richer worlds. However,
this comes at a cost. Firstly, they take much more computing power to render than 2D graph-
ics, and secondly they are significantly more complex to program.

You often find graphics cards (sometimes known as a Graphics Processing Units, or GPUs)
on normal PCs. These provide additional processing power that the computer can use to ren-
der complex 3D scenes. Basically, these add a lot of processors that can handle floating-point
maths very quickly. A quick look at a Raspberry Pi will tell you that there’s no space to add a
GPU because it doesn’t have the same layout as a PC. Instead of a motherboard with a pro-
cessor, memory, and expansion slots, everything is enclosed on a System on a Chip (SoC).
This is the largest square chip in the middle of the Pi. If you look carefully at it from the side,
you'll see that it’s made up of two layers. The top layer is the RAM, and the bottom layer does
the processing.

The bottom layer isn’t just a CPU (Central Processing Unit), though. In fact, the CPU is only
a small part of it. It also contains a GPU that’s far more powerful than the CPU. When you
run normal programs, the GPU sits idly by while the CPU does all the work. When working
with 3D graphics, though, the CPU can’t handle it by itself, so you have to off-load some of
the work to the GPU. In this chapter, we'll look at how to use OpenGL (the GL stands for
Graphics Library) to create 3D scenes using the GPU.

We may as well be honest with you from the start: this is the most complex chapter in the
book. There’s no way around that. Using OpenGL requires some maths, a new programming
language, and a host of new concepts. We'll take it slowly though, and explain everything as
we go along. However, if you're just looking for a way to easily draw cubes in a 3D world, you
can skip ahead to Chapter 8.

110

LEARNING PYTHON WITH RASPBERRY PI

Getting Modules

There are two modules you'll need: PyGame and RPiGL. If you haven't already installed
PyGame, follow the instructions in Chapter 4. RPiGL is available from https://github.
com/stephanh42/rpigl. Use the Download Zip button to get a zip, then unzip and install
it with the following (in LXTerminal).

unzip rpigl-master.zip

cd rpigl-master

python3 setup.py build

sudo python3 setup.py install

If this works, you'll now be able to run the demo programs, so try running the following:

cd demos
python3 bumpedspere.py

You should see a bumpy sphere spinning round (yes, there does appear to be a typo in the
filename). If you get any errors, you'll need to fix them before moving on.

Creating a Spinning Cube
A spinning cube is the standard graphic for all new 3D programmers to try. It’s simple enough

to be easily understood, yet covers all of the basics, and it doesn’t require vast amounts of
data to build the 3D model.

Recall that the book’s companion website is at www . wiley.com/go/pythonraspi. To avoid
potential typos, you can download and copy and paste the text into your IDE or code editor.

The full code is on the website as chapteré-spinning-cube.py. We'll go through it in
stages, as there’s quite a lot going on.

First of all, you need to set up the data:
vertices = [(0.0,0.0,0.0), (0.5,0.0,0.0), (0.5,0.5,0.0),

(0.0, 0.5,0.0), 0.0,0.0,-0.5), (0.5,0.0,-0.5),
(0.5,0.5,-0.5), (0.0, 0.5,-0.5)]

indices face 1 = (0, 1, 2, 0, 3)

https://github.com/stephanh42/rpigl
https://github.com/stephanh42/rpigl
http://www.wiley.com/go/pythonraspi

CHAPTER 6 CREATING GRAPHICS WITH OPENGL

The list vertices holds a list of all the corners of the cube we’ll draw. You're actually going
to draw a bit more than just a spinning cube. There'll be four of the six faces of a spinning
cube, the edges of a static cube, and some points. Doing this, you'll learn the different ways
of drawing things on the screen.

The tuple indices face 1 holds alist of the points that you'll use for drawing the particu-
lar item on the screen (the number is the index of the list vertices). Here there are the
indices (the plural of index) for one of the faces of the cube, but there are more in the actual
code. You'll use these later to draw multiple items from the same pool of vertices.

The next bit is to set up OpenGL (note that if you're following along with the downloaded
file, we're not going through it in order).

self.vertex shader = glesutils.VertexShader (vertex glsl)
self.fragment shader = glesutils.FragmentShader (
fragment glsl)

self.programl = glesutils.Program(self.vertex shader,
self.fragment_shader)
self.programl.use()

glClearDepthf (1.0)
glDepthFunc (GL_LESS)
glEnable (GL_DEPTH TEST)

glClearColor (0.5, 0.5, 0.5, 1)

Earlier, we said that the GPU is an extra processing unit that you can use to perform some of
the maths needed for 3D graphics. In order to use it, we need to create a program for it, and
this has to have source code. These programs are built of two parts, the vertex shader and the
fragment shader. The variables vertex glsl and fragment glsl contain the code for
this program-within-a-program (we’ll look at them in detail later). In order to use them, you
have to convert them into shader objects, then combine these shader objects into a program
that you can run. You can have more than one OpenGL program within your Python pro-
gram, and you switch between them using the use () method. Here, there is just one pro-
gram, so there’s just one use () call at the start.

The final four lines set up OpenGL. Firstly, there are three lines that set it to clear at a depth of
1.0, then the final line blanks the screen out to a mid grey. The four values of OpenGL colours
are Red, Blue, Green, and Alpha (transparency). Each takes values in the range of O to 1.

111

112 LEARNING PYTHON WITH RASPBERRY PI

The next task is to load the data into the GPU.

self.verteces buffer = array spec.create buffer(
vertex attrib=vertices)

self.elements face 1 = glesutils.ElementBuffer (
indices face 1)

The main program is running on the CPU and the 3D modeling is taking place on the GPU.
These are very close together on the Raspberry Pi, but it still takes a bit of time to transfer
data between the two. Because of this, it’s best to load as much information as possible into
the GPU before you start running it. This is what buffers are for. Here you use two types of
buffers to hold the vertex and index information. Once the program is running, you only
need to send the identity of the buffer you're using. In this particular example, there are only
a few items in each buffer, so it might not make too much difference. However, if you're load-
ing complex 3D models, these could each hold huge amounts of information, and the lag in
transferring them each time could be significant.

Vectors and Matrices

In the 3D worlds you create, every point is defined by a set of coordinates (, y, z). The x is the
horizontal position, y is vertical, and z is depth. In mathematical terms, this set of numbers
is called a vector. Every point on an object is known as a vertex, and every vertex has a vector
that describes its position. In order to move objects around this 3D world, you need to
manipulate these vectors. For example, you may want to zoom in on an object, which would
mean moving every vector by a scaling factor. Or if you want to spin an object, you would
need to move every vertex’s vector accordingly.

This is done by vector-matrix algebra. In short, for every transition you want to make, you
create a matrix (a square grid of numbers). You then multiply the vector by this matrix and
you get a new vector.

Don't be confused by the word multiply; it’s not like normal multiplication. The exact maths
of what’s going on is a little complex, and since OpenGL handles it all for you, you don’t need
to worry about it. All you need to know at this stage is that to move an object around, you
create a matrix and multiply the vertices’s vectors by the appropriate matrix. If you want to
go beyond what we do in this chapter, it will be useful to learn more about what’s going on,
and there are plenty of resources, both online and in print, that can help you.

The following bit of code creates two matrices that show off the basics of how to do this.
transforms.compose () is used to combine many matrices into a single one.

CHAPTER 6 CREATING GRAPHICS WITH OPENGL 113

self.outer matrix = transforms.compose (
transforms.rotation degrees (20, "z"),
transforms.rotation degrees (20, "y"),
transforms.rotation degrees (20, "x"),
transforms.scaling(1.2))

self .points matrix = transforms.compose (
transforms.stretching (0.1, 1, 1.5),
transforms.translation(-0.5, -0.5, -0.5))

transforms.rotation degrees(), transforms.scaling(), and transforms.
stretching () each return a matrix that will perform the specified action when multiplied
by a vector.

Before going on and drawing anything on the screen, let’s now take a step backwards and
look at the code we loaded into the GPU in the vertex and fragment shaders:

array spec = glesutils.ArraySpec ("vertex attrib:3f")

vertex glsl = array spec.glsl() + """

uniform mat4 transform matrix;

void main(void)
gl Position = transform matrix * vec4 (vertex attrib, 1.0);
gl PointSize = 2.0;

}

fragment glsl = """
uniform vec4 color;
void main(void)

gl FragColor = color;

}

This creates two strings, vertex glsl and £ ragment glsl, that contain code. However,
as you've probably noticed, it’s not Python code. Programs for the GPU have to be written in
a special language called GLSL (Graphics Library Shader Language). It’s similar to C (which is
a programming language that you can write for the main CPU). The main differences with
GLSL are

m Every statement has to end with a semicolon.

m The indent level doesn’t matter, but code blocks are enclosed between curly braces.

114

LEARNING PYTHON WITH RASPBERRY PI

m Variables have a type associated with them and can only hold data of that type.

There are also differences in the keywords and functions. Since this is all new, we’ll go through
it line-by-line.

array spec = glesutils.ArraySpec("vertex attrib:3f")

This creates a new ArraySpec object (which you'll need elsewhere). The parameter tells it
that you'll pass the attribute vertex_ attrib, which will be a series of three-dimensional
float (i.e., 3f) vectors.

vertex glsl = array spec.glsl() + """

This creates the variable name and assigns the string to it. array spec.glsl() just
returns the code to properly create the attributes in array spec (vertex attrib). The
three quotation marks tell Python that you're starting a multi-line string.

uniform mat4 transform matrix;

This creates a new uniform variable called transform matrix that’s a four by four matrix.
The uniform keyword means that it can be set from the Python code.

void main(void) {

This creates the main function, which will be run every time the program is run. The first
void means it doesn’t return anything, and the second means it doesn’t take any parame-
ters. Note the curly brace, which means you're starting the code block.

gl Position = transform matrix * vec4 (vertex attrib, 1.0);

The indent here isn’t necessary (as it would be in Python), but is included because it makes
the code easier to read. This is where you multiply the vector that describes the position of
the vertex by the matrix that describes the transform. Notice that these are both four-
dimensional. For now, don’t worry about the last value and set it as 1.0.

Every vertex shader must set g1 _Position asit’s the variable that draws the vertex on the
screen. Once it’s set, OpenGL takes care of the rest.

gl PointSize = 2.0;

}

115

CHAPTER 6 CREATING GRAPHICS WITH OPENGL

gl PointSize simply sets the size of points you draw on the screen (we’ll cover points,
lines, and triangles in a bit). The curly brace then finishes the main function, and the three
quote marks end the string.

The vertex shader is called once for each vertex, while the fragment shader is called once for
every point on the model. Therefore, the fragment shader is run far more times than the
vertex shader, and you'll usually find that they’re far simpler because of this. In this case, it’s
just four lines:

nmnn

fragment glsl =
uniform vec4 color;
void main(void)

gl FragColor = color;

}

nnn

Just as the vertex shaders always set gl Position, fragment shaders always set
gl FragColor. This is a 4D vector that is the colour for that position.

With all this now in place, the only thing left to do is to place the items into the 3D world:

#Draw outer lines
self .programl.uniform.transform matrix.value =
self.outer matrix
(1, 1, 1, 1)
self.verteces buffer.draw(elements=self.elements outer,
mode=GL_LINE_ STRIP)

self .programl.uniform.color.value =

#Draw points
self .programl.uniform.transform matrix.value =
self.points matrix
self.programl.uniform.color.value = (0, 0, 0, 1)
self .verteces buffer.draw(elements=self.elements points,
mode=GL_POINTS)

#Draw spinning cube
rotation matrix =

transforms. compose (

transforms.rotation degrees(self.angle, "z"),
transforms.rotation degrees(self.angle, "y"),
transforms.rotation degrees(self.angle, "x")))

self.programl.uniform.transform matrix.value

rotation matrix

116

LEARNING PYTHON WITH RASPBERRY PI

self .programl.uniform.color.value = (1, 0, 0, 1)
self.verteces buffer.draw(elements=self.elements face 1,
mode=GL_TRIANGLE STRIP)

There are three different sets of draw functions, but they all follow the same format. Firstly,
they set the transform matrix variable in the vertex shader with the attribute self.
programl.uniform.transform matrix.value. Then they use a similar line to set the
colour variable in the fragment shader. Finally, they draw the points into the world with a
call to self.verteces buffer.draw (). This takes two parameters. Firstly, it takes the
elements, which is simply the element buffer that contains the right indices of points, and
secondly it takes a mode, which tells OpenGL what these vertices mean. The three here are
GL_POINTS, GL_LINE_STRIP, and GL_TRIANGLE STRIP.

GL_POINTS should be pretty obvious. It simply draws a point for every vertex. GL_LINE
STRIP draws a continuous line and each vertex is a point on the line. There is also a mode
called GL_LINES, which draws separate lines for every pair of vertices.

GL_TRIANGLE STRIP draws a continuous chain of triangles. In this case we're using five
vertices to define a square. Actually, that’s not quite true: we're using four vertices, but one of
them is used twice. With triangle strips, the first three points have to make a triangle, then
the third, fourth, and fifth, then the fifth, sixth, and seventh, then the seventh, eighth, and
ninth, and so on. In each case, the last two points of the previous triangle make the first two
points of the current triangle. In this way you can map out any surface.

Thereis also GL, TRIANGLES, which draws a triangle every three points and GL_TRIANGLE_FAN,
where every point shares a single point and they’re fanned out a bit like the petals on a flower.

Bringing It All Together

The full code is as follows (remember, it’s on the website as chapter6-spinning-cube.py):

import pygame
from rpigl import glesutils, transforms
from rpigl.gles2 import *

vertices = [(0.0,0.0,0.0), (0.5,0.0,0.0), (0.5,0.5,0.0),
(0.0, 0.5,0.0),
(0.0,0.0,-0.5), (0.5,0.0,-0.5), (0.5,0.5,-0.5),
(0.0, 0.5,-0.5)]

(o, 1, 2, 0, 3)
(4, 5, 6, 4, 7)
(1, 5, 6, 1, 2)

indices face 1

indices face 2

indices face 3

CHAPTER 6 CREATING GRAPHICS WITH OPENGL 117

indices face 4 = (0, 4, 7, 0 ,3)
indices outer = (0, 1, 2, 3, 0, 4, 5, 1, 5, 6, 2, 6, 7, 3, 7, 4)
indices_points = (0, 1, 2, 3)

array spec = glesutils.ArraySpec ("vertex attrib:3f")

vertex glsl = array spec.glsl() + """

uniform mat4 transform matrix;

void main(void)
gl Position = transform matrix * vec4 (vertex attrib, 1.0);
gl PointSize = 2.0;

}

fragment glsl = """
uniform vec4 color;
void main(void)

gl FragColor = color;

}

class MyWindow(glesutils.GameWindow) :
def init (self):

self.angle = 10

self.vertex shader = glesutils.VertexShader (vertex glsl)

self.fragment shader =
glesutils.FragmentShader (fragment glsl)

self.programl = glesutils.Program(self.vertex shader,

self.fragment shader)
self.programl.use()
glClearDepthf (1.0)

glDepthFunc (GL_LESS)
glEnable (GL,_DEPTH_ TEST)

glClearColor (0.5, 0.5, 0.5, 1)

self .programl.uniform.light dir.wvalue = ((0, 1, -1))

118 LEARNING PYTHON WITH RASPBERRY PI

self.verteces buffer =
array spec.create buffer(vertex attrib=vertices)
self.elements face 1 =
glesutils.ElementBuffer(indices face 1)
self.elements face 2 =
glesutils.ElementBuffer(indices face 2)
self.elements face 3 =
glesutils.ElementBuffer (indices face 3)
self.elements face 4 =
glesutils.ElementBuffer (indices_face_4)

self.elements outer =
glesutils.ElementBuffer (indices outer)

self.elements points =
glesutils.ElementBuffer (indices points)

self.outer_matrix =
transforms.compose (
transforms.rotation degrees (20, "z"),
transforms.rotation degrees (20, "y"),
transforms.rotation degrees (20, "x"),
transforms.scaling(1.2))

self.points_matrix =
transforms.compose (
transforms.stretching (0.1, 1, 1.5),
transforms.translation(-0.5, -0.5, -0.5))

def on frame(self, time):
self.angle = self.angle + time*0.02
self.redraw()

def draw(self):
#Draw outer lines
self .programl.uniform.transform matrix.value =
self.outer_matrix
self.programl.uniform.color.value = (1, 1, 1, 1)
self.verteces_buffer.draw(elements=self.elements_outer,
mode=GL_LINE STRIP)

#Draw points

self .programl.uniform.transform matrix.value =
self.points_matrix

self.programl.uniform.color.value = (0, 0, 0, 1)

self.verteces_buffer.draw(elements=self.elements_points,
mode=GL_POINTS)

CHAPTER 6 CREATING GRAPHICS WITH OPENGL 119

#Draw spinning cube
rotation matrix = transforms.compose
(transforms.rotation degrees(self.angle, "z"),
transforms.rotation degrees(self.angle, "y"),
transforms.rotation degrees(self.angle, "x"))

self .programl.uniform.transform matrix.value =
rotation matrix
self.programl.uniform.color.value = (1, 0, 0, 1)
self .verteces buffer.draw(elements=self.elements face 1,
mode=GL_TRIANGLE STRIP)
self.programl.uniform.color.value = (0, 1, 0, 1)
self .verteces buffer.draw(elements=self.elements face 2,
mode=GL_TRIANGLE STRIP)
self.programl.uniform.color.value = (0, 0, 1, 1)
self.verteces buffer.draw(elements=self.elements face 3,
mode=GL_TRIANGLE STRIP)
self.programl.uniform.color.value = (0, 1, 1, 1)
self .verteces buffer.draw(elements=self.elements face 4,
mode=GL_TRIANGLE STRIP)

MyWindow (200, 200, pygame.RESIZABLE) .run/()

The result should be a 3D rendering like the one shown in Figure 6-1.

FIGURE 6-1: This demonstrates the basic technique from which most 3D graphics are built.

120

LEARNING PYTHON WITH RASPBERRY PI

Let There Be Light

When you run the previous example, you should see four sides of a cube spinning round as
well as a few lines and some dots. However, you may notice that there’s something missing:
light. All the faces are the same brightness regardless of which way they’re facing. In the real
world, this rarely happens. Instead, you usually have one or more sources of light that illumi-
nate the objects differently, depending on which way they’re facing.

Some versions of OpenGL can handle this automatically. However OpenGL ES, the version on
the Raspberry Pi (and most mobile devices) doesn’t, so you have to calculate the lighting yourself.

The following example will create a spinning cube that is lit from a point light source. You'll
see the various parts of the cube get brighter and dimmer as they move. There are two things
that you use to calculate the brightness of a particular point—the distance of the point on
the cube from the source of light, and the angle of the face compared to the light.

Calculating the Distance of the Point from the Light Source

Let’s look at the first of these. Each face on the cube is displayed by hundreds of pixels on the
screen. The value of each of these pixels is calculated by the fragment shader. In order to cal-
culate the colour of the pixel, the fragment shader needs to know how bright to make the
pixel. This is done with the following code:

fragment glsl = """
uniform vec4 color;

varying float brightness;

void main(void) {
gl FragColor = brightness*color;

}

As you can see, this uses two variables, color and brightness. brightness isa float
that can be used to alter the value that g1 FragColor gets set to. You'll notice that they're
different data types, but that isn’t a problem. When you multiply a vector by a floating-point,
you simply multiply every part of the vector by the number. For example, if you had the
colour (0.8,0.8, 0.8) (which would be a light grey), and you multiplied it by 0.5, the resulting
colour would be (0.4,0.4, 0.4) (a mid-grey).

brightness, then, should vary between O for no light and 1 for fully lit.

The two variables are declared differently. color is created with the keyword uniform, and
brightnessisset with varying. uniformvariables are set in the main Python code (as you saw
in the previous example). varying variables, however, are set in the vertex shader as shown here:

CHAPTER 6 CREATING GRAPHICS WITH OPENGL

vertex glsl = array spec.glsl() + """

varying float brightness;

void main(void)

.6;
float distance = length(vec4 (light position, 1.0) - gl Position);
brightness = 1.0/ (distance * distance) ;

}

This is missing the code to calculate the angles and position (which we’ll look at later), but
has everything to calculate how the brightness dims due to distance. The length () func-
tion returns the length of a vector (which can be calculated using the Pythagorean theorem).
In this case, it’s used to calculate the distance between the vertex and the light source.

As an object moves away from a light source, it gets dimmer. However, this doesn’t happen
linearly. If you move an object twice as far away, it doesn’t get half as bright, it gets a quarter
as bright. The relationship between the distance from a light source and brightness follows
an inverse square. This is calculated in the final line.

This code, though, only calculates the brightness for the vertices. For the program to run
propetly, it needs to know what the brightness is for every point on the face. Fortunately,
OpenGL takes care of this for you. Whenever you use the varying keyword to create a vari-
able, it will interpolate the values passed to the fragment shader. This means that it will vary
the value of brightness depending on the distance of the point it’s rendering to the three
vertices to create a smooth blend of brightness.

Calculating Reflecting Angles
The second aspect of brightness is the angle between the face and the source of light. To cal-
culate this angle, you need a normal. A normal is a vector that sticks out of a face at 90 degrees.

Vectors can be used to describe positions, but they can also be used to describe lines. For
example, the vector (1,1,1) could describe the point at those coordinates, or it could describe
aline that’s the same length and direction as the line from (0,0,0) to (1,1,1), but at any point
in the 3D world. The vectors for vertices are position vectors, where as the vectors for nor-
mals are line vectors like this.

The normal is a vector to describe what direction the object is facing. Take for example the first
face of the cube with vertices at (0.0,0.0,0.0), (0.5,0.0,0.0), (0.5,0.5,0.0), (0.0, 0.5,0.0).

121

122

LEARNING PYTHON WITH RASPBERRY PI

These vertices are all flat on the z-axis, so the normal is (0,0,1.0). If you drew a line from
(0,0,0) to (0,0,1), it would be at 90 degrees to this face. Normals also always have a length of 1.

To calculate the brightness, then, you need to calculate the difference between this angle and the
light from the light source. If they’re exactly in line then the face should be fully lit, and if they're
90 degrees or more, the face shouldn’t be lit at all. However, just as with the distance, there isn’t
a linear relationship between the two; instead the brightness varies in a sine curve. The sine
function, however, would be the wrong way around, so you need to calculate the cosine.

For this, you need to reach into the trigonometric toolbox. There’s a function called the dot
product that takes two vectors, and returns a number such that:

dot (A,B) = length(A) * length(B) * cosine(A,B)

Calculating the dot product is far quicker than calculating the cosine, so we can use this as a
mathematical shortcut. It becomes simpler if both vectors have a length of 1. Then the dot
product simply returns the cosine.

Normals always have a length of 1 so you can safely ignore that. There is also a function in
GLSL called normalize () that takes any vector and returns one that’s in the same direc-
tion but that has a length of 1. You can calculate the cosine of the two vectors with:

cosine = dot(surface_normal, normalize(gl_Position -
light position)

However, most of the time there isn't just one light source. There’s loads of light reflected off
walls and other objects. Calculating all of this is phenomenally complicated, and the easiest
thing to do is set an ambient light value. This is simply the amount of light that’s everywhere
regardless of which direction the object’s facing. You can calculate the ambient with:

brightness = max(cosine, ambient light)

All of this is then combined to make the vertex shader in the following code:

vertex glsl = array spec.glsl() + """
uniform mat4 transform matrix;
uniform vec3 light position;

uniform float ambient_light;

uniform vec3 face normal;

varying float brightness;

CHAPTER 6 CREATING GRAPHICS WITH OPENGL 123

void main(void)

gl Position = transform matrix * vec4 (vertex attrib, 1.0);
vec4 spun face normal = normalize (transform matrix *

vec4 (face normal, 1.0));
float distance = length(vec4 (light position, 1.0) - gl Position);
vec4 light direction = normalize(vec4 (light position, 1.0) -

gl Position);
float light_ amount_angle = max(dot (spun_face_normal,

light direction), ambient light);

float light distance drop = 1.0/ (distance * distance);
brightness = light amount angle * light distance drop;

}

Note that this doesn’t run the dot product on the original surface normal, but on the surface
normal that’s been transformed in the same way as the cube has. In this example, the
transform matrix won't scale or stretch the normal so technically, it doesn’t need to be
normalised. However, we've included this to make the code more useful in other programs.

The rest of the code is then basically the same as in the previous examples. There aren’t the
points or lines, and there are all six faces of the cube. This is on the website as chapter6-
lighting.py

import pygame
from rpigl import glesutils, transforms
from rpigl.gles2 import *

vertices = [(0.0,0.0,0.0), (0.5,0.0,0.0), x/4984720?c=pledges
(0.5,0.5,0.0), (0.0, 0.5,0.0),
(0.0,0.0,-0.5), (0.5,0.0,-0.5),
(0.5,0.5,-0.5), (0.0, 0.5,-0.5)1]
faces = [{"vertex_index":(o, i, 2, 0, 3), "nmnormal":(0,0,1),
"colour": (1, 0, 0, 1)},
{"vertex_index":(4, 5, 6, 4, 7), "normal":(0,0,-1),
"colour": (0, 1, 0, 1)},
{"vertex_index":(l, 5, 6, 1, 2), "normal":(1,0,0),
"colour": (0, 0, 1, 1)},
{"vertex_index":(o, 4, 7, 0 ,3), "normal":(-1,0,0),
"colour": (1, 0, 1, 1)},
{"vertex_index":(3, 2, 6, 3, 7), "normal":(0,1,0),
"colour": (1, 1, 0, 1)},
{"vertex_index":(o, 1, 5, 0, 4), "normal":(0,-1,0),
1

——
[—

"colour": (0, 1, 1,

124

LEARNING PYTHON WITH RASPBERRY PI

array spec = glesutils.ArraySpec("vertex attrib:3f")

vertex glsl = array spec.glsl() + """
uniform mat4 transform matrix;
uniform vec3 light position;

uniform float ambient light;

uniform vec3 face normal;

varying float brightness;

void main(void) {

gl Position = transform matrix * vec4 (vertex attrib, 1.0);
vec4 spun_ face normal = normalize(transform matrix *

vec4 (face normal, 1.0));
float distance = length(vec4 (light position, 1.0) - gl Position);
vec4 light direction = normalize(vec4 (light position, 1.0) -

gl Position);
float light_ amount_angle = max(dot (spun_face_normal,

light direction), ambient light);

float light distance drop = 1.0/ (distance * distance);
brightness = light amount angle * light distance drop;
gl_PointSize = 2.0;

}

fragment glsl = """
uniform vec4 color;

varying float brightness;

void main(void) {
gl FragColor = brightness*color;

}

class MyWindow (glesutils.GameWindow) :
def init (self):

self.angle = 10
self.framerate = 20

self.vertex shader = glesutils.VertexShader (vertex glsl)
self.fragment_ shader =
glesutils.FragmentShader (fragment glsl)

def

def

CHAPTER 6 CREATING GRAPHICS WITH OPENGL

self .programl = glesutils.Program(self.vertex shader,

self.fragment shader)
self.programl.use ()

glClearDepthf (1.0)
glDepthFunc (GL_LESS)
glEnable (GL_DEPTH_TEST)
glFrontFace (GL_CW)

glClearColor (0.5, 0.5, 0.5, 1)
self .programl.uniform.light dir.value = ((0, 1, -1))

self.verteces buffer =
array spec.create buffer(vertex attrib=vertices)
for face in faces:
face(["element buffer"] =
glesutils.ElementBuffer (face["vertex index"])

self.outer matrix = transforms.compose (
transforms.rotation degrees (20, "z"),
transforms.rotation degrees (20, "y"),
transforms.rotation degrees (20, "x"),
transforms.scaling(1.2))

self.points _matrix = transforms.compose (
transforms.stretching (0.1, 1, 1.5),
transforms.translation(-0.5, -0.5, -0.5))

on frame(self, time):
self.angle = self.angle + time*0.02
self.redraw()

draw (self) :

self .programl.uniform.light position.value = (0,0,-1)

self .programl.uniform.ambient light.value = 0.3

rotation matrix = transforms.compose (
transforms.rotation degrees(self.angle, "z"),

transforms.rotation degrees(self.angle, "y"),
transforms.rotation degrees(self.angle, "x"))

self .programl.uniform.transform matrix.value =

rotation matrix

125

126

LEARNING PYTHON WITH RASPBERRY PI

for face in faces:
self .programl.uniform.color.value = face["colour"]
self.programl.uniform.face normal.value =
face["normal"]

self.verteces buffer.draw(elements=face["element buffer"],
mode=GL_TRIANGLE_STRIP)

MyWindow (200, 200, pygame.RESIZABLE) .run ()

The result is shown in Figure 6-2.

FIGURE 6-2: The light adds a sense of realism that isn't in the first program.

Making the Sereen Dance

So far, you've seen how to draw cubes on the screen and light them, but not anything more
than that. In the next project, you'll see how to create a 3D model that moves to music. Most
computer music players have similar features that visualise the sound and provide a bit of
video entertainment for the listener.

Since this is a chapter about 3D graphics and not audio processing, we’ll make things simple
for ourselves by only working with WAV files. This means we can use the wave Python mod-
ule to extract the sound data from the file. If your music collection is stored as MP3 files,
you'll need to convert one or more of them to WAV before continuing. You can do this with
the mpg123 command-line tool in LXTerminal. First you'll need to install it with:

sudo apt-get install mpgl23

CHAPTER 6 CREATING GRAPHICS WITH OPENGL

Then you can convert the files with:

mpgl23 -w output-filename.wav input-filename.mp3

If you don’t have any suitable music, you can download some legally from http://free
musicarchive.org/.

The first step is to play the music. You do this in exactly the same way as you did the sounds
in the previous chapter, using a PyGame mixer. This plays the sound through the Pi’s audio
channel, but it doesn’t provide you with the sound data needed to manipulate the 3D graph-
ics. For this we’ll use a second module, wave.

The following code can be used to import music from the file test . wav.

print ("opening file")
sound file = wave.open("test.wav",';rb')

print ("getting parameters")
(channels, sample size, frame rate, frames, compression type,

compression name) = sound file.getparams/()
print ("Number of channels: ", channels)
print ("Sample size: ", sample size)
print ("Frame rate: ", frame rate)
print ("Number of Frames: ", frames)
print ("Compression type: ", compression type)
print ("Compression name: ", compression name)

print ("readframes")
data = sound file.readframes (channels*sample size*frames)
print (len(data))

This creates the variable data, which contains the sound as a list of bytes. The sound, though,
will be encoded in two-byte blocks. To read the value of a single block, you have to combine
them using the from_byte () method of the int class.

sound _data = int.from bytes(datal[i:i+1],
byteorder='1little', signed=True)

The data is stored in frames. Each frame is one of these two-byte blocks, and the value of
each can vary between -32768 and 32767. For each point in time there are two frames if the
sound file is in stereo. Typically, there are 44,100 of these frames every second (this is the
number held in the frame rate variable).

127

http://freemusicarchive.org/
http://freemusicarchive.org/

128

LEARNING PYTHON WITH RASPBERRY PI

There are a number of ways that you could display this data. The only real requirement is that
the output move in some entertaining way when the sound is playing. We're going to use two
things. A set of 3D bars along the bottom of the screen that will plot out how the volume is
changing, and a set of points (or stars if you're feeling poetic) that will flash to the music.
Just to add some flair, we'll also make the whole visualisation spin around on the vertical
axis, and blend the colour from blue at the bottom to red at the top.

Building the 3D Model

There are numerous ways we could model the data, but we're going to use the vertex data of
a single cube and manipulate it with a transformation matrix for each bar on the chart. The
stars will simply be a group of randomly positioned points. Let’s deal with the blocks first.

Every block has the same set of vertices and indices. The difference between them is the size
(which will simply be a stretching matrix), and the position (which will be a translation
matrix). There will also be a couple more matrices that will be the same for every block: one
to spin them around (which will change every frame), and one to zoom in and out (which will
be set at the start).

You'll need to combine all these matrices. You could use the Python method transforms.
compose () to do this. However, this needs to chunk through quite a bit of data every frame,
and we mentioned at the start that the GPU is more powerful than the CPU. Therefore, it’s
more efficient to let the GPU handle all the matrix operations.

The shaders, then, are

vertex glsl = array spec.glsl() + """
uniform mat4 position matrix;

uniform mat4 eye matrix;

uniform mat4 scaling matrix;

uniform mat4 sound matrix;

uniform float point size;

varying float red;
void main(void) {
gl Position = eye matrix * position matrix * scaling matrix *
sound matrix * vec4 (vertex attrib, 1.0);
red = (gl _Position[1]+0.9)/2.0;
gl PointSize = point size;

}

CHAPTER 6 CREATING GRAPHICS WITH OPENGL

fragment glsl = """
uniform vec4 color;
varying float red;

void main(void)
gl FragColor = vec4(red, 0.0, (1.0-red)/5.0, 1.0);

}

These are pretty similar to the ones you've seen before. It's worth noting that matrix multi-
plication isn’t commutative. This is a fancy way of saying that the order in which you multi-
ply the matrices does matter. It won't always make a difference, but does sometimes. In this
example, it’s important to make sure the eye matrix (which should spin the entire scene)
comes before the position matrix (which puts the individual bars in the right place). If
they are the other way round then the individual bars will spin on the spot rather than the
scene spinning as a whole. This isn’t necessarily a problem, we just felt it looked better like
this. Getting the matrices in the right order is simply a case of thinking about which order
you want the transformations to take place in (or, failing that, trial and error).

You'll notice that there is a varying variable named red. This takes the vertical aspect of
the gl1_Position vector (whichisy, or 1) and transforms it into a value for the colour.

You may also note that the size of the points is set by a uniform variable. This will be dealt
with a little later.

Calculating the Sound Level

Every time a new frame is displayed, the program will calculate the current sound level and
set one of the bars to that sound level. It'll cycle through the bars in order so together they
show how the sound level has changed over the past 20 screen draws.

In order to do this, you need to be able to calculate the sound level. This can be done using
the on_frame () method.

scale factor = 0

if frame position + 1000 < len(data):
for 1 in range(1,500) :
scale_factorl = scale_factor +
int.from bytes(datal[frame_position+2*i:
frame position+ (2*i)+1],
byteorder='1little', signed=True) **2

129

130

LEARNING PYTHON WITH RASPBERRY PI

scale factorl = scale_factorl / 500

self.sound matrix[self.counter%20] =
transforms.stretching(1.0,scale factorl,1.0)

self.programl.uniform.point size.value =
float (scale factorl/4)

self.counter = self.counter+1l

For any position in the sound (which is calculated by seeing how much time has passed since
the track started playing), this checks the sound level for the next 500 frames and sums their
squares. Squaring the sound level does two things. Firstly it makes sure all the values are
positive since the square of a negative number is always positive. Secondly, it makes the
blocks jump up far more with each increase in music, and this looks better onscreen. The
point of this is to make something that looks pretty, not something that produces a scien-
tifically correct graph, so manipulations like this are perfectly acceptable.

The reason it adds together 500 frames is simply because the more frames it adds together
the more accurate it is, but also the slower it is. We found this to be a good compromise
between performance (which corresponds to the frame rate of the display) and ability to
accurately model the music. If you wish to make this perfectly correct, you'll need to intro-
duce some timing functions like you saw in the previous chapter.

You'll notice that it also sets the size for the stars. The amount we shrunk the scaling factor
by (500 for the bars and 4 for the stars) was determined by seeing what looked good, not by
calculation.

The full code of the visualiser is as follows (it’s on the website as chapter6-music.py).

import pygame

from rpigl import glesutils, transforms
from rpigl.gles2 import *

import random

import wave

import time

vertices = [(0.0,0.0,0.0), (0.5,0.0,0.0),
(0.5,0.5,0.0), (0.0, 0.5,0.0),
(0.0,0.0,-0.5), (0.5,0.0,-0.5),
(0.5,0.5,-0.5), (0.0, 0.5,-0.5)]

CHAPTER 6 CREATING GRAPHICS WITH OPENGL

vertices points = []

indices points = []

for i in range(0,100) :

vertices points.append(((20 * random.random())-10,
(20 * random.random())-10))
indices points.append (i)

array_spec =

vertex glsl

uniform
uniform
uniform
uniform
uniform

varying

mat4
mat4
mat4
mat4

(20 * random.random()),

glesutils.ArraySpec ("vertex attrib:3f")

array spec.glsl()
position matrix;

eye matrix;

scaling matrix;
sound matrix;

float point size;

float red;

void main(void)

gl Position
sound matrix * vec4 (vertex attrib,
(gl _Position[1]+0.9)/2.0;
gl_PointSize = point_size;

red =

}

= eye matrix * position matrix * scaling matrix *

fragment glsl = """

uniform vec4 color;

varying float red;

void main(void)

gl FragColor = vec4 (red,

}

class MyWindow (glesutils.GameWindow) :

def init (self):

self.
self.
self.
self.

angle_x
angle y
angle_z
counter

(1.0-red) /5.0,

131

132

LEARNING PYTHON WITH RASPBERRY PI

self.vertex shader = glesutils.VertexShader (vertex glsl)
self.fragment shader = glesutils.FragmentShader (
fragment glsl)

self.programl = glesutils.Program(self.vertex shader,
self.fragment shader)
self .programl.use ()

glClearDepthf (1.0)
glDepthFunc (GL_LESS)
glEnable (GL_DEPTH_TEST)

glClearColor (0.0, 0.0, 0.0, 1)
self.programl.uniform.light dir.value = ((0, 1, -1))

self.verteces buffer = array spec.create buffer(
vertex attrib=vertices)
self.points buffer = array spec.create buffer(
vertex attrib=vertices points)

self.elements outer = glesutils.ElementBuffer(
indices outer)
self.elements points = glesutils.ElementBuffer (
indices points)

self.blank matrix = transforms.translation(0.0, 0.0, 0.0)

self.position matrix = []
for i in range(0,20):

self.position matrix.append(transforms.translation((i/10)-0.95,

0.0, 0.0))
self.sound matrix = []
for i in range(0,20) :

self.sound matrix.append(transforms.translation(
0.0, 0.0, 0.0))

self.programl.uniform.scaling matrix.value =
transforms.scaling(0.1)

def

CHAPTER 6 CREATING GRAPHICS WITH OPENGL 133

self .programl.uniform.eye matrix.value =
transforms.compose (
transforms.rotation degrees(self.angle z,
transforms.rotation degrees(self.angle x,
transforms.rotation degrees(self.angle x,
transforms.translation (0.0, -0.9, 0.0))
self.counter = 0

on frame(self, ftime):
global start time
global data

self.angle y = self.angle y + .5

self .programl.uniform.eye matrix.value =
transforms.compose (
transforms.rotation_degrees(self.angle_z,
transforms.rotation degrees(self.angle vy,
transforms.rotation_ degrees (self.angle_x,
transforms.translation(0.0, -0.9, 0.0))

frame position = int((pygame.time.get ticks() -
start time) * 44.1 * 4)

scale factor = 0
if frame_position + 1000 < len(data):

for i in range(1,500):
scale_factorl = scale_factor +

llzll) ,
llyll) ,
IIXII) ,

IIZII) ,

llyll) ,
IIXII) ,

int.from bytes(data[frame position+2*i:

frame position+ (2*1i)+1],

byteorder='little', signed=True) **2

scale factorl = scale_factorl / 500

self.sound matrix[self.counter%20] =

transforms.stretching(1.0,scale factorl,1.0)

self .programl.uniform.point size.value =
float (scale factorl/4)

self.counter = self.counter+1l

self.redraw()

134

LEARNING PYTHON WITH RASPBERRY PI

def draw(self) :
self .programl.uniform.color.value = (1, 1, 1, 1)
for i in range(0,20):
self.programl.uniform.position matrix.value =
self .position matrix[i]
self.programl.uniform.sound matrix.value =
self.sound matrix[i]
self.verteces_buffer.draw(elements=self.elements_outer,
mode=GL_LINE STRIP)
self.counter = self.counter +1

self .programl.uniform.position matrix.value =
self.blank matrix

self .programl.uniform.sound matrix.value =
self.blank matrix

self.points_buffer.draw(mode=GL_ POINTS)

print ("starting pygame mixer")
pygame.mixer.pre init (44100, -16, 2, 2048)
pygame.mixer.init ()

music = pygame.mixer.Sound("tell.wav")

print ("opening file")
sound file = wave.open("test.wav", 'rb')

print ("getting parameters")
(channels, sample size, frame rate, frames, compression type,

compression name) = sound file.getparams ()
print ("Number of channels: ", channels)
print ("Sample size: ", sample size)
print ("Frame rate: ", frame rate)
print ("Number of Frames: ", frames)
print ("Compression type: ", compression type)
print ("Compression name: ", compression name)

print ("readframes")
data = sound file.readframes (4*frames)
print (len(data))

print ("starting audio")
music.play ()

CHAPTER 6 CREATING GRAPHICS WITH OPENGL

start time = pygame.time.get ticks()
print ("start time: ", time.clock())

MyWindow (200, 200, pygame.RESIZABLE) .run ()

The result, which has a surprisingly '80s feel to it, is shown in Figure 6-3.

FIGURE 6-3: This looks much better when it’s moving. But don’t take our word for it. Run the code
and see for yourself.

Taking Things Further

Consider these ideas for taking the project to the next level:

m Make the stars a constant size, but make them change in brightness. You could use a

separate OpenGL program to do this, although it’s not essential.

m You could add lighting, although for it to make sense, youd need to replace the lines

with triangle strips.

m Experiment with the number of bars and stars. You should be able to make this easily

configurable.

135

136

LEARNING PYTHON WITH RASPBERRY PI

m Make the graph show the frequency breakdown rather than the volume over time. To
do this, you'll need to calculate the Fourier Transform of the music using the SciPi
module. Note that this is quite a challenging and maths-y option for interested readers.

m Create a better interface for selecting which songs to play. This could be command-line,
text-based, or graphical depending on your preferences. There are examples of all three
elsewhere in the book.

m Change the visualisation. Falling or switling stars are one option. You could also inves-
tigate zooming in and out as well as rotating. The colour blend doesn’t have to stay
constant either. Be creative; the 3D world is there for you to mold into your imagination.

Adding Some Texture

We said at the start that this would be the most complex chapter in the book. Even though it
has been, it’s done little more than introduce OpenGL. There is much more that we haven't
covered. If you've found it interesting and want to explore further, one of the most interest-
ing things to look into are textures. These allow you to add more detail to your 3D models.
There are a couple of examples that come with RPiGL to get you started. You can find them
in the demos subfolder of the Python module that you downloaded at the start.

The first is icosa . py, and it takes a map of the world and projects it onto a spinning sphere. It
takes the image from world cube net.png and loads it using the method glesutils.
Texture.from surface (), and then it uses bind () to make it available to the shaders.

The second is bumpedspere . py, and this works a little differently. Remember how you used
the normal to calculate the amount of light reflected? Well, you can use this to make a
smooth surface appear to have a texture. If you vary the normal so that it’s not exactly per-
pendicular to the surface, it will vary the amount of light on it as though the surface is
slightly bumped. This is really an optical illusion as there’s no way that such a surface could
exist in real life, but the effect is a surface that appears to have small bumps on it without the
need for a vast web of triangles.

There is loads of really useful information on OpenGL in print and on the Internet. However,
you need to remember that not all versions of OpenGL work the same. The version of the
Raspberry Piis OpenGL ES 2.0, so you need to make sure that whatever you're trying works
with this version.

Summary
After reading this chapter, you should understand the following a bit better:

m OpenGL provides a powerful way of creating and manipulating 3D graphics.

CHAPTER 6 CREATING GRAPHICS WITH OPENGL

However, with that power comes complexity.

Coordinates are stored as vectors, and you can manipulate them by multiplying the
vector by a transform matrix.

If there are many transforms, then you can chain these multiplications together.
However, the order in which you do this is important.

OpenGL runs as a separate program that is comprised of two shaders—the vertex
shader and the attribute shader.

These shaders aren’t written in Python but in the GL Shader Language or GLSL, which
is similar to C.

In GLSL, every line has to end with a semicolon, and code blocks are enclosed in curly
braces.

In GLSL uniform variables are set by the program and are constant for the entire
draw () method call. varying vectors are set in the vertex shader and are interpo-
lated for points on the surface.

OpenGL ES doesn’t include any lighting, so you have to calculate it yourself using both
the distance from the light and the cosine of the normal and the light direction.

Textures can be used to add detail to your objects.

137

Chapter
Networked Python

THE WORLD TODAY is more connected than it’s ever been, and almost everything that
you do on computers has some form of online component. The Raspberry Pi is no differ-
ent. As long as you have a Model B, or a wireless USB dongle, getting your Pi connected to
the Internet is trivial. There’s the Midori browser you can use to surf the web, and mail
clients are available. These are good for consuming content—getting information off the
web and using services that other people have created. The power of the Raspberry Pi,
however, lies in creating things. With a few lines of Python, you can grab information off
the web or use your Raspberry Pi to serve up content and services to the world. Read on to
find out how.

Understanding Hosts, Ports, and Sockets

To communicate with another computer, you need to know where to send data to. It might
be that you're just sending information to another computer in the same room, or you
might be sending it halfway round the world. Regardless, you need to specify an address.
The standard way of locating computers is by Internet Protocol (IP) address. There are two
types of IP address, version 4 and version 6. At the time of writing, version 4 (IPv4) is
almost universally used, so you'll read only about it. IPv6 addresses work in the same basic
way, so you shouldn’t have any difficulty using these should they become mainstream any
time soon.

140

LEARNING PYTHON WITH RASPBERRY PI

Locating Computers with IP Addresses

IPv4 addresses contain four numbers separated by dots. To determine your Raspberry Pi’s IP
addresses (it has more than one), open a terminal (not a Python session, but an LXTerminal
session). And run ifconfig. This should output something like the following:

eth0 Link encap:Ethernet HWaddr b8:27:eb:£3:d5:23
inet addr:192.168.0.13 Bcast:192.168.0.255
Mask:255.255.255.0
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:87523 errors:0 dropped:0 overruns:0 frame:O0
TX packets:59811 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:97997131 (93.4 MiB) TX bytes:12573160 (11.9 MiB)

lo Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
UP LOOPBACK RUNNING MTU:16436 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txgqueuelen:0
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

This shows that there are two network interfaces: eth0 and lo. etho is the wired network
connection, and 1o is the loopback connection that just loops back to the same machine. In
the previous example, the Ethernet connection has an IP address of 192.168.0.13, while
the loop backis 127.0.0.1 (this is always the same).

Aswell as by IP addresses, we can also locate computers by hostname (such as www. google.
com, or localhost). These are a convenient shorthand for IP addresses. When you use one of
these, you computer connects to a name server and asks what [P address that hostname cor-
responds to, then connects to the returned IP address. Localhost is a slightly unusual case as
it always corresponds to 127.0.0.1 and is therefore the local machine.

If you think of the IP addresses (or hostnames) as similar to building addresses in the real
world, then within each building, you still have to address it to the right person. In a com-
puter network, this is done with ports. If you have a piece of software that serves informa-
tion, it will listen on a particular port. Clients can then connect to a particular port, and get
that information. Some ports are used for particular services. For example, web servers gen-
erally listen on port 80, whereas SSH connections go over port 22.

In Python, sockets are objects that connect to a particular port on a particular host, or listen
for a connection coming into a particular port. Once they're connected, you can send and

http://www.google.com/
http://www.google.com/

CHAPTER 7 NETWORKED PYTHON

receive data through the socket. That sounds a bit complicated, but it’s actually quite simple
in practice. The easiest way to understand it is with an example.

Building a Chat Server

Unlike most of the programs in this book, this program has two parts that need to be run at
the same time: a client and a server. The server just sits and waits for a connection to come
in, while the client establishes a connection. Here’s the code for the server:

import socket

comms_socket = socket.socket ()

comms_socket .bind(('localhost', 50000))
comms_socket.listen(10)

connection, address = comms_socket.accept ()

while True:
print (connection.recv(4096) .decode ("UTF-8"))
send data = input ("Reply: ")
connection.send(bytes (send data, "UTF-8"))

You can see that this gets most of its functionality from the socket module. With a server socket,
you first need to bind it to a port on the host. (Any of the ports above 50,000 should be free for
temporary use. Actually, you can use pretty much any one that’s not currently in use, but it’s
best to avoid the ones below 100 unless you're sure they're not being used.) 1isten () then
sets it to wait for a connection. When a connection comes in, it moves onto the following line:

connection, address = comms_socket.accept ()

This sets up a new socket (stored in the variable connection), which is connected to the
client. You can now send and receive data over this new connection using the send () and
recv () methods. These take streams of bytes not strings, so you have to convert back and
forward between the bytes and UTF-8 (universal character set Transformation Format; it’s
8-bit) encoding that you use to display the information.

Here’s the code for the client:
import socket

comms_socket = socket.socket ()
comms_socket.connect (('localhost', 50000))

141

142

LEARNING PYTHON WITH RASPBERRY PI

while True:
send data = input ("message: ")
comms_socket .send (bytes (send data, "UTF-8"))
print (comms_socket.recv(4096) .decode ("UTF-8"))

You can see that this time, instead of binding the socket to a host and port, the code connects to
them. This time, the code doesn’t create a new socket, but sends and receives on the original one.

Other than this, the two programs are very similar. To run a chat, you'll need two Python
sessions, and the easiest way to open two is with two LXTerminal windows. In the first win-
dow, type python3 server.py (if you've called the server server.py), and in the second,
type python3 client.py.

You'll be able to pass messages back and forth between the two programs. Of course, these
aren’t very networked. In fact, they're running on the same machine. There are places where
it’s useful to run networking between two programs on the same machine, but generally with
networking, you want to send data between two computers.

This code has all the basics needed to communicate between machines, but it just needs a bit of
amenu to help users connect to the place they want to go. It'd also be easier if there was a single
program that could handle both the client and server sides. An improved version of the chat
program with these properties is as follows (you can find it on the website as chapter7-
chat .py):

import socket

def server():
global port
host = "localhost"

comms_socket = socket.socket ()
comms_socket .bind((host, port))

print ("Waiting for a chat at ", host, " on port ", port)

comms_socket.listen(10)
send data = ""

while True:
connection, address = comms_socket.accept ()
print ("opening chat with ", address)
while send data != "EXIT":

CHAPTER 7 NETWORKED PYTHON 143

print (connection.recv(4096) .decode ("UTF-8"))
send data = input ("Reply: ")
connection.send(bytes (send data, "UTF-8"))
send data = ""
connection.close ()

def client () :
global port

host = input ("Enter the host you want to communicate" +
" with(leave blank for localhost) ")
if host == "":
host = "localhost"
comms_socket = socket.socket ()
print ("Starting a chat with ", host, " on port ", port)

comms_socket .connect ((host, port))

while True:
send data = input ("message: ")
comms_socket.send (bytes (send data, "UTF-8"))
print (comms_socket.recv(4096) .decode ("UTF-8"))

port = int (input ("Enter the port you want to communicate on" +
" (0 for default)"))
if port == O0:
port = 50000
while True:
print ("Your options are:")
print ("1 - wait for a chat")
print ("2 - initiate a chat")
print ("3 - exit")

option = int (input ("option :"))

if option ==
server ()
elif option ==
client ()
elif option == 3:
break
else:
print ("I don't recognise that option")

144

LEARNING PYTHON WITH RASPBERRY PI

You should recognise the networking code in this, and the rest you should be fairly familiar
with. In order to communicate between two computers, you need to agree on a port, set one
to listen for a connection, then connect from the other.

This approach does have a few problems. Firstly, the two chatters have to alternate messages,
and secondly you can only communicate with people on your local network. Actually, this
second problem depends on how your local network is set up. Remember that we said IP
addresses were a little like building addresses? In many ways they are, and local area net-
works (LANs) are like towns. In the same way you can have two different buildings with the
address “1 The High Street,” as long as they are in different towns, you can have two different
computers with the [P address 192.168.1.2 as long as they are on different LANs. There
are three IP address blocks reserved just for local networks:

m 10.0.0.0 -10.255.255.255
m 172.16.0.0 -172.31.255.255
m 192.168.0.0 -192.168.255.255

Any IPv4 address that falls within these is a local-only address (this means you can only com-
municate with other computers on your local network), whereas ones that fall outside of it
are public (which means any computer on the Internet can send data to them).

It is sometimes possible to connect to a local IP address from outside on the Internet.
Whether this is possible depends on your Internet provider and router (look for the port-
forwarding settings). However, there are too many different setups for us to be able to
provide much guidance here.

Tweeting to the World

Instead of doing battle with your ISP and router, there are a number of other ways to get
around these two problems. By far, the easiest is to use another service to handle the mes-
sages for you. Twitter is just such a service; it handles text-message passing between one
computer and the world.

Each Twitter user can send tweets of up to 140 characters long. If any of these tweets men-
tion another Twitter user (all usernames start with an @), then the tweet will show up in
their connections page. If you don’t already have a Twitter account, you'll need one for
this section. Even if you do have one, it’s probably a good idea to get a new one so that you
can try things out without sending test messages to all your followers. It’s free and quite
simple to get an account. Just head to www. twitter.com and follow the instructions.
You'll also get a tour of the site, so it should all make a bit more sense after setting up an
account.

http://www.twitter.com

CHAPTER 7 NETWORKED PYTHON

Twitter is normally used by people sending messages via the website, but that’s not the only
way of doing it. They also have an Application Programming Interface (API) that allows you
to send and receive messages from programs rather than from the web interface.

There’s a Twitter module that makes accessing the Twitter API simple. It's not included in
Raspbian by default, so you'll need to download it from https://github.com/sixohsix/
twitter/tree/master (use the Download Zip button on the bottom right). Once you have
it, open an LXTerminal session, then unzip and install the module with:

unzip twitter-master.zip

cd twitter-master

python3 setup.py build

sudo python3 setup.py install

You're now almost ready to go, but as well as needing a Twitter username, you also need to
register your application with Twitter to get the appropriate credentials for your application.

Once you've logged in to Twitter, go to http: //dev.twitter.com, and select My applica-
tions from the user menu in the top-right corner. In the new screen, press Create An
Application. On this form, you'll have to enter details of your program.

m The name has to be unique on Twitter, so test -app won't work. Be a little creative, or
just mash a few keys to come up with something that hasn’t been done before.

m The description can be anything as long as it’s over 10 characters.

m The website doesn’t have to be a website at all, it just has to look like one. We entered
http://none.example.com.

m The callback URL can be left blank.

Other than that, you just have to agree to the Rules of the Road and enter the captcha.

The applications page has a series of tabs. You need to change one of the default settings, so
go to the Settings tab, and switch Application Type from Read Only to Read and Write. This
will allow you to post statuses as well as read information. Once this is done, press Update
This Twitter Application’s Settings.

Now you need to create an access token, so switch back to the Details tab, and click Create
My Access Token. Once this is done, it'll take Twitter a few moments to update itself, and
you may have to refresh the page for the section Your Access Token to appear. Once it
refreshes, you're all set up and ready to go. You just need to get four pieces of information

145

https://github.com/sixohsix/twitter/tree/master
https://github.com/sixohsix/twitter/tree/master
http://dev.twitter.com

146 LEARNING PYTHON WITH RASPBERRY PI

from the details page on this website: Access Token, Access Token Secret, Consumer Key, and
Consumer Secret. These are all random strings that you'll need to copy and paste into the
following example (see chapter7-twitter.py on the website):

import twitter

def print tweets (tweets):
for tweet in tweets:
print ('text: ', tweet['text'])
print ('from: ', tweet['user']['screen name'])

twitter user = twitter.Twitter(
auth=twitter.OAuth ("ACCESS-TOKEN", "ACCESS-TOKEN-SECRET",
"CONSUMER-KEY", "CONSUMER-SECRET"))

status = twitter user.statuses

home = status.home timeline ()
print ("home")
print_tweets (home)

mentions = status.mentions timeline ()
print ("mentions")
print_tweets (mentions)

search string = input ("Enter text to search for, " +
"or press enter to skip: ")
if search_string != "":
search = twitter_ user.search.tweets (g=search_string)
print ("search")
print_tweets (search['statuses'])

tweet = input ("Enter tweet, or press enter to exit: ")

if tweet != "":
twitter user.statuses.update(status=tweet)

This little Twitter client isn’t the most user-friendly one available. In fact, it’s hard to imagine
that anyone would use it over the website. However, it does have many of the different ways
of interacting with Twitter that you may want to include in any applications you create. It
should be fairly easy to adapt this code to your needs.

CHAPTER 7 NETWORKED PYTHON

Weather Forecasts with JSON

In the previous example, the Twitter module provided all the basic functionality, but there
won't always be modules you can use. Sometimes you'll have to write your own code to inter-
act with web services. Fortunately there is a standard format for sending data back and forth
than makes it easy to incorporate web services into your projects. JavaScript Object Notation,
more commonly called JSON, is that standard. Originally, it was designed to work with
JavaScript, which is a programming language mainly used on web pages, but it also works
well with Python.

OpenWeatherMap . org is a website that provides free access to weather forecasts that you
can include in your software. It also happens to use JSON. To get a feel for what a JSON
document looks like, point your web browser to http://api.openweathermap.org/
data/2.5/forecast/daily?cnt=7&units=meteric&mode=json&g=London. This
is will return a seven-day forecast for London. It's not particularly easy to read, but you
should notice that it looks like a Python dictionary that contains (amongst other things) a
list of more dictionaries. Python can pull that information from the Internet using the url-
1ib.request module in the following code:

import urllib.request

url = http://api.openweathermap.org/data/2.5/forecast/" +
"daily?cnt=7&units=meteric&mode=7json&g=London"

req = urllib.request.Request (url)

print (urllib.request.urlopen(req) .read())

This will grab the information from OpenWeatherMap.org and print it on the screen.
However, the data is in a string. You can’t simply access various parts of it as though they are
dictionaries and lists even though they look like them. You could build a function to read
through the string and split it up, but fortunately you don’t have to. The json module can
load it and return a dictionary that contains the various parts of it. For example:

import urllib.request, json

url http://api.openweathermap.org/data/2.5/forecast/

"daily?cnt=7&units=meteric&mode=json&g=London"
req = urllib.request.Request (url)
forecast string = urllib.request.urlopen(req) .read()
forecast dict = json.loads (forecast string.decode ("UTF-8"))

print (forecast dict)

147

http://OpenWeatherMap.org
http://api.openweathermap.org/data/2.5/forecast/daily?cnt=7&units=meteric&mode=json&q=London
http://api.openweathermap.org/data/2.5/forecast/daily?cnt=7&units=meteric&mode=json&q=London
http://api.openweathermap.org/data/2.5/forecast
http://OpenWeatherMap.org
http://api.openweathermap.org/data/2.5/forecast

148 LEARNING PYTHON WITH RASPBERRY PI

You can now get any information you want out of the forecast dict data structure. In
the following example, we've built a simple weather forecast program that prints out a seven-
day forecast for a given city (see chapter7-weather.py on the website):

import urllib.request, json
city = input ("Enter City: ")
def getForecast (city)
url = http://api.openweathermap.org/data/2.5/forecast/ +

"daily?cnt=7&units=meteric&mode=json&g="
url = url + city

req urllib.request.Request (url)

response=urllib.request.urlopen (req)
return json.loads (response.read() .decode ("UTF-8"))
forecast = getForecast (city)

print ("Forecast for ", city, forecast(['city'] ['country'])

day num=1
for day in forecast['list']:

print ("Day : ", day num)

print (day['weather'] [0] ['description'])

print ("Cloud Cover : ", dayl['clouds'])

print ("Temp Min : ", round(day['temp'] ['min']-273.15, 1),
"degrees C")

print ("Temp Max : ", round(day['temp'] ['max']-273.15, 1),
"degrees C")

print ("Humidity : ", day['humidity']l, "&")

print ("Wind Speed : ", dayl['speed'], "m/s")

print ()

day num = day num+l

Note that the metric unit for temperature is Kelvin. To convert Kelvin to Celsius, simply
subtract 273.15. This example uses only some of the data that the API returned. Take a look
at the forecast data structure to see what else is in there that might be useful to print out.

Using this same basic method, you should be able to work with any web APIs that support
JSON. There’s a list of popular services at www.programmableweb.com/apis/
directory/1?sort=mashups, where you should find a way to get almost any information
your applications need off the web.

http://www.programmableweb.com/apis/directory/1?sort=mashups
http://www.programmableweb.com/apis/directory/1?sort=mashups
http://api.openweathermap.org/data/2.5/forecast/

CHAPTER 7 NETWORKED PYTHON

Testing Your Knowledge

So far, you've seen how to query an API to get information out of it. Now its time to test
whether you've fully understood what’s been going on. Have a go at the exercise that follows,
and then refer back to the previous examples for anything you're unsure of.

Exercise 1

You can get the current weather for a city (such as London) using the URL http://api.
openweathermap.org/data/2.5/weather?g=London. Use this URL to create a pro-
gram that tweets the current weather for a location. See the end of the chapter for an
example solution to this exercise.

Getting On the Web

So far you've seen how to pass data back and forwards between two computers, and how to
send and receive data to and from an online API. The obvious omission in all this is websites.
These are, after all, the most popular way of viewing information online. In this section,
you'll learn how to use your Raspberry Pi to host a web page.

There are two parts to the web: HTTP and HTML. The former is Hypertext Transfer Protocol
(the method that web browsers and websites use to communicate), while the latter is
Hypertext Markup Language (the language that web pages are written in). Hypertext is just
a fancy name for any text with links embedded in it. There are modules that'll handle HTTP,
but you will need to learn a little HTML for this to work.

Modern HTML is a complex language that can be used to create powerful applications with
all sorts of animations and interactions. However, the basics of the language are quite simple.
Every web page is a separate HTML file, and every HTML file has two parts, the head and the
body. The head contains various pieces of information about the page, while the body con-
tains what's displayed on the screen. HTML uses tags to describe the different parts of the
document. Almost all tags come in pairs with an opening tag (such as <h1>, which denotes a
main heading) and a closing tag (such as </h1>). Tags are always enclosed in triangular
brackets, and closing brackets start with a forward slash. The following example uses most of
the basic tags (see chapter7-htmlegl.html on the website):

<!DOCTYPE html>

<head>

An example HTML file</titles>
</head>

<body>

<hl>An hl heading</hls>

149

http://api.openweathermap.org/data/2.5/weather?q=London
http://api.openweathermap.org/data/2.5/weather?q=London

150

LEARNING PYTHON WITH RASPBERRY PI

<h2>An h2 heading</h2>

<p>

A paragraph of text with a <a href=http://www.raspberrypi.org";link
<to the Raspberry Pi websites

</p>

<p>

Another paragraph

</p>

</body>

There is much more to HTML than this, but since this is a book about Python rather than
HTML, we won'’t go into more detail. This is more or less what you need for this chapter. If
you're interested in learning more, there are loads of great resources for taking things fur-
ther. http://w3schools.org is a good place to start.

Once you've saved that file, you can just open it on your computer, and it should open in a
browser. This is fine for checking your pages, but it’s no good for sharing your creation with
the world. To do that you need the aforementioned HTTP. In Python, it’s really easy to whip
up a quick HTTP server. For example:

import http.server, os

os.chdir ("/home/pi")

httpd = http.server.HTTPServer(('127.0.0.1', 8000),
http.server.SimpleHTTPRequestHandler)

httpd.serve forever|()

This will start a web server running on your Pi with the root in your home directory. It'll run
on port 8000. If you were paying close attention earlier, you'll remember that 80 is the
default port for web servers. We're using 8000 here just in case you're running something
else with a web server, but you can change it to 80 if you prefer.

Once you have the code running, you can point your Pi's web browser tohttp://localhost :
8000/. Localhost always points back to the machine it’s running on (it’s linked to the IP address
127.0.0.1),and: 8000 means use port 8000 rather than the default port 80. You should see a
rather underwhelming list of files here.

HTTP works with directories and files in exactly the same way your computer does. It starts
from a root directory. In the case of this example, that root directory is /home/pi. In your
web browser, you can either specify a directory (which ends with a /) or a filename. If you
enter a directory, the web server first checks to see if there is a file called index.html. If
there is, it displays that instead of the directory contents. Change the name of your HTML

http://w3schools.org
http://www.raspberrypi.org

CHAPTER 7 NETWORKED PYTHON

file to index.html, then point your browser to http://localhost:8000 again. This
time you should see the file displayed.

Making Your Website Dynamic

The http.server module is great for quickly whipping up a server to share information,
but it’s not very good at serving up information that changes. It does have some ways of add-
ing a more interactive experience, but there’s a better alternative. The tornado module is
designed to serve up content that’s created on the fly rather than content that’s stored in
files. This makes it far more suitable for projects that need this extra versatility.

Unlike the previous example, which worked with the operating system’s file structure,
Tornado creates its own virtual structure, and instead of HTML files, you create classes that
output the appropriate HTML. First you need to install it by opening the LXTerminal and
entering the following:

sudo apt-get install python3-tornado

Take alook at the following simple example. It just creates a website with "Hello World!" onit.

import tornado.ioloop
import tornado.web

class MainHandler (tornado.web.RequestHandler) :
def get (self):
self.write ("<!DOCTYPE html><head><title>" +
"Hello world</title></head>" +
"<body>Hello World</body>")

if name == "_main_ ":
application = tornado.web.Application([
(r"/", MainHandler),
1.,)
application.listen(8888)
tornado.ioloop.IOLoop.instance () .start ()

There are two parts to this example. In the first part, we define the class that creates the web
page, while the second part (which starts with thelineif = name == " main ":)
defines and starts the web server. The main part of this is:

application = tornado.web.Application([
(r"/", MainHandler),

1.)

151

152

LEARNING PYTHON WITH RASPBERRY PI

This creates a new Tornado web application and sets the options for it. The main options are
a list of tuples that define which class handles which pages. In this example, there’s only one
page, the root, or / and it’s handled by the class MainHandler. There are other options that
can be added here, which will be used in future examples. The final two lines just tell it to
listen on port 8888 (so you can run it at the same time as the http. server server on port
8000), and set it running. With this running, you can point your web browser to http://
localhost : 8888 to see it work.

All the handler classes have to extend tornado . web . RequestHandler, which provides all
the basic functionality. All you need to add is a get method that calls self.write () (oras
you'll see later, self.render ()); the superclass handles everything else.

It might seem a little strange to define a class, but not create any objects from it. This is
because Tornado uses the class and handles the object creation for you.

You can use Tornado like this to serve up static content, but it’s not very good. For starters,
all the HTML is inside the Python code, so it’s a bit messy. The real advantage of Tornado is
when you start creating dynamic pages that can change. The next example will generate a
specific greeting for the users. You can use the same file as the previous example, but create a
new class with the following code:

class HelloHandler (tornado.web.RequestHandler) :
def get(self, name):
self.write ("<!DOCTYPE html><heads>
<titles>Hello world</titles></head>" +
"<body>Hello " + name + "</body>")

Then alter the bottom section of the code to bring it in (changes are shown in bold):

if name == " main ":
application = tornado.web.Application([
(r"/", MainHandler),
(r"/hello/(.*)", HelloHandler),
1,)
application.listen(8888)
tornado.ioloop.IOLoop.instance () .start ()

With these changes made and saved, run the code again. Point your browser to http://
localhost:8888/hello/Benorhttp://localhost:8888/hello/Alex, or use your
own name.

CHAPTER 7 NETWORKED PYTHON 153

Using Templates

Being able to modify the HTML code like this obviously lets you create far more powerful
websites than you could before. However, this still means including the HTML in the Python,
which isn’t pleasant. The solution to this is to use templates. These are HTML documents
with bits of Python in them that Tornado uses to build the final page. A template for the
HelloHandler would be

<!DOCTYPE html>
<head>
<titles>Hello</titles>
</head>

<body>

Hello {{ name }}
</body>

As you can see, the Python variable to print goes inside double curly braces. Save this as
hello-template.html in your home directory (/home/pi), and then update the
HelloHandler class to be

class HelloHandler (tornado.web.RequestHandler) :
def get(self, name in):
self .name=name_ in
self.render (" /home/ben/hello-template.html",
name=self .name)

Then rerun the program. You should get the same response, but you should also be able to
see that this code is far cleaner and easier to maintain.

Sending Data Back with Forms

You've probably noticed, though, that not many websites get you to enter information through
web addresses. This method is often done for page IDs (as you saw with the weather API).

HTTP has a method for sending back to the server: POST requests. So far, Tornado has only
been serving GET requests (hence the method name). POST allows you to send more com-
plex information back using HTML forms. Create a new HTML file with the following code:

<!DOCTYPE html>

<head>

<title>User Information</title>
</head>

<body>

154

LEARNING PYTHON WITH RASPBERRY PI

<hl>User Information</hl>

<form action="/hello/" method="post">

Enter your name: <input type="text" name="name">
<input type="submit" value="Sign in">'

</form>

</body>

Save it in your home directory as user-info.html. Now change the HelloHandler class
to the following (changes are shown in bold):

class HelloHandler (tornado.web.RequestHandler) :
def get(self):
self.render ("/home/ben/user-info.html")

def post(self):
self.render ("hello-template.html", name = self.get
argument ("name"))

The final code block also needs to be updated to reflect the new changes:

if name == " main ":
application = tornado.web.Application([
(xr"/", MainHandler),
(r"/hello/", HelloHandler),
1,)
application.listen(8888)
tornado.ioloop.IOLoop.instance () .start ()

Now run this, and again point your browser to http://localhost:8888/hello/.
Roughly the same thing happens as before, but now you enter your name in the textbox.

The reason this works is the first time you go to http: //localhost:8888/hello/, your
browser sends a GET request, so Tornado renders user-template.html. When you click
Sign In, your browser sends a POST request because the form has the action /hello/ (if an
address doesn’t have a server name, the browser sends it to the same server) and the method
POST. This time Tornado renders hello-template.html. self.get argument () then
grabs the data the user entered. name corresponds to the name you gave the text input in
user-info.html.

As well as variables, you can also put certain pieces of Python code inside a template. This
code is enclosed between {% and %}. The most common pieces are

CHAPTER 7 NETWORKED PYTHON

0

o\

{
{

}

set my var =
o

for x in y %}

)
o
)

o

{¢ end %}

As you can see, this is a little different from regular Python. You need the word set before a
variable assignment, and rather than using indenting (which doesn’t work with HTML), code
blocks are finished with {$ end %}.

As an example, you could change hello-template.html to the following:

<!DOCTYPE htmls>

<head>
<titles>Hello</titles>
</head>

<body>

set char number = 0 %}

for letter in name %}

letter }}

set char number = char number + 1 %}
end %}

name }} has {{char number}} characters

A o e
N — o0 A~ P 0P

body>

This not hugely useful code, but it does a bit more than the previous template. It displays
each letter of the name on a different line (
 is the HTML tag for a line break), and it also
counts the number of letters.

Exercise 2

Create a new web app into which the users can enter a city, and then get a web page display-
ing a seven-day weather forecast (with data taken from openweathermap.org). An
example solution is at the end of the chapter.

Keeping Things Secure

As you develop more and more powerful web applications with Tornado, sooner or later
security becomes important. Even if you're only running it on a local network, you may have
things that you don’t want unauthorised people messing with. The final example in this
chapter is a web app that provides some information about the Raspberry Pi.

This web app uses cookies for the login system. Cookies are bits of information that the web
app stores in the browser. They can be used for a wide variety of reasons, but here we'll use

155

http://openweathermap.org

156 LEARNING PYTHON WITH RASPBERRY PI

them to track which sessions are logged in. If the users successfully log in, we set a secure
cookie with their usernames. When they log out, we clear it. When they try to view the web
app, the program checks if they have the cookie set, and if they don't, it redirects them to the
login page. All the files for this are on the web page as chapter7-tornado.zip

import tornado.ioloop
import tornado.web

users = {"ben": "mypassword"}

class SysStatusHandler (tornado.web.RequestHandler) :
def get (self):
if not self.get secure cookie ("user"):
self.redirect ("/login")

return
if self.get argument ("type") == "processes":
com = [["pstree"], ["top", "-bnl"]]
elif self.get argument ("type") == "system":
com = [["uname", "-a"], ["uptime"]]
elif self.get argument ("type") == "syslog":
com = [["tail", "-nl00", "/var/log/syslog"l]
elif self.get argument ("type") == "storage":
com = [["df", "-h"], ["free"]]
elif self.get argument ("type") == "network":
com = [["ifconfig"]]
else:
com = [["df", "-h"], ["free"], ["uname", "-a"l, ["who"],
["uptime"], ["tail', "/var/log/syslog"], ["pstree"],
["top", "-bnl"]]
self .render ("sysstatus-template.html", commands=com)

class LoginHandler (tornado.web.RequestHandler) :
def get (self):
self .render ("login-template.html")

def post(self):
print (self.get argument ("name"))
print (self.get argument ("password"))
if self.get argument ("name") in users.keys() and users|[self.
get argument ("name")] == self.get argument ("password") :
self.set secure cookie("user", self.get argument ("name"))
self.redirect ("/sysstatus?type=system")
else:
self.render ("login-fail.html")

CHAPTER 7 NETWORKED PYTHON

class LogoutHandler (tornado.web.RequestHandler) :
def get (self):
self.clear cookie("user")
self.render ("logout-template.html")

if name == " main ":
application = tornado.web.Application([
(r"/login", LoginHandler),
(r"/sysstatus", SysStatusHandler),
(r"/logout", LogoutHandler),
], cookie secret="put your own random text here')
application.listen(8888)
tornado.ioloop.IOLoop.instance () .start ()

As you can see, the handler that does most of the work (SysStatusHandler) takes a page
argument called type, which can take the following values—processes, system, syslog,
storage, network, or all. It then sends a list of lists that corresponds to various Linux
system commands in the template.

In HTTP GET requests, arguments are sent after a question mark in the URL, so http://
localhost :8888/sysstatus?type=network sends the argument type with the value
network to the sysstatus page.

The template that does the hard work is sysstatus-template.html:

<!DOCTYPE htmls>

<head><title>Raspberry Pi System Status Checker</title></head>
<body><hl>Raspberry Pi System Status Checker</hl>

Processes

System

System Log

Storage

Network

Display all

Logout

import subprocess %}

o° o

for command in commands %}

<h2> Command: {{command[0]}} </h2>

<h2> Output: </h2>

<pre>

{%$ for line in subprocess.check output (command) .splitlines ()

{{1line}}

o°
—

157

158

LEARNING PYTHON WITH RASPBERRY PI

{¢ end %}
</pre>
{¢ end %}

</body>

subprocess is a Python module that lets you run commands on the underlying operating
system. In the case of the Raspberry Pi, that’s Linux. It takes a list as its input with the first item
in the list being the command to run. Any subsequent items are the arguments passed to it. So,
the list ["df", '-h"] runs the command df -h, which outputs the current disks on the
system and information about where they’re mounted and how much free space they have. You
can tryit outin LXTerminal. In fact, you can try out all of the commands used here in LXTerminal.

The <pre> tags are for pre-formatted text. That is, it makes HTML respect the tabs and new-
lines in the text rather than just garbling it all together.

The other templates are straightforward. Here’s login-fail.html:

<!DOCTYPE html>

<html>

<head>

<titles>Login Fail</title>

</head>

<body>

Your login has failed. Please click <a href="login"shere
to try again.

</body>

Here’s login-template.html:

<!DOCTYPE html>

<head>

<title>Raspberry Pi System Status Login Form</title>
</head>

<body>

<p>

Please enter your login information</p>

<form action="/login" method="post">

Username: <input type="text" name="name">

CHAPTER 7 NETWORKED PYTHON

Password: <input type="password" name="password"s>

<input type="submit" value="Sign in">

</form>

</body>

Finally, here’s logout -template.html:

<!DOCTYPE html>

<html>

<head>

<titlesLogin Fail</title>

</head>

<body>

You have logged out. Please click <a href="login"shere
if you wish to log in again.

</body>

The login method we’ve created here does provide some security, but it is far from completely
secure. If you create a web app that handles sensitive information, or allows the users some
control over the Raspberry Pi, and it’s on a network where you don't trust all the users, you
need to properly investigate web security. It’s far too big a subject for us to cover here, but a
good place to start is the Open Web Application Security Project (see www . owasp . org).

Summary
After reading this chapter, you should understand the following a bit better:

m Data can be sent back and forwards between two computers using the host and
port number.
m Hosts can be defined by either IP addresses or hostnames.

m To connect to another computer, you need to use sockets, which allow you to
send data.

m APIs are interfaces programmers can use to access web servers and their data.

m The Twitter APl has a module that lets you easily retrieve and manipulate information
from twitter.com.

m APIs use a universal data format called JSON to make it easier to parse and share data
between programs.

159

http://www.owasp.org
http://twitter.com

160

LEARNING PYTHON WITH RASPBERRY PI

m Web pages are written in HTML and served using HTTP.

m http.server allows you to create a really simple web server.

m You can use Tornado to create more complex web applications.

m Tornado templates make it easy to render complex, dynamic information in HTML.

m The server can receive information from users using HTML forms and POST requests.

m Cookies allow you to store information, such as usernames, on the client’s browser.

Solutions to Exercises

Exercise 1

Here is an example program that tweets the weather to a particular location.

import twitter, urllib.request, json

twitter user = twitter.Twitter(
auth=twitter.OAuth("1824182228-
1HOzVEpPNA31LTiUCHkLSiggqW5Pbe7BvJKVKT2H6 ",

"AwWYIcpfRFUt6F4hMoGEgMGINDiUrW49R1mjVgY6Bts",
"xStMTHbOHQZaEFLi2bsWA",

"YgFhiCpvlgLLe5Is5dRAZWNZ1T84KnyZCMKEXIwWNS "))

city = input ("Which city? ")
url = "http://api.openweathermap.org/data/2.5/weather?g<="
url = url+city

req = urllib.request.Request (url)

forecast string = urllib.request.urlopen(req) .read()
forecast dict = json.loads (forecast string.decode ("UTF-8"))
tweet text = city + " weather is ' +

forecast dict['weather'] [0] ['description']

twitter user.statuses.update (status=tweet text)

http://api.openweathermap.org/data/2.5/weather?q<=

CHAPTER 7 NETWORKED PYTHON 161

Exercise 2
There are many ways of doing this, but we used three files. Firstly, a template called city-
info.html contains the following:

<!DOCTYPE html>

<head>

<title>Weather</title>

</head>

<body>

<hl>Which City?</hl>

<form action="/weather/" method="post">
Enter a city: <input type="text" name="city">
<input type="submit" value="Submit"s>
</form>

</body>

Another template called weather-template contains:

<!DOCTYPE html>

<head>
<title>Weather</title>
</head>

<body>

°

{% set day num = 0 %}
{$ for day in forecast %}

<h2>Day : {{str(day num)}} </h2>
<h3>{{day['weather'] [0] ['description'] }} </h3>

Cloud Cover : {{str(dayl'clouds'])}} <brs>

Temp Min : {{str(round(day['temp'] ['min']-273.15, 1))}}
degrees C

Temp Max : {{ str(round(day['temp'] ['max']-273.15, 1)) }}
degrees C

Humidity : {{str(day['humidity']l)}} %

Wind Speed : {{str(day['speed'])}}m/s

{% set day num = day num + 1 %}
{% end %}

</body>

Finally, the Python file contains:

import tornado.ioloop
import tornado.web

162 LEARNING PYTHON WITH RASPBERRY PI

import subprocess
import urllib.request, json

class WeatherHandler (tornado.web.RequestHandler) :
def get (self):
self.render ("/home/ben/city-info.html")

def post(self):
url = "http://api.openweathermap.org/data/2.5/forecast/"
daily?cnt=7&units=meteric&mode=json&g="
+ self.get argument ("city")
req = urllib.request.Request (url)
response = urllib.request.urlopen (req)

self.forecast = json.loads (response.read() .decode ("UTF-8"))
self.render ("weather-template.html",
forec ast = self.forecast['list'])
if name == " main ":

application = tornado.web.Application([
(r"/weather/", WeatherHandler),
1,)

application.listen(8888)
tornado.ioloop.IOLoop.instance () .start ()

http://api.openweathermap.org/data/2.5/forecast/
http://api.openweathermap.org/data/2.5/forecast/

Chapter
Minecraft

FOR THE UNINITIATED, Minecraft is a game of survival where your character can build
things and acquire materials by mining the world around him. It’s set in a world of blocks,
and each of these blocks can be destroyed to reveal hidden treasures. Figure 8-1 shows a
typical Minecraft world.

That’s a pretty inadequate description, but it should give you an idea of what’s going on.
There’s a full version that you can play on most computers, and there’s a special version
unique to the Raspberry Pi. The special thing about the Pi version is that you can control the
game through Python. Not only can you move your player, but you can also manipulate the
entire world around you.

FIGURE 8-1: The 3D blocks have become emblematic of this game.

164

LEARNING PYTHON WITH RASPBERRY PI

Exploring Minecraft

That’s enough trying to explain it, though. Minecraft is one of those things that you really
have to see to understand. First of all, you'll need to download the software from http://
pi.minecraft.net.

You should end up with a file called minecraft-pi-0.1.1.tar.gz. You can extract this
archive through the terminal with this command:

tar zxvf minecraft-pi-0.1.1l.tar.gz

Then, you can start the game with this command:

mcpi/minecraft-pi

When you're playing Minecraft, it will capture the mouse and keyboard. If you need to switch
back to a non-Minecraft window, just press Alt+Tab, and it will release control.

Controlling Your Minecraft World

The first thing to do is start a new game and get a feeling for moving about in the world (use
the mouse to change the direction you're facing, the left mouse button to attach something,
and the w, a, s, and d keys to move around). You can build things by changing the tool you're
using (pressing one of the number keys will select from the items displayed at the bottom of
the screen), and then pressing the right mouse button to use it. These are just the very basic
Minecraft controls, but they should be enough to give you a feel for how to work in the
world.

To control the world, you need to use the Python API. This is included in the archive you
downloaded earlier, but that version doesn’t support Python 3. Instead, you need to
download chapter8-minecraft-api.tar.gz from the book’s website.

The longer code examples and other appropriate APIs and downloads in the book are from the
book’s companion website at www.wiley.com/go/pythonraspi.

Once you have the new API, you need to extract it using the terminal command:

tar zxvf chapter8-minecraft.tar.gz

http://pi.minecraft.net
http://pi.minecraft.net
http://www.wiley.com/go/pythonraspi

CHAPTER 8 MINECRAFT

You'll need to change the directory using the terminal command cd into the new folder.
Then you should create the programs for this chapter in that folder so they can pick up the
Python APIs:

cd mcpi

The programs you write won’t run Minecraft themselves, but instead connect to an instance
of Minecraft that’s currently running on the Pi.

With that in mind, start a new Python interpreter. Remember that it has to be in the chapters-
minecraft directory, and the easiest way to do this is open an LXTerminal session, navigate to
chapter8-minecraft (use the previous cd line), and then enter python3.

The following code will connect to the currently running instance of Minecraft:

>>> import minecraft
>>> mc = minecraft.Minecraft.create()

You now have a Minecraft object called mc that you can manipulate. This object holds a
player object that you can move around. For example, try the following:

>>> mc.player.setPos(10,10,10)

You should find that the player moves. Your player will move to these coordinates (10,10,10),
but since worlds are randomly generated, this may be in the air, in which case your player will
fall until he reaches the floor. Alternatively, he may end up underwater, or underground. Try
changing the coordinates to find him a spot of land. The first and last coordinates are the
player’s position on the ground (x and z), while the middle one (y) is his vertical position.

Creating Minecraft Worlds in Python

Once you've found a good position for your player, you can alter the world around him using
the setBlock (x,y, z, type) method. %, v, and z are the world coordinates and they are in
the same format as for the player. type is the typeID of the block. Every different type of
block has a typeID, which you'll need to use whenever you manipulate the world.

So, for example, if your player is at (10, 15, 22), you can create a mushroom next to her with
the following:

>>> mc.setBlock(11,15,22, 40)

165

166

LEARNING PYTHON WITH RASPBERRY PI

See Table 8-1 for a list of useful block types.

Some Useful Type IDs

0 Air 1 Stone

2 Grass 3 Dirt

4 Cobble Stone 5 Wooden Plank

6 Sapline 8 Water (will flow)
10 Lava (will flow) 18 Leaves

22 Lapis Lazuli 40 Mushroom

41 Gold Block 246 Glowing Obsidian

Building Worlds

So far, you've been working with whatever world Minecraft created for you. However, if you're
going to create any sort of reusable program, you need to be able to know where everything is
located at the start. To do this, you need to set the world to be how you want it. The following
script sets a 200 by 200 square in the centre of the world to be smooth grass (type 2), with air
above it (type 0).

import minecraft

mc = minecraft.Minecraft.create()
mc.setBlocks(-100,-1, -100, 100, O, 100, 2)
mc.setBlocks(-100, 1, -100, 100, 100, 100, 0)

This uses the method setBlocks (x1, y1, zl, x2, y2, z2, type),which setsevery
block between (x1,y1,z1) and (x2,y2, z2) to be of the appropriate type.

Drawing Pictures

Now you know how to set blocks, you can start doing something useful with them. Were this
a full version of Minecraft, you could use this to build some form of ultimate fortress to shel-
ter your character. However, the version of Minecraft on the Piisn’t the full version. Instead,
you can use this version for more aesthetic reasons, such as drawing pictures with blocks. The
following code does just that (it’s on the website as chapter8-art.py):

import minecraft
import sys

mc = minecraft.Minecraft.create()
height = 1

0
start x = 0
start y = 0

CHAPTER 8 MINECRAFT

canvas = "horizontal™"

r = 246

g = 18

b = 22

picture = [["R", "R", "R"],
[IIGIII "G", "G"] ,
[IIBIII "B", "B"]]

if len(sys.argv) > 1:
with open(sys.argv[1l]) as f:
picture = f.readlines()

pic_x = start x

for line in picture:
pic y = start y
for block in line:

if canvas == "horizontal":
X = pic y
y = height
z = pic x

x = height
y = picy
z = pic_x

if block == "R":
mc.setBlock(x,vy,z,r)

if block == "G":
mc.setBlock(x,v,2z,9)

if block == "B":
mc.setBlock(x,vy,z,b)

pic_y = picy + 1
pic_x = pic_x + 1

This works in a similar way to the level-loading code from Chapter 4. It uses sys.argv to
check if the user has specified a filename at the command line. If she has, it uses the text
from that file to make a picture; otherwise, it uses the default, which draws three lines.

167

168

LEARNING PYTHON WITH RASPBERRY PI

There are then two for loops that iterate through every line, and every character in that line.
If the loop encounters an R, G, or B it draws a red, green, or blue block, respectively.

However, you don’t have complete artistic control over the world. You can only create one of
the predetermined block types, and not all of them will hover in the air. This example uses
block type 246 (glowing obsidian) for red, type 18 (leaves) for green, and type 22 (lapis lazuli)
for blue. Of course, you are free to change these to others if you want to create a different look.

The code for the coordinates is a little convoluted because it has two modes—rvertical and
horizontal—where it draws the picture in different orientations. Because of this, it has to
manage two sets of coordinates: 2D ones for the picture and 3D ones for the Minecraft
world. The if block translates between the two depending on which orientation is selected.

Notice that the program ignores any character that isn’t an R, G, or B, so you can include
them in your picture, but they will be represented as space. For example, the following text
will create a smiley face (see Figure 8-2):

FIGURE 8-2: Smiling faces are just the start. You can use this method to draw whatever you want in
the Minecraft world.

CHAPTER 8 MINECRAFT

Taking Things Further

There are loads of ways you could expand this world. The simplest way is to expand the pallet
from three colours up to as many as you have characters and block types for. A more compli-
cated way of expanding this world would be to create 3D drawings. This will require you to
change the file structure somehow. We recommend doing it as a series of 2D images with a
specific line between them. So, for example, a smiley face two blocks thick would be:

You could also use a similar file structure to define an animation, with each separate block
being a separate frame.

Making the Game Snake

A key use of any 3D graphical environment is to make games. Minecraft itself is obviously a
game, and you can also use it as a games engine to build more games. In this section, you see
how to make the classic game Snake.

If you're unfamiliar with the game, you control a snake that moves around and eats apples.
Every time it eats an apple, it grows one square longer. If it hits either itself or the walls of
the level, it dies. The aim of the game is to get as long a snake as possible. It was one of the
most popular games on mobile phones before the iPhone came along.

Remember that most of the longer code examples in the book are available for download from
the book's companion website at www.wiley.com/go/pythonraspi. To avoid potential
typos, you can download and copy and paste the text into your IDE or code editor. The code
for the following example is chapter8-snake.py.

NOTE

169

http://www.wiley.com/go/pythonraspi

170 LEARNING PYTHON WITH RASPBERRY PI

Code for the game is as follows (you can find it on the website as chapter8-snake.py).

import minecraft
import pygame
import sys
import time
import random

from pygame.locals import *

mc = minecraft.Minecraft.create()
pygame.init ()

#blank world

print ("Resetting world")
mc.setBlocks(-100,-1,-100, 100, 0O, 100, 2)
mc.setBlocks (-100,1,-100, 100, 100, 100, 0)
mc.player.setPos (0,2,0)

create control window
display = pygame.display.set mode((200,200))

#draw maze
print ("drawing maze")
height = 10

start x =
start _z =
difficulty = 0.5
apple freqg = 2

picture = [["R", "R", "R", "R", "R", "R", "R", "R", "R"],

["R"r n_n n_mn n_n n_n n_n n_n n_n IlRII] ,

["R"r II_III Il_ll, II_III Il_ll, II_III Il_ll, II_III "R"]I

CHAPTER 8 MINECRAFT 171

["R", "R", "R", "R", "R", "R", "R", "R", "R"]]

if len(sys.argv) > 1:
with open(sys.argv[l]) as f:
picture = f.readlines()

posn_z = start_z

for line in picture:
posn X = start X
for block in line:

height

y = posn_x

X

Z = posn_z

if block == "R":
mc.setBlock(x,y,z,246)

posn X = posn X + 1
posn z = posn_z + 1

snake = [(int((posn_z - start z)/2),int((posn x - start x)/2))]
movement = [-1,0]

finished = False

grow_in = []
apple in = apple freq

while not finished:
for event in pygame.event.get () :
if event.type == QUIT:
finished = True

key state = pygame.key.get pressed()
if key state[K LEFT]:

movement = [-1,0]
if key state[K RIGHT]:

movement = [1,0]

172

LEARNING PYTHON WITH RASPBERRY PI

if key state[K UP]:

movement = [0,1]
if key state[K DOWN] :
movement = [0, -1]
next position = (height, snake[0] [1] + movement [1],

snake [0] [0] + movement [0])
next block = mc.getBlock (next position([0],

next position[l], next position([2])

if next block == 246 or next block == 22:
finished = True

if next block == 18:
grow_in.append(len (snake))
apple in = apple freq

snake.insert (0, (next position[2], next position[1]))
for block in snake:
mc.setBlock (height, block[1], block[0], 22)

if 0 not in grow_ in:
remove block = snake.pop()
mc.setBlock (height, remove block[1], remove block[0],

grow_in2 = []
for number in grow in:
if number > -1:
grow_in2.append (number - 1)
grow_in = grow_in2

if apple in == 0:
apple y = random.randint (1,int (posn_x - start x)-1)
apple x = random.randint (1,int(posn_z - start z)-1)
while mc.getBlock (height, apple y, apple x) != 0:

0)

apple x = random.randint (1,int(posn_z - start z)-1)

apple y = random.randint (1,int (posn x - start x)-1)

mc.setBlock (height, apple y, apple x, 18)
apple in = apple in - 1

time.sleep(difficulty)

mc.postToChat ("Game Over")

CHAPTER 8 MINECRAFT

There are two Minecraft methods that you haven't seen before: getBlock () and postTo-
Chat (). Both of these methods are fairly self-explanatory. The first returns the type of block
at a particular location, and the second displays text on the player’s screen.

You should recognise the first part of the code because it’s almost the same as the code you
saw previously to draw pictures. It’s slightly simplified because here you need only one colour
block for the maze that the snake moves through (we picked red, but you can substitute this
for whatever you like).

The second part of the code (which includes the while loop and the five lines above it)
contains the mechanics of the game. The snake is stored as a list of tuples. Each tuple contains the
2D coordinates for that section of the snake. These are then transformed into 3D coordinates and
drawn on the screen.

Moving the Snake

The movement of the snake is done in two parts. Firstly, a new block is added to the start.
This new block is calculated by adding the movement variable to the coordinate of the front
of the snake. Secondly, the last position of the snake is removed from the list using pop (),
which both takes it out of the list and returns it. The tile at this coordinate is set to O (air).

The key control is the same as you saw in Chapter 4. It uses PyGame. The only slight compli-
cation is that for this to work, there has to be a PyGame window, which must have focus in
order to capture the keypresses. You should see a blank 200 by 200 window open when you
run the program, and you'll need to click on it in order to be able to control the snake.

Growing the Snake

Perhaps the most complicated part of the code is the part that controls how the snake grows
when it eats apples. This is because the snake doesn’t get longer as soon as it eats the apple;
instead, it gets longer when its whole body has passed through the block the apple was in.

To control this process, you use a list called grow_in. Every time the snake eats an apple, the
length of the snake is added to the list. Each time the main loop is executed, every number in
this list is reduced by one and negative numbers are discarded. This means that when the
whole snake has passed through the apple, there will be a 0 in this list. The final portion of the
snake is removed only when there isn’t a 0 in the list. All this is done in the following section:

if 0 not in grow_in:
remove block = snake.pop ()
mc.setBlock (height, remove block[1], remove block[0], 0)

grow_in2 = []
for number in grow_in:

173

174

LEARNING PYTHON WITH RASPBERRY PI

if number > -1:
grow_in2.append (number - 1)
grow_in = grow_in2

Adding the Apples

The only other part left to do is to add the apples. A new apple appears exactly apple fregq
loops after the snake ate the previous one. They're created at random locations inside the
level with this code:

if apple in ==
apple y = random.randint (1, int (posn x - start x)-1)

apple x = random.randint (1, int (posn z - start z)-1)
while mc.getBlock (height, apple y, apple x) != 0:
apple x = random.randint (1, int (posn z - start z)-1)

apple y = random.randint (1, int (posn x - start x)-1)
mc.setBlock (height, apple y, apple x, 18)

This generates random positions, and then checks that there isn’t already something in that
position (if there is, it generates a new random position). The variable apple in simply
counts the number of loops since the previous apple was eaten.

Take a look at Figure 8-3 to see how it looks, or just run it for yourself.

FIGURE 8-3: You can make the game harder or easier by altering the map for the level. Just make
sure there aren’t any gaps that the snake can escape out of; otherwise, the snake can rampage
unchecked through the Minecraft world.

CHAPTER 8 MINECRAFT

Taking Things Further

As with the game from Chapter 4, this one isn’t really complete yet, and we’ll leave that up to
you. Some ways it could be finished include:

m Some more graphics. For example, add an explosion when the snake dies, or add a count-
down to the start. You could make the snake more graphically appealing, such as by
using alternating blocks along its length.

m Ascore. This could be the length of the snake.

m A method to change the difficulty (use the time. sleep () on the loop). This could have
alink into the score. It could even get faster as the snake gets longer.

m Surprises. For example, once you get past a certain length, the snake could change
colour.

m Bonuses. These could appear on the map for a short period of time, and if the snake
gets to them, the player gets bonus points.

m More levels. The maps could be different sizes, or they could have extra walls inside

them to make it harder.

You don’t have to limit yourself to just improvements to Snake. You could use these same
methods to make entirely new games. For example, the same basic mechanics could be used
for games like Tron. (This game is inspired by the film. Install it with sudo apt-get xtron
to find out more).

You could even build it into a platformer like the one in Chapter 4, or ... well, you could do
anything. You're limited only by your imagination.

Summary
After reading this chapter, you should understand the following a bit better:

m Minecraft is a survival game set in a 3D world of blocks.

m There’s a special version of Minecraft for the Raspberry Pi and it allows you to control
the world from Python.

m You can move the player using player.setPos (x,y,z) .

m setBlock () and setBlocks () can be used to manipulate the world.

175

Chapter
Multimedia

IN THE PAST eight chapters, you've seen loads of ways of processing data, and getting it
out of the Pi. However, so far you haven’t seen many ways of getting data into the Pi. There’s
been some key and button pressing, and a bit with the mouse, but that’s about it. In this
chapter, we're going to change that. There are two additional sensors you can give your Pi to
allow it to interact with the world in a far more natural way—microphones and cameras.
We'll look at each in turn and see how you can use them in your Python programs.

Using PyAudio to Get Sound into Your Computer

There are all manner of things you can do once you have sound in the computer, but they all
start with the same process of getting sound in. The module PyAudio is the best one for
quickly and simply getting audio into the computer. Once you've captured the audio, you can
do whatever you want with it, but if you want to use it in other programs, you'll need some
format that other software understands. WAV is a simple lossless format that’s great for
simple audio data (although it can produce huge files if you're recording a lot of data).

You'll also need a USB microphone to get the sound. The jack port of the Pi is only for sound
output.

As always, the first thing you'll need to do is install the modules with the following terminal
command:

sudo apt-get install libportaudioO libportaudio2 libportaudiocppO
\portaudiol9-dev python3-setuptools python3-pip
sudo pip-3.2 install pyaudio

Now let’s save some sound! The code for this is as follows (you can find it on the website as
chapter9-record.py):

178 LEARNING PYTHON WITH RASPBERRY PI

import pyaudio
import wave

def record sound(seconds, chunk size, sample rate, filename,
channels, format type):
p = pyaudio.PyAudio ()

stream = p.open(format=format type,
channels=channels,
rate=sample rate,
input=True,
frames per buffer=chunk size)
print ("Speak now")

frames = []

for i in range (0, int(sample rate / chunk size * seconds)):

data = stream.read(chunk size)
frames.append (data)
if i%int (sample rate/chunk size) == 0:
print (seconds - round(i/ (sample rate/chunk size)),

"seconds remaining")
print ("Finished")

stream.stop stream()
stream.close ()
p.terminate ()

wf = wave.open("filename", 'wb')

wf .setnchannels (channels)

wf .setsampwidth(p.get sample size(format type))
wf .setframerate (sample rate)

wf.writeframes (b''.join (frames))

wf.close ()

chunk size = 1024
sample rate = 44100

seconds = 15
filename = "output.wav"
channels = 1

format type = pyaudio.palntlé

CHAPTER 9 MULTIMEDIA

record sound(seconds, chunk size, sample rate, filename, channels,
format type)

Asyou can see, there are a number of properties that you can alter to influence the recording.
Some of these control how the data is captured and stored (for example, chunk_size and
sample rate), while others are more high level (like the number of seconds that you record
for, or the number of channels you use). For now, just stick with these defaults unless you
have a good reason to change them. Some of them are limited by the hardware, and PyAudio
will throw an exception if you try to change them.

Recording the Sound

The record_sound () function does all of the hard work (it could be inline code rather than
a function and it would work fine, but we make it a function here so that it is easier to include
in other programs). The first and second lines create a new PyAudio object and then use it to
open a stream. You get the audio data from this stream.

The main work of recording the sound is then done by the for loop:

for i in range (0, int(sample rate / chunk size * seconds)) :
data = stream.read(chunk size)
frames.append (data)

All this does is bring in the data in correctly sized chunks and save it into a list. Each of the
chunks is a bytes data type, but you don’t need to worry about that.

Now that you have the audio data as a string of bytes, you need to do something with it. The
simplest thing is to store it as a WAV file using the wave module, and that’s what the second
half of the function does.

If you run the program, you'll first notice a string of errors. Don’t worry about this; it’s just
PyAudio’s way of letting you know everything that’s going on. (They’re thrown as PyAudio
detects the audio hardware on the device. As long as there aren’t any Python exceptions,
everything’s going fine.)

Then you'll have a file called output.wav in the directory you ran it from. This is a
15-second recording that you can play back with any audio software.

179

180

LEARNING PYTHON WITH RASPBERRY PI

Speaking to Your Pi

There are all manner of things you can do with the audio you've recorded, but one of the cool-
est that doesn’t require any musical talent is voice control. To do this, you need some way of
processing the sound to extract its contents, and this is a surprisingly hard task.

Unfortunately, there aren’t any modules that can make this process easy. However, as you saw in
Chapter 7, Python modules aren’t the only way of getting extra functionality for your program.
Web services are another great source of features that you can easily plug into your software.

Google has an excellent speech-to-text web service that we can utilise here. It does have a cou-
ple of limitations, though. Firstly, the speech sections are limited to a maximum of 15 seconds,
and secondly the audio clips have to be uploaded in FLAC format with a sample rate of 16,000.

The first rule shouldn’t cause too many problems for voice control systems (although it rules
out dictation software). However, the second restriction is a little awkward since there isn’t a
standard FLAC module for Python. There are a couple of options, but none of them is par-
ticularly suitable for our purposes. Here, we can turn to yet another source of extra features
(that you'll learn more about next chapter) from the Linux command line. This allows you to
run regular Linux programs and control them from inside your Python code.

The code to convert the speech to text (once it's FLAC-encoded; see later) is the following:

def google speech recognition(filename) :
global url

audio = open(filename, 'rb') .read()

http header={'Content-Type': 'audio/x-flac; rate=16000'}

request = urllib.request.Request (url, data=audio,
headers=http header)

response = urllib.request.urlopen (request)
out = response.read()
json _data = json.loads (out.decode ("utf-8"))

return json data

This should be fairly familiar to you if you've read Chapter 7, so we won't go over everything
again. The only new things here are the extra parameters on the call to urllib.request.
Request (). The data parameter, fairly obviously, sends the data, which in this case is the
audio file, and the headers parameter sends HTTP headers. These headers tell the web
server about who is requesting the data, and what, if any, data they are sending. In this case,
we're telling the server that we're sending FLAC-encoded audio with a sample rate of 16,000.

CHAPTER 9 MULTIMEDIA

This doesn’t return the actual text, but returns JSON-encoded data that includes the text
and the confidence that the text is right (with different accents and bits of slang, this is never
going to be completely perfect). You can add a print line like the following if you want more
information about what’s returned:

print (json data)

Again, there’s more information on using this format in Chapter 7.

Processing text is far easier than processing audio, so you should now be able to integrate the
output in your software. This example isn't yet complete, though. We're going to expand it so
that you can ask it questions and, with a little luck, it should be able to answer them for you.

Asking the Program Questions

Answering questions is quite a challenging feature to add to a program, and would be a truly
daunting task to code. Fortunately it’s another area where you can get a little help. Wolfram
Alpha is a web service that attempts to do just that. You can try it out in a web browser at
www.wolframalpha.com. As you may have guessed, there’s also an API to access it from a
program.

Again, the code should be mostly familiar if you've read Chapter 7:
def wolfram alpha (speech) :
url_section = urllib.parse.urlencode (dict (
input=speech,
appid=wolfram alpha app id,
))
url = http://api.wolframalpha.com/v2/query?' + url section

response = urllib.request.urlopen (url)

tree

ElementTree.parse (response)
root = tree.getroot ()

for node in root.findall('.//pod') :
print (node.attrib['title'])
for text_node in node.findall('.//plaintext!'):
if text node.text:
print (text node.text)
print ("kxx*xm)

181

http://api.wolframalpha.com/v2/query?
http://www.wolframalpha.com

182

NOTE

NOTE

LEARNING PYTHON WITH RASPBERRY PI

The one part that you may not understand is the second half. Wolfram Alpha returns the
results as an XML file, and this code uses an ElementTree from the xm1 module to parse
this and extract the relevant information. We won’t go into this in detail here as it’s not rel-
evant to the rest of the chapter, but should you need to look into it in the future, you can find
more information in the xm1 module’s documentation.

Before running this code, you need to get a Wolfram Alpha app ID. For this, you need to create
an account at https://developer.wolframalpha.com/portal/signup.html. Once
you have it, copy it to the appropriate place in the code.

Putting It All Together

You can combine these three functions (recording the sound, converting it to text, and get-
ting answers to questions) to create a speech recognition oracle (which we call Pyri due to its
similarity to a popular mobile-based application). You use the following code (it’s on the web-
site as chapter9-pyri.py). The functions discussed previously aren’t repeated here, but
you'll need to include them for the program to work.

Remember that most of the longer code examples in the book are available for download from
the book's companion website at www.wiley.com/go/pythonraspi. To avoid potential
typos, you can download and copy and paste the text into your IDE or code editor. The code
for the following example is chapter9-pyri.py.

import urllib.request

import json

import pyaudio

import wave

from xml.etree import ElementTree
import subprocess

import time

def record sound(seconds, chunk size, sample rate, filename,
channels, format type):
#Code give above

def google speech recognition(filename) :
#Code given above

http://www.wiley.com/go/pythonraspi
https://developer.wolframalpha.com/portal/signup.html

CHAPTER 9 MULTIMEDIA 183

def wolfram alpha (speech) :
#Code give above

chunk size = 512

sample rate = 44100

seconds = 5

filename = "output.wav"
channels =1

format type = pyaudio.palntlé

url = "https://www.google.com/speech-api/vl/recognize?"
+ "client=chromium&lang=en-US"

wolfram alpha app id = "PUT-YOUR-APPID-HERE"

record sound (seconds, chunk size, sample rate,
filename, channels, format type)

subprocess.call(["sox", "output.wav", "-rléek", "-t",
"wav", "output-lé6k.wav"])
subprocess.call(["flac", "-5", "-f",

"output-1l6k.wav"], stdout=subprocess.PIPE)
time.sleep(2)

try:

google data = google speech recognition("output-1lék.flac")
except urllib.error . HTTPError:

print ("voice recognition failure")
else:

print (google data)

if google data['status'] == 0:

wolfram alpha(google data['hypotheses'] [0] ['utterance'])
else:

print ("Voice recognition failed. Try again")

The final try block may be a little unfamiliar to you because it includes an else clause. This
just runs after everything else in the block, but only if the original code doesn’t raise an
exception. In this case, that means as long as the Google request doesn’t throw an
HTTPError.

https://www.google.com/speech-api/v1/recognize?

184

LEARNING PYTHON WITH RASPBERRY PI

Before running the code, you'll need to make sure both of these are installed with the
following:

sudo apt-get install sox flac

Then there are two system calls that convert the file to the appropriate format:

subprocess.call (["sox", "output.wav", "-rléek", "-t",
"wav", "output-léek.wav"])
subprocess.call(["flac", "-5", "-f",

"output-16k.wav"], stdout=subprocess.PIPE)

sox is also known as the "audio Swiss Army knife." It has loads of features for dealing with
sound files. In this case, it’s used to convert the file from a sample rate of 44,100 to 16,000.
This is done with the -r16k option. The second line uses the £lac program to encode the
WAV file as a FLAC.

subprocess.call () is a feature we'll look at in more detail in the next chapter, but for
now, we'll just say that it lets you run Linux commands from within Python.

Taking Things Further

If you feel like taking this example further, you could add it as a feature to the web browser
you created in Chapter 4. Instead of displaying the text like it does here, it could take the
browser directly to the relevant page.

You could also create a simple voice-driven menu so that you can use your program without
a mouse or keyboard. For example, it could display a list of numbered options and the users
simply need to say the number they want (a little like some telephone switchboards).

Making Movies

You should now have an idea of how to get started with audio on your Pi, so we'll move on to
the second medium, video.

There are two types of cameras that you can attach to your Pi—USB webcams and the
Raspberry Pi Foundation’s camera module. We'll look at both here since they have different
applications.

CHAPTER 9 MULTIMEDIA

Using USB Webcams

Of the two, USB webcams are the best supported in Python. They also work the same on all
computers, so we'll look at them first.

Oddly enough, the easiest way to capture images is using the PyGame module that you first
looked at in Chapter 5. Previously, you used it to create a game, but the module mostly con-
tains graphics features (which are often used in games), including ones to grab images from
awebcam.

If you've already worked through Chapter 5, you'll have PyGame installed. If not, you'll need
to do this now with the following:

sudo apt-get update

sudo apt-get install libsdl-dev libsdl-imagel.2-dev \
libsdl-mixerl.2-dev libsdl-ttf2.0-dev libsmpeg-dev \
libportmidi-dev libavformat-dev libswscale-dev \
mercurial python3-dev

Then grab the latest version of Pygame with:

hg clone https://bitbucket.org/pygame/
pygame

cd pygame

These two lines will download the current version of PyGame into a new directory called
pygame, then move into it. Once it’s there, you can build and install the module for Python 3 with:

python3 setup.py build
sudo python3 setup.py install

The simplest program is one that simply grabs a stream of images from the camera and dis-
plays them on the screen. Effectively, this turns your Raspberry Pi into a mirror. It’s done as
follows (the code is on the website as chapter9-mirror.py).

import pygame
import pygame.camera

pygame.init ()
pygame.camera.init ()

display = pygame.display.set mode((640,480),0)

185

https://bitbucket.org/pygame/

186

LEARNING PYTHON WITH RASPBERRY PI

cam = pygame.camera.Camera ("/dev/videoO", (640,480))
cam.start ()

while True:
image = cam.get image ()
display.blit (image, (0,0))
pygame.display.flip()

As well as initialising PyGame, you also have to initialise the camera portion of the module.
If you have just one camera connected, it should come up as /dev/video0; however, you
may need to modify this if you have more than one camera.

Using the module then is as simple as calling the method get _image () ona camera object.
This returns an image that can be used just like any other PyGame image. In this case, we'll
just blit (draw) it to the main display, then call £1ip () to update the display (as covered in
Chapter 5).

Once you have the image, you don’t have to just spit it straight out to the screen. You can do
other things with it as well. For example, there are some image effects you can apply, and you
can send it to a file instead of to the screen.

Take a look at the following code (it’s chapter9-mirror-lines.py on the website):

import pygame
import pygame.camera

pygame.init ()
pygame.camera.init ()

from pygame.locals import *
size = (320, 240)

display = pygame.display.set mode(size, 0)

cam = pygame.camera.Camera ("/dev/videoO", size)
cam.start ()

inverse = pygame.Surface(size, pygame.SRCALPHA)

CHAPTER 9 MULTIMEDIA

for i in range (1,50):
image = cam.get image ()
lines = pygame.transform.laplacian (image)
inverse.fill ((255,255,255,255))
inverse.blit (lines, (0,0), None, BLEND RGB_SUB)
display.blit (inverse, (0,0))
pygame.display.flip ()

pygame.image.save (inverse, "/home/pi/test.png")

This has the same basic structure as the previous example, but with a few more operations.
Firstly, it creates a new image called 1ines. This is made from a laplacian transform on the
original image, which is a mathematical process that finds the edges in an image. The
returned image will be white lines on black.

The program then inverts this image to create an image that’s black lines on white. There isn't a
method that just inverts the colours of an image, so to do this you have to create a white image
and subtract the image from it (that is, call blit () with the special flag BLEND RGB SUB).

You may have noticed that this example doesn’t have a while loop, but instead uses a for
loop. This loop will execute 50 times and then exit. This should give you a few seconds of
video (if you want to make it precise, you could update it with the timing functions used in
Chapter 4). Once this is finished, it'll execute the final line, which saves the current inverted
line image as a PNG file. This makes the program behave a little like a camera on a timer.

The final difference between this program and the first one is that it uses images that are a
little smaller. The size is set in the size variable. This is because the transforms are quite
computationally intensive, and reducing each axis of the image by half reduces the amount
of processing by a quarter (because it is proportional to area). This makes the video far more
responsive. You can change this to see how performance is affected.

Adding Computer Vision Features with OpenCV

PyGame is great for getting images into your computer, but isn’t set up for doing much with
them once it has them. There’s another module called Opencv that’s designed for
manipulating images. Unfortunately it didn’t support Python 3 at the time of writing,
although this should change in the future. Since it has some pretty interesting features that
you can't easily get without it, we're going to cover it using Python 2. Hopefully, an update to
Python 3 will be available soon, and then you shouldn’t have any difficulty using it in the
newer version of Python.

187

188

LEARNING PYTHON WITH RASPBERRY PI

First, install it with the terminal command:

sudo apt-get install python-opencv libopencv-core-dev

The first example is the same as the first example with PyGame: a simple webcam viewer.
This should give you a feel for how the library works:

import cv2
capture = cv2.VideoCapture(0)

while True:
return val, frame = capture.read()
cv2.imshow ('Face', frame)

key = cv2.waitKey(5)
if key == 113:
break

This is structured roughly the same as with PyGame. You open the camera, then read a frame
and display it. The final three lines listen for the users to press the q key (which corresponds
to key 113), and exiting if they do.

OpenCV is a hugely powerful module for manipulating images. One of the most interesting
features is object recognition. Your programs can identify certain parts of an image, for
example an eye or a mouth.

This is all done with Haar cascades, which are saved as XML files. These are created from
training sets of images that the computer compares to pick up similar objects. You can create
your own using the opencv_traincascades program that runs on the Linux command
line. However, you will need vast numbers of images (hundreds to get good results), both
with the object you wish to recognise, and without it. There’s a good tutorial on how to do
thisathttp://docs.opencv.org/doc/user guide/ug traincascade.html.

We won't go into creating cascades, but OpenCV does come with some example ones installed
and ready to go. The next example uses OpenCV bundles to recognise eyes and mouths. The
code’s on the website as chapter9-objectdetect .py.

import cv2

factor_down = 0.33
factor up = 3

capture = cv2.VideoCapture(0)

http://docs.opencv.org/doc/user_guide/ug_traincascade.html

CHAPTER 9 MULTIMEDIA

eye data = cv2.CascadeClassifier('/usr/share/opencv/haarcascades/"'
+ 'haarcascade eye.xml')
smile data = cv2.CascadeClassifier('/usr/share/opencv/
haarcascades/' +
'haarcascade mcs mouth.xml')

while True:

return val, frame = capture.read()
gray frame = cv2.cvtColor (frame, cv2.COLOR RGB2GRAY)
small gray frame = cv2.resize(gray frame, (0,0),

fx=factor down, fy=factor down)
eyes = eye data.detectMultiScale(small gray frame, 1.3, 5)

for (eye x, eye y, eye width, eye height) in eyes:
cv2.rectangle (frame, (eye x*factor up, eye y*factor up),
(eye x*factor up + eye width*factor up,
eye y*factor up+eye height*factor up),
(255,0,0),2)

smiles = smile data.detectMultiScale(small gray frame, 1.3, 5)
for (smile_x, smile_y, smile_width, smile_height) in smiles:
cv2.rectangle (frame, (smile x*factor up,
smile y*factor up),
(smile x*factor up + smile width*factor_ up,
smile_y*factor_up+smile_height*factor_up),
(0,255,0),2)
cv2.imshow ('Face', frame)

key = cv2.waitKey(5)
if key == 113:
break

As you can see, loading the Haar cascades is simply a case of calling cv2.Cascade
Classifier () with the cascade file as the sole parameter. This creates an object with a
method called detectMultiScale (), which can be used to return a list of rectangles that
match the cascade. There are a few more things going on here, though.

In the while loop, the program first captures a frame as in the first OpenCV example, and
then it creates two new images—gray frame and small gray frame. These,

189

190

LEARNING PYTHON WITH RASPBERRY PI

unsurprisingly, are a greyscale version of the initial frame and a smaller version of the grey
frame. You need to do this is because object detection takes quite a bit of computing power,
and while the Raspberry Piis capable of doing it on a full size image, it runs slowly if it does.
The smaller the images is, the less accurate the object recognition is. We found that shrink-
ing the original image to a third of its size was a good compromise. You can play around
with the values of factor down and factor_up (they must always be equal to the recip-
rocal of the other) to see what works best for you.

Remember that you can overclock your Pi using raspi-config in LXTerminal if you want
better performance.

detectMultiScale () then returns the coordinates for all the rectangles that match the
object, and the two for loops go through all of those returned and draws them on the image.

Taking Things Further

If you're prepared to take the time to create a set of training images, you can use this basic
program in all sorts of programs. For example, you could create one that recognises the users
rather than asking them to log in, or you could add OpenCV to a robotic buggy to make it
understand simple signs.

Even without creating your own Haar cascades, you can add vision to your Pi. For example,
you could use the hand Haar cascades and keep an eye on how the rectangles move. You
could get it to watch for hand waving.

Using the Raspberry Pi Camera Module

USB webcams aren’t your only option for adding images and video to your Raspberry Pi proj-
ects. In fact, they may not even be the most popular method for doing it. The Raspberry Pi
Foundation released its own camera module, which plugs into the board. Here are some of
the pros and cons of the camera module compared to a USB webcam.

Pros:

m Better resolution for still images than most webcams (five megapixels)
m Good command-line support for Linux
m Competitive price (£19; about $31)

m Infrared (night vision) version available

CHAPTER 9 MULTIMEDIA

Cons:

m Less support in non-Pi specific programs and Python modules
m Limited to one camera per board

m Short cable (15cm), although it is possible, but not easy, to extend it

The choice comes down to the specific project you need the camera for.

Camera Module and OpenCV

OpenCV, which you saw in the previous section, won't work out of the box with the
Raspberry Pi Foundation's camera module. However, you can modify OpenCV to work with
it by following the instructions at http://thinkrpi.wordpress.com/2013/05/22/
opencv-and-camera-board-csi/.

At the time of writing, there wasn’t a Python module available for the Raspberry Pi camera
board. One project that’s working on it is available from https://github.com/ash-
tons/picam. It’s still a little unstable. At the moment, the best approach is to use the com-
mand-line tool through Python to access the camera.

The first thing to do is make sure that the camera is connected and enabled. Open an
LXTerminal session and enter:

raspistill -o test.png

This should display a preview of the camera output for a few seconds, then capture the result
as test .png. If there are any problems, go back to the Raspberry Pi camera setup instruc-
tions at www . raspberrypi.org/camera and get this working before moving on.

This gives you the basic way of taking a picture with the command line. You can do the same
in Python with:

>>> import subprocess
>>> subprocess.call(["raspistill", "-o", "test.png"l)

If needed, you can then bring the image into Python by loading it as you would any other
image. For example, with the image-loading features of PyGame that you used in Chapter 4.

191

https://github.com/ashtons/picam
https://github.com/ashtons/picam
http://www.raspberrypi.org/
http://thinkrpi.wordpress.com/2013/05/22/opencv-and-camera-board-csi/
http://thinkrpi.wordpress.com/2013/05/22/opencv-and-camera-board-csi/

192

LEARNING PYTHON WITH RASPBERRY PI

raspistill allows you to set a wide range of options to control the way the image is captured.
Enter raspistill at the command line for a full list of options. The options range from the
simple, such as the size, to the more complex, such as metering mode or AWB.

As an example, the following code captures an image that’s 200 by 200 pixels, has a high
contrast, and uses the sketch image effect. In addition, it has no onscreen preview and a
timeout of one millisecond.

raspistill -w 200 -h 200 -co 90 -n -t 1 -ifx sketch -o test.png

The result is a slightly cartoony image. This would be the perfect input to creating a time-
lapse cartoon video, so that’s exactly what we'll do with the next example (it’s on the website
as chapter9-timelapse.py).

import subprocess
import time

frames = 10

for i in range(1l, frames) :

filename = "test" + format (i, "03d") + ".jpg"

subprocess.call (["raspistill", "-n", "-t", '1", "-w", "200",
ll_hl, "200", I_coll, ll90ll, "_ifX", "Sketch",
II_eH, lljpglll "—e", ujpgu, II_oH, filename])

print ("taking photo", 1)

print ("Encoding. . .")

subprocess.call (["avconv", "-x", "5", 6 "-irv "tesgt%03d.jpg", "-r",
"24"1 "—S", "2OOX200",
"—Vsync", Nofrn , "Out.mpg"])

This code uses the -e jpg option on raspistill, which saves the image as a JPEG rather
than as a PNG. This makes the conversion to a movie easier. Once it’s taken all the images, it
converts them to a movie using avconv. The key options here are the first -r. The number
following this is the amount of images it will use to create one second of video. In this exam-
ple, we've used five, but you can change this to whatever you like (the second - r is the frames
per second in the final video). -i test%03d.jpg picks up files with names like test001.
jpgand test002.jpg. This matches the line that creates the filename:

filename = "test" + format (i, "03d") + ".jpg"

CHAPTER 9 MULTIMEDIA

These have to match each other so that the video encoder picks up the images that have been
created. You can change test to anything you want, provided you change it in both places. If
you want to take more than 999 images, you'll need to add more zeros. For example, if you
wanted to take up to 99,999 images, you could change the threes in both lines to fives (the
variable frames stores the number of frames captured (actually it will capture one less than
this number, but we left it like this for simplicity).

-s 200x200 is the final dimension of the video in pixels. This doesn’t have to match the size
of the images. You can change out . mpg to whatever you wish to call the final video.

If you run this and create a video, you can then view the result with any standard video
player such as VLC.

Creating Live Streams

The previous method works great if you want to create a video over a predetermined amount
of time, but what if you want to keep a video going indefinitely? For example, what if you
wanted to create a live video stream that you can watch over the Internet? Internet lore has
it that the very first webcam was set up in Cambridge (the home of the Raspberry Pi) to allow
people to keep an eye on a coffee pot, so they could time their visits to the canteen with a
fresh brew. The following example re-creates that webcam.

In order to send data over the Internet, you'll need some form of server. There are a few that
can do the job, but for the sake of familiarity, we'll use the Tornado server that you saw in
Chapter 7.

The live stream can then be created with the following code. Before running it, you'll have to
create the directory /home/pi/images with mkdir /home/pi/images.

import tornado.ioloop
import tornado.web
import subprocess
import time

class MainHandler (tornado.web.RequestHandler) :
def get (self):
subprocess.call(["raspistill", "-w", "200", "-h", "200",
"-e", "jpg", "-n", "-tm", "iv, "-o",
"/home/pi/images/live.jpg"])
time.sleep(2)
self.write('<! DOCTYPE htmls><head>' +
'<META HTTP-EQUIV="refresh"' +
' CONTENT="5"></head><body>"' +
'</body>")

193

194

LEARNING PYTHON WITH RASPBERRY PI

class ImageHandler (tornado.web.StaticFileHandler) :
def set extra headers(self, path):
self.set header('Cache-Control"',
'no-store, no-cache, must-revalidate,' +
' max-age=0"')

application = tornado.web.Application([
(xr"/", MainHandler),
(r"/images/ (.*)", ImageHandler, {"path":"/home/pi/images"})])

if name == "_main_ ":
application.listen(8888)
tornado.ioloop.IOLoop.instance () .start ()

If this doesn’t look familiar to you, pop back to Chapter 7 and have a look at the section on
Tornado. There are, however, a few new things in here.

In essence, all this does is wait for a user to request the page with the live stream (this is simply the
root, but you can update it to be wherever you want), then it takes a new picture. The web page is
then served, and it includes the picture. To make it a live stream rather than just a live image, the
web page it serves includes the tag <META HTTP-EQUIV="refresh" CONTENT="5">, which
tells the web browser to automatically refresh the page every five seconds. It’s not high-quality
video, but it’s enough to keep you updated on the amount of coffee in a pot.

The class ImageHandler extends tornado.web.StaticFileHandler. It does this so
that it can change the default settings on caching. By default, Tornado will try to be efficient
and not reserve images it’s served before. That means if a web browser requests an image that
Tornado has already sent to it, it'll just tell it to use the same image. Since the browser is con-
stantly checking the image 1ive.jpg, it would normally keep reserving the first image. By
adding this header, you're telling it not to be so lazy and to actually reread the file each time.

This works, but it’s not ideal. For example, it takes a new picture every time someone requests
a page, but if a lot of people are constantly requesting pages, it'll get clogged up, as the cam-
era can only take one picture at a time. Secondly, it doesn’t store any of the pictures. Thisisn't
a problem if you're just watching coffee, but if you're using this as a security camera for
example, this could be an issue.

To get around this, you need to separate the section that takes the images, and the one that
serves them. The following code will constantly take images so they can by amalgamated into
avideo, and at the same time, it keeps 1ive.jpg updated with the latest. It's on the website
as chapter9-live-take-pics.py:

import subprocess
import time

CHAPTER 9 MULTIMEDIA

file number = 0
dir = "/home/pi/images/"

while True:

file name = dir + format (file number, "05d") + ".jpg"

file number = file number + 1

subprocess.call(["raspistill", "-w", "400", "-h", "400", "-e",
"jpg", "-n", "-t", "l", "-o", file name])

subprocess.call(["cp", "-f", file name, dir + "live.jpg"l)

time.sleep(2)

The next piece of code starts the previous script automatically, and displays the latest image
just as the previous example did. It’s on the website as chapter9-1live-image-server.py.

import tornado.ioloop
import tornado.web
import subprocess

class MainHandler (tornado.web.RequestHandler) :
def get (self):
self.write('<! DOCTYPE html><head>' +
'<META HTTP-EQUIV="refresh"' +
' CONTENT="5"></head><body>' +
'</body>")

class ImageHandler (tornado.web.StaticFileHandler) :
def set extra headers(self, path):
self.set header ('Cache-Control',
'no-store, no-cache, must-revalidate, max-age=0"')

application = tornado.web.Application([
(r"/", MainHandler),

(r"/images/ (.*)", ImageHandler, {"path":"/home/pi/images"})])
if name == " main ":
subprocess.Popen (["python3", "chapter 9-live-take-pics.py"])

application.listen(8888)
tornado.ioloop.IOLoop.instance () .start ()

This uses subprocess . Popen () to create a new process that lets both of the programs run
at the same time (more on this next chapter).

195

196

LEARNING PYTHON WITH RASPBERRY PI

Taking Things Further

There are still a few problems though. This code will simply run constantly until it fills up the
SD card with images. At this point, the Pi will probably crash. If you want to take things fur-
ther, there are a few things you could do. For example, every certain amount of time (maybe
every day or every 20,000 images), you could convert the images into a video, and then
delete the images. For extra bonus points you could make the archive videos available online.

To make it more secure, you could constantly upload the videos to a central server that’s
offsite. This means that if your Pi is stolen or destroyed, you still have access to the surveil-
lance footage.

If you are deploying this on a publicly accessible web server, you should implement some
security so only authorised people are able to view the footage online. Take a look back to
Chapter 7 for details on how to do this.

Summary
After reading this chapter, you should understand the following a bit better:

m PyAudio is a great module for bringing sound into Python programs.
m The wave module lets you output WAVE files.

m There aren’t great Python tools for everything in audio, but that doesn’t cause a prob-
lem because you can use the Linux command-line tools such as sox and £lac to fill in
the gaps.

m You can also use web services such as Google’s speech recognition to add even more
audio features.

m There are two options for adding cameras to your Pi: USB webcams and the Raspberry
Pi Foundation’s camera module.

m USB webcams work best with standard Python tools such as PyGame and OpenCV.

m The camera module works with OpenCV, but it also has its own set of command-line
tools for grabbing images and videos.

m OpenCV can be used to add computer vision features such as object recognition.

m A web server such as Tornado can be used to serve streams of images on the Internet.

Chapter
Scripting

THERE ARE LOADS of different tasks that you need to perform on a computer to keep it
running properly. For example, you need to back up your data regularly just in case there’s a
problem. Other tasks can depend on exactly what you use your computer for. You might
need something to keep your music collection in order, or sort photos. This chapter looks at
how you can use Python to make your life easier by automating these housekeeping jobs so
that your computer keeps running with minimal intervention.

This requires a lot of interaction with the underlying operating system, so the first thing to
do is learn a little about Linux.

Getting Started with the Linux Command Line

By this point, you're probably fairly familiar with general use of Raspbian. Raspbian brings
together several distinct parts to create an operating system. Firstly, there’s the Linux kernel.
This is the bit that makes everything work at the lowest level. It’s constantly running and
manages the hardware and memory and controls how other programs run. Then there’s the
command line and a wide range of tools. These provide an entirely text-based way of using
Raspbian, and it’s an area that you'll be looking at in more detail in this chapter. The chances
are, you probably don’t use this too much at the moment; instead, you probably interact with
the desktop environment, which is another distinct section of Raspbian. The default GUI is
LXDE, and on top of this there are a wide range of graphical programs.

If you've mostly used Windows, the first big difference you'll notice will probably be the file-
system. You won't find a C drive (or for that matter, any other lettered drive) on your
Raspberry Pi. Instead, everything is built into a single hierarchy that starts at / (known as

198

LEARNING PYTHON WITH RASPBERRY PI

the root). Before getting started with Python scripting, you'll need to know where everything
is in this filesystem, so open LXTerminal (the window that contains the text-based way of
using Raspbian) and enter the following:

cd /
1s

The first line changes the directory to / (the root), then the second lists everything in the
current directory. You should get output like this (see Figure 10-1):

bin dev home lost+found mnt proc run selinux sys wusr
boot etc 1lib media opt root sbin srv tmp var

pi@raspberrypi: /

pi@raspberrypi

FIGURE 10-1: LXTerminal allows you to interact with the powerful Linux command-line environment.

CHAPTER 10 SCRIPTING

These are the directories in the root (if there were any files, they'd be listed here as well,
but there aren’t any in this folder). If you use a different Linux system, you'll find a simi-
lar set of directories in /. Most of these directories you'll never need to touch. Raspbian
will look after them for you, and keep everything up to date. The ones that you're likely to
use are /home, where the users’ home directories are kept, /media, where removable
devices such as USB memory sticks will be found, and /etc, where system-wide applica-
tion settings are kept.

It's important to realise that this filesystem doesn’t directly correspond to a filesystem that’s
stored on a disk in the same way it does in Windows. So, for example, /home /p1 is stored on
the SD card. However, if you were to put in a USB memory stick called MyStick, you'll find
it at /media/MyStick.

/sys and /proc don'’t exist on any disk. They're virtual filesystems that are created to look
like normal directories and files, but are just the system’s way for displaying information. For
example, if you type:

cat /proc/cpuinfo

cat is a command that outputs the contents of one of more files, and /proc/cpuinfo
contains the technical details of the CPU. You should get something like this:

pie@raspberrypi /proc $ cat /proc/cpuinfo

Processor: ARMvé6-compatible processor rev 7 (v6l)
BogoMIPS: 697.95

Features: swp half thumb fastmult vfp edsp java tls
CPU implementer: 0x41l

CPU architecture: 7

CPU variant: 0x0

CPU part: 0xb76

CPU revision: 7

Hardware: BCM2708
Revision: 000d
Serial: 0000000074£f3d523

The environment in LXTerminal is known as Bash. It's a powerful environment and even has its
own programming language. If you want to learn more about Raspbian and Linux in general, Bash
is a good place to start, and there are loads of resources (such as www.linuxcommand.org).
However, this is a book about Python, so we'll leave it here and let interested readers learn on
their own.

199

http://www.linuxcommand.org

200

LEARNING PYTHON WITH RASPBERRY PI

Using the Subprocess Module

The easiest way to interact with the underlying system from Python is to use the subpro-
cess module. We used this in Chapter 7, so you may already be a little familiar with it. Open
up a Python interpreter (if you're already using LXTerminal, you can do this just by typing
python3), and enter the following:

>>> import subprocess
>>> subprocess.call("1ls")

As you can see, using subprocess.call (), you can run any command on the underlying
OS. If there are spaces in the command you want to run, you need to separate the command
into a list of strings. For example, the command cat /proc/cpuinfo becomes:

>>> subprocess.call(["cat","/proc/cpuinfo"])

This is all well and good, but all this really does is provide a more verbose way of running
commands. After all, you could just have easily run the same commands in LXTerminal. As
we said at the start, the aim of this chapter is to automate general tasks, and to do that you're
going to need to read in the outputs so that you can manipulate them.

For example, cat /proc/cpuinfo returns aload of information, most of which you prob-
ably don’t want to know. The following program strips out all the information except the line
that tells you the type of processor the computer is running.

import subprocess

p = subprocess.Popen(["cat", "/proc/cpuinfo"],
stdout=subprocess.PIPE)

text = p.stdout.read() .decode ()

for line in text.splitlines():
if line[:9] == "Processor":
print (line)

This uses subprocess.Popen () rather than subprocess.call (). Doing this gives you
much more control over what’s going on because it creates a new object that you can use to
get the information you want.

CHAPTER 10 SCRIPTING

Whenever a command runs on a Linux machine, there are two pieces of output: stdout and
stderr. Stdout (or standard out) is where all the normal output goes. For example, when
you run a Python program, any print () statements go to stdout. Stderr (or standard
error) is where the system sends error messages. If you're running something in LXTerminal,
both of these go to the screen, but when you're scripting things, it can be useful to split them
up. That way, if you're running a lot of commands, you can send any error messages to one
place so that you can see instantly if something’s gone wrong without having to check
through all the output.

The parameter stdout=subprocess.PIPE tells Python to keep stdout in the object
we're creating rather than sending it to the screen. Since you're not telling it what to do with
stderr, it will, by default, send that to the screen. So, if you change the line to:

p = subprocess.Popen(["cat", "/proc/cpuinfozzz"],
stdout=subprocess.PIPE)

The error message will be printed on the screen even though it doesn’t get printed in any
print () statement.

If needed, you can also capture the stderr of a command. For example, take a look at the
following program, which displays the contents of a file that the user enters:

import subprocess
f name = input ("Enter a filename: ")

p = subprocess.Popen(["cat", £ name], stdout=subprocess.PIPE,
stderr=subprocess.PIPE)

text = p.stdout.read() .decode ()
error = p.stderr.read() .decode ()

print (text)
if len(error) > 0:

prlnt (l'*****ERROR***** ")
print (error)

201

202

LEARNING PYTHON WITH RASPBERRY PI

Command-Line Flags

Linux commands often take flags. These flags come after the main command and are ways to
tell it what to do. For example, in LXTerminal, try running the following:

1s
ls -a
1ls --all

1s lists the contents of the current directory. By using the flag -a, you're telling it to list
everything in the directory (usually 1s omits files and directories that start witha). --all
isthe sameas 1s -a. Many commands have two versions of each flag—a short version that
starts with - and a long version (often easier to remember) that starts with - -. To get more
information on how to use 1s, run it with either the flag -h or -help.

Flags can also take values, as you'll see in a minute.

If you're developing scripts, you should try to follow these conventions whenever possible.
There’s a module named optparse that can help. The previous example can be made to take
its input from a flag rather than a prompted user input. Take a look at the following:

import subprocess
from optparse import OptionParser

parser = OptionParser ()

parser.add option("-f", "-file", dest="filename",
help="The file to display")

options, arguments = parser.parse_args ()

if options.filename:
p = subprocess.Popen(["cat", options.filename],
stdout=subprocess.PIPE,
stderr=subprocess.PIPE)

text = p.stdout.read() .decode ()

error = p.stderr.read() .decode ()
else:

test = "

error = "Filename not given"

CHAPTER 10 SCRIPTING

if len(error) > O0:
print("*****ERROR*****")
print (error)

else:
print (text)

As you can see, this creates an OptionParser object. In this example, there’s only one
option, but you can add as many as you like by having more calls to parser.add option().
The first two parameters to this are the short and long versions of the flag. dest="filename"
means that the value of the flag is stored in the attribute called £ilename of the options
that are returned.

Note that the parser automatically creates the flags -h and - -help, and builds the help text
up from the help= parameters in add_options () calls.

If you save the previous code as print-file.py, you can run it in LXTerminal by cding to
the directory it’s saved in and entering python3 print-file.py -f /proc/cpuinfo.
You can view the help with python3 print-file.py --help.

Regular Expressions

All this is, though, is a Python wrapper around cat that just does what the original does. It
doesn’t actually add anything.

Let’s add a feature that lets the users specify which lines of the file they want to display.

Python (and many other programming languages) has a feature called regular expressions.
This slightly oddly named feature (often shortened to regex) enables you to specify bits of
text to match.

They do this with special characters. The most common special character is *. This means,
match the preceding character zero or more times. For example: do*g will match dg, dog,
doog, and so on. The character + will match the preceding character one or more times. For
example, do+g will match dog, doog, dooog, and so on, but not dg. do?g, on the other
hand will match dg or dog only.

A period will match any character other than a new line, so . * will match any line, while . +
will match any line that isn’t empty.

You can group characters together, so d [i0] g will match dig and dog, and d [i0] *g will
match dg, dog, dig, doog, dioioioig, and anything like that.

We'll look at a few more features of regular expressions a bit later on, but for now let’s get
started with using them. The following code is on the website as chapter10-regex.py.

203

204

LEARNING PYTHON WITH RASPBERRY PI

import subprocess
from optparse import OptionParser
import re

parser = OptionParser ()

parser.add option("-f", "-file", dest="filename",
help="The file to display")

parser.add option("-r", "-regex", dest="regex",

help="The regular expression to search for")
options, arguments = parser.parse_args ()
if options.filename:

p = subprocess.Popen(["cat", options.filename],
stdout=subprocess.PIPE, stderr=subprocess.PIPE)

text = p.stdout.read() .decode ()

error = p.stderr.read() .decode ()
else:

test = "o

error = "Filename not given"

if len(error) > O0:
print(“*****ERROR*****“)
print (error)
else:
for line in text.splitlines():
if not options.regex or (options.regex
and re.search(options.regex, line)):
print (line)

This gets the regular expressions from the module re. There are two main ways of using
regular expressions: re .match () and re.search (). The first one tries to match the regu-
lar expression from the start of the string, while the second one tries to find text anywhere
in the string that matches the regular expression. This program does the latter because we
wanted to make it as easy as possible to match lines.

CHAPTER 10 SCRIPTING

There is a slightly convoluted condition in the if line:

if not options.regex or (options.regex
and re.search(options.regex, line)):

This is to handle the case whereby the user hasn't entered a -r or -regex flag. It says to
print the line if either there isn’t a regex flag, or there is a flag and the line matches.

To match the first example, run it with:

python3 chapter.py -f /proc/cpuinfo -r Processor

Linux systems keep log files that register various events. These can be useful in diagnosing
problems, but they can also get huge and be hard to work with. They're all located in the
/var/log folder. syslog holds much of the general information about what'’s been going
on. For example, if you're having some difficulty with a USB device, running the following log
file list all the times Raspbian registered a new USB peripheral (either hub or device):

python3 chapterl0-regex.py -f /var/log/syslog -r"USB.*found"

In this case, putting the regular expression in quote marks isn’t necessary, but sometimes
the Linux shell will try to process special characters before they’re passed to Python. Using
double quote marks stops that from happening, so it’s a good habit to get into when putting
regular expressions on the command line.

Let’s return to features of regular expressions:
m [“abc] matches every character except a, b, and ¢, so d [o] g matches dig, dxg, and

dag but not dog.

m [a-c] matches the characters a through to ¢, so d[a-j]g matches dag, dbg, and
dig, but not dkg or dog.

m {a, Db} matches the preceding character anywhere between a and b times, so

do{2, 4 }g matches doog, dooog, and doooog, but not dog or dooooog.

In addition, there are a series of special letters that, when preceded by a slash, take on a
special meaning. Table 10-1 lists these special letters.

205

206 LEARNING PYTHON WITH RASPBERRY PI

Escaped Characters in Regular Expressions

\n The newline character

\t Tab

\d Any digit

\D Anything except a digit

\s Any whitespace such as a space, Tab, or newline
\w Any alphanumeric character

\W Any non-alphanumeric character

Obviously, this can lead to some problems if you want to match a \ character. For this, or any
other time where you want to match a special character (such as ., * or +), you can escape
them with a \. Therefore, \\w matches \w and \w matches any alphanumeric character.

This can create a problem when entering strings in Python, since slashes need to be escaped
there as well. For example:

>>> print ("\\")

\

>>> print ("\\\\")
\\

e This isn't a problem in this example because you've been passing the strings into Python, but
if you're creating strings for regex matching in Python itself, you'll need to remember to double
the amount of slashes you want to use in the regex.

Testing Your Knowledge

We've covered quite a log of regular expression information in quite a short space. To make
sure everything is sinking in, take a look at the following exercise.

Take the following file:

aaa
alo

10
Hello
Helllo
Helloo

CHAPTER 10 SCRIPTING

Which regex will match which lines? Try to work it out, then run the previous program on
them to find out (you'll need to create a text file in Leafpad or download it from the website,
where it’s called chapter10-regex-test). For example, to check the first one, run:

python3 chapterl0-regex.py -f chapterlO-regex-test -r"."

Remember that the program uses re . search () not re.match ()

m \D\d
m 1{3,4}

m e*

m [Ha]l

= \d{2,3}

Scripting with Networking

We looked at networking in Chapter 7, and we're not going to repeat ourselves here. Instead,
we're going to look at ways you may need to use the network when scripting. The most com-
mon thing you'll need to do is copy files between two computers. There is an excellent module
for this called Fabric; however, at the time of writing, it doesn't support Python 3. This is likely
to change, but not in the immediate future.

In the absence of a module to handle the process, you could create the Python code from
scratch and copy everything across. This is certainly possible, but it'll be quite long winded.
There is a Linux command-line program called scp (secure copy) that does this, and you've
already seen how to run command-line programs.

There is a slight problem though. When you run scp normally, it'll ask you for your
password. This will cause a problem when scripting in Python because you can’t easily
tell it to answer questions. scp does, though, allow you to set it up with certificates so
that if you're logged in as an authorised user on one machine, you can log in without a
password on another.

208

LEARNING PYTHON WITH RASPBERRY PI

scp can be used to copy information between Linux computers (such as Raspberry Pis),
so it will work between two Raspberry Pis, or between a Pi and a Linux server. Other
(non-Linux) servers may also support it, but you'll have to ask your system administrator
to set it up.

The first thing you need to do is log into the machine you want to transfer information
to and run the following on the Linux command line, such as in LXTerminal. If you
have only one Linux machine, you can try this out with a single computer, so run these
commands on the same machine. If you only have remote access to this machine, you
can do this via ssh.

ssh-keygen -t rsa

This will create two files in the . ssh folder in your home directory, called id_rsa and
id rsa.pub. These contain the public and private keys. id_rsa.pub is the public key,
and you'll need to copy it across to the computer you wish to log in from. You can do this
with a USB memory stick, cloud storage (such as Dropbox or Google Drive), or even
email, but since we're talking about scp, you could do it with that. The format of an scp
command is:

scp locationl location2

It simply copies the file from locationl to location2. If one of the locations is a normal
file path, such as /home/pi/.ssh/id rsa.pub, then scp deals with it on the local
machine. However, if the location is in the form user@machine: /home/pi, then scp tries
to log in as a user on the remote machine. machine can either be an IP address or a host-
name. Typically with Pis, it'll be a IP address. So, if the IP address of the machine you want to
copy your id_rsa.pub fileis 192.168.0.10, and you want to use the user pi, the com-
mand would be

scp /home/pi/.ssh/id rsa.pub pi@192.168.0.10:/home/pi

If you're trying this out on a single machine, you don’t actually have to move the file,
but just to try out scp, you can use the machine localhost. Therefore, the copy
command is

scp /home/pi/.ssh/id rsa.pub pi@localhost:/home/pi

Then you just need to copy the contents of the file into the authorized keys file by log-
ging into the machine you just copied the file to and running:

cat /home/pi/id rsa.pub >> /home/pi/.ssh/ authorized keys

CHAPTER 10 SCRIPTING

That’s been a little fiddly, but you should now be able to copy files from this machine to the
other one (but not the other way around) without using a password. To try it out, enter
the following:

touch test
scp test user@machine:/home/pi/

Where user, machine, and /home/pi are changed as appropriate. The first line simply
creates an empty file called test. If everything works correctly, you won't need to enter
a password.

With all that set up, you can copy files between machines using subprocess.call ().
For example:

subprocess.call (["scp", "filel.py", "pi@localhost:/home/pi"])

Bringing It All Together

At the start of the chapter, we promised some Python that can make your regular computer
chores easier, and while we've shown you lots of cool Python, we haven’t fulfilled that prom-
ise yet. Now we will. In this section, we're going to create a Python program that can help you
keep backup copies of your most useful files so that if disaster strikes, and your SD card
breaks, you can get your data back.

We'll do this using most of what we've covered so far in this chapter, and one more module
as well, os. This provides access to some of the operating system’s functionality. Take a
look at the following code (there’s an explanation after it) The code’s on the website as
chapterl0-backup.py:

import os

import tarfile

from optparse import OptionParser
from time import localtime

import datetime

import subprocess

import re

parser = OptionParser ()

parser.add option("-f", "--file", dest="filename",
help="filename to write backup to (if no option
is give, backup will be used)", metavar="FILE")
parser.add option("-p", "--path", dest="path",

209

210

LEARNING PYTHON WITH RASPBERRY PI

help="path to backup (if no option is give, ~
will be used)")

parser.add option("-v", "--verbose", action="store true",

dest="verbose", default=False,
help="print status messages to stdout")

parser.add option("-i", "--images", action="store true",

dest="images", default=False,
help="backup image files")

parser.add option("-c", "--code", action="store true", dest="code",

default=False,
help="backup code files")

parser.add option("-d", "--documents", action="store true",

dest="documents", default=False,
help="backup document files")

parser.add option("-a", "--all", action="store true", dest="all",

default=False,
help="backup all filetypes (this overrides

c, d&i)m)

parser.add option("-m", "--mtime", dest="mtime", default=False,
help="backup files modified less than this many
days ago")

parser.add option("-r", "--regex", dest="regex",
help="only back up filenames that match this
regex")

parser.add option("-s", "--server", dest="server", default=False,

help="copy backup file to this remote point
(should be an scp location)")

options, arguments = parser.parse_args ()

if options.
backup

else:

backup

backup_ tar

file_types

filename:
file name = options.filename + '.tar.gz'
file_name = "backup.tar.gz"

= tarfile.open(backup_file_name, "w:gz")

— {"code": ['pyu] ,
uimageu: [n.jpegnl ||'jpgnl ||'pngnl u'gifn] ,
"document": [".doc", "docx", ".odt", ".rtf"]}

CHAPTER 10 SCRIPTING

backup types = []
all types = False

if options.images:
backup types.extend(file types["image"])
if options.code:
backup types.extend(file types["code"])
if options.documents:
backup types.extend(file types["document"])

if len(backup types) == 0 or options.all:
all types = True
if options.mtime:
try:
mtime_option = int (options.mtime)
except ValueError:
print ("mtime option is not a valid integer.",
"Ignoring option")
mtime option = -1
else:
mtime option = -1

if options.path:
if os.path.isdir (options.path) :
directory = options.path
else:
print ("Directory not found. Using ~")
directory = os.getenv ("HOME")
else:
directory = os.getenv ("HOME")

for root, dirs, files in os.walk(directory) :
for file_name in files:
if not options.regex or re.match(options.regex,

file_name) :

name, extension = os.path.splitext (os.path.join(root,

file_name))

if (extension in backup_ types) or all types:
modified days = (datetime.datetime.now()

datetime.datetime.fromtimestamp (

os.path.getmtime (
os.path.join (root,
file_name)))) .days

211

212

LEARNING PYTHON WITH RASPBERRY PI

if mtime option < 0 or modified days <
mtime option:
if options.verbose:
print ("Adding ",

os.path.join(root, file name),
"last modified", modified days,
"days ago")

backup tar.add(os.path.join(root,file name))

if options.server:

subprocess.call(["scp", backup file name, options.server])

As you can tell from the numerous parser.add option () calls, you can change this pro-
gram to work the way you want it to. Its basic function is to copy files into a tar.gz file,
which is a type of compressed archive that’s popular on Linux systems. This file can then be
copied automatically to a safe location on a separate server. Should anything then happen to
the original files, you can resurrect them from this backup.

Ifyourun python3 chapterl0-backup.py -help,youllgetthe following, which describes
what it does:

Usage: chapterl0-backup.py [options]

Options:

-h, --help show this help message and exit

-f FILE, --file=FILE filename to write backup to (if no option
is given, backup will be used)

-p PATH, --path=PATH path to backup (if no option is given, ~
will be used)

-v, --verbose print status messages to stdout

-i, --images backup image files

-c, --code backup code files

-d, --documents backup document files

-a, --all backup all filetypes (this overrides c, d &
i)

-m MTIME, --mtime=MTIME
backup files modified less than this many
days ago

-r REGEX, --regex=REGEX
only back up filenames that match this
regex

-s SERVER, --server=SERVER

copy backup file to this remote point
(should be an scp location)

CHAPTER 10 SCRIPTING

The basic usage is

python3 chapterlO-backup.py -f backup.tar.gz -p /home/pi -s \
pi@192.168.0.10: /home/pi/backups/

This tells the program to go through /home/pi and every subdirectory looking for files. It
does this using the os.walk () function. This simply returns a collection of directories and
files that you can move through using a for loop. This is done in the lines:

for root, dirs, files in os.walk(directory) :
for file name in files:

The first line will go through every directory in turn and return the path to that directory
(root), the subdirectories (dirs), and the files (files). Since this program only cares about
files, there is only one inner loop that iterates through all the files. os . walk () automatically
goes through all the subdirectories, so you don’t need to direct it to do that.

There are then some options you can choose to limit which files get selected. The basic ones
limit it by filetype. -1, -c, and -d limit it to just images, code, and documents, respectively,
while -a overrides these and selects all files (the default). These don't select perfectly, but
work based on the dictionary of filetypes:

file types = {"code":[".py"],
nimagen: [n'jpegn’ ll‘jpgll’ ll‘pngll’ ll‘gifll]l
"document": [".doc", "docx", ".odt", ".rtf"]}

If one or more of these is selected, it'll only back up files that end with extensions in the
appropriate list. The program finds the file extension in the line:

name, extension = os.path.splitext (root, file name)

The function os.path.splitext () (note that’s split-ext not split-text) splits the
filename into its two basic components, and returns these as two separate values. The first is
the main part of the filename (which is captured in the name variable), and the part that
comes after the final. (which is captured in the extension variable). All that’s left to do is
check whether the extension is in the list backup types, which we made by joining the
lists of specified types. If you use these options, you should make sure that the entries in the
list cover all the file types you actually want to back up.

213

214

LEARNING PYTHON WITH RASPBERRY PI

The -r or ——regex flag can be used to specify regular expressions that filenames must
match to be included in the backup. This is in the line:

if not options.regex or re.match(options.regex, file name) :

Note that this uses re.match () rather than re.search (). This means that the entire
filename must match the regular expression. For example, the regex " . *\ .py" will match
all files with the extension . py (which is equivalent to using the -c flag).

The final option you can use is -m or --mtime, which is short for modified time. In other
words, it backs up all files that were modified more recently than this number of days. It does
this with the rather convoluted line:

modified days = (datetime.datetime.now() -
datetime.datetime.fromtimestamp (
os.path.getmtime (
os.path.join(root,file name)))) .days

if mtime option < 0 or modified days < mtime option:

The part of this that does most of the work is os . path.getmtime (). This takes a filename
complete with a path (that is, it needs /home/pi/filename rather than just £ilename),
and it returns the timestamp when the file was last modified.

os.path.join() takes two arguments, a path and a filename, and it joins them to create
what the previous function needs (you can't just join two strings together because some-
times paths have a / on the end and sometimes they don't).

The timestamp returned by os.path.getmtime () isn't a regular date, but the number of
seconds since January 1st 1970 (this was the standard for Unix systems, and is used on
Linux systems as well). Therefore, to get the number of days between now and when the file
was last changed, we first have to convert it into a Python datetime using datetime.
datetime.fromtimestamp (), and then take it off the current time.

With all that done, all that’s left is to see if the result is less than the number of days given
as an option. The initial clause in the if (mtime option < 0)is because the program
setsmtime option to -1 if there’s a problem with what the user entered, or if there isn’t
an mtime option.

These are all the options that limit whether a file is selected. Once they’ve all been checked,
the only thing left to do is add it to the tar file. This is done using the module tarfile,

CHAPTER 10 SCRIPTING

which provides a really simple way to handle these archives. You just need to open the file at
the start. This is done with the line:

backup tar = tarfile.open(backup file name, "w:gz")

The second parameter (w:gz) specifies that the file should be opened for writing and that
it'’s a gzipped (that is, compressed) file. The appropriate files can then be added to this
archive with:

backup tar.add(os.path.join(root,file name))

You should recognise the code that uses scp to copy the file to a remote server if the option
is specified.

This program is one example of a script that can help keep your computer in order. It makes
the task of creating backups trivial; however, you still have to remember to run it to create
said backups. Python can'’t help you here, but there’s a Linux feature called crontab that
takes care of running programs at specific times. Because all the options of this program are
on the command line, all you have to do is decide what you want to run and set chrontab to
start it at the appropriate time.

There are two main options for crontab: -1 displays the list of the programs it cur-
rently has set to run, and -e opens up a text editor where you can edit what programs
run when. Each task to run is on a separate line, and consist of five numbers or asterisks
separated by spaces followed by the command. The five numbers relate to the minute of
the hour, hour of the day, day of the month, month of the year, and day of the week the
command should run, and an asterisk means any. Take, for example, the following (as a
single line):

0 0 1 * * python3 /home/pi/chapterl0-backup.py -s
pi@192.168.0.10:/home/pi/backups

This will take a backup of your home directory (the default) at midnight on the first of every
month. The following will run every day at midday:

12 0 * * * python3 /home/pi/chapterlO-backup.py -s
pi@192.168.0.10:/home/pi/backups

215

216

LEARNING PYTHON WITH RASPBERRY PI

Working with Files in Python

In this chapter, you've seen a lot of ways to deal with files. However, you haven't yet actu-
ally opened any of them in Python to read or write data to (except the tar archive, but
that was a special case). In this section, you'll see how to store information in text files,
and then read it back.

This is actually really easy. All you need to do is call the open () function. For example, to
open the filemyfile. txt and print out every line, you need the following:

file a = open("myfile.txt", encoding="utf-8")

for line in file a:
print (line.strip())

file a.close()

The open () function creates a file object. It can take a number of parameters. The essential
one is the filename, and encoding is a particularly useful one since it tells Python what for-
mat the file is in. Most text files are ut £- 8, and that’s the one you should use when creating
your own files.

Note that you can't use f£ile as a variable name because it's used for other things in
Python.

Once you've opened the file, you can loop through it with a for loop. The only slightly
unusual thing here is the . strip () that we've called on line. This is because each line
of the file contains a newline character which will be printed, and the print function
then adds its own newline, so without this you'd get a blank line between each of the
printed lines.

Once you've opened a file, you should always close it. There is another way you can write this
code so that it automatically closes. That is

with open("myfile.txt", encoding="utf-8") as file a:
for line in file a:
print (line.strip())

The two pieces of code do exactly the same thing. The with block will automatically close the
file when the code block ends, so it’s useful if you're prone to forgetting to close files.

CHAPTER 10 SCRIPTING

Writing to files is almost as easy. You just need to add a mode="w" to the parameters of
open (), then you can write. Take a look at the following:

with open("myfile.txt", mode="w", encoding="utf-8") as file a:
for letter in "abcde':
file a.write(letter + "\n")

with open("myfile.txt", encoding="utf-8") as file a:
for line in file a:
print (line.strip())

This will overwrite myfile.txt. However, if you want to add to the end of the file, you can
use mode="a" (append). This will leave the original text intact and add new information to
the bottom of the file.

Summary
After reading this chapter, you should understand the following a bit better:

m The Raspberry Pi runs a version of Linux.

m Linux has a different filesystem to Windows, based around the root directory, /.
m Linux has an entirely text-based mode.

m You can run commands on this text-based mode using the subprocess module.
m Commands in Linux can output to stdout and stderr.

m When writing scripts in Python, it’s useful to get all the input as command-line flags
if possible.

m Regular expressions are a way of matching patterns of text.
m scp can be used to copy files between computers.

m There are loads of functions in the os module to help you interact with the operating
system (far more than we could cover here; take a look in the Python documentation
for more information).

m The open () function can be used to open files for reading or writing.

217

Chapter
Interfacing with Hardware

UNLIKE MOST COMPUTERS, a Raspberry Pi has a series of General Purpose Inputs and
Outputs (GPIOs) that allow you to interact with the world outside. These are the metal pins
that stick up next to the SD card. You can use them a bit like programmable switches to turn
things on and off, or you can use them to get information from other sources. In short, they
allow you to expand your Pi in any way you want. They’re widely used by digital artists to cre-
ate interactive displays and by robot builders to bring their creations to life. With a bit of
imagination, there really is no limit to what you can achieve with the Pis GPIOs and a few
components.

Since this chapter is all about controlling things outside of the Pi, you will need a bit more
equipment to try the examples here. It needn’t be expensive though, and you can get started
for just a few pounds. Even as you improve, most of the bits you'll need are cheap and easily
available both online and in hobbyist stores.

Setting Up Your Hardware Options

Before jumping in and building circuits, the first thing you'll need is a way of connecting to
the GPIO pins on the Pi. Since you can’t just connect wires straight to the pins (actually you
can solder directly onto them, but it’s not recommended), there are a few options for access-
ing them, covered in the next sections.

Female to Male Jumper Wires

These are probably the simplest option. They simply fit over the top of the GPIO pins and
allow you to then connect them to a solderless breadboard. This is the simplest way to get
access to the GPIOs. It’s also the method you'll see in the pictures of this book. It’s fine for
connecting a few pins, but it can get a little confusing if you're accessing a lot of pins at once.
Take a look at Figure 11-1.

220 LEARNING PYTHON WITH RASPBERRY PI

FIGURE 11-1: These jumper wires have a female end that slots over the GPIO pins and a male end
that you can fit into the solderless breadboard.

Pi Cobbler

The Pi Cobbler is a really simple design that takes the GPIO pins and connects them to a
header that can be pushed into a solderless breadboard (see Figure 11-2). It doesn’t add any-
thing that you don't get by using jumper wires, but it’s a bit tidier and it’s less likely to get
into a confusing knot of wires.

Pi T-Cobbler ~ bu adafruit!

LR llllll
“x EmmEE wmEw

FIGURE 11-2: The Pi Cobbler gets all the GPIO pins onto the breadboard without risk of tangled wires

or confusion.
© Adafruit Industries

CHAPTER 11 INTERFACING WITH HARDWARE

Solderless Breadboard

You'll probably need one of these whichever option you go with. It's a way of connecting
components to build circuits quickly, and allowing them to be taken apart again when you're
finished. They come in different sizes, but they all follow the same basic layout. Down the
long sides there are two parallel lines of pins that can be used as positive and negative rails.
In between these, there are two banks of pins with a gap in the middle. These are connected
in strips perpendicular to the long edge (see Figure 11-3). In the pictures, we’ll be using a
small solderless breadboard that doesn’t have the positive and negative rails; however, you
can do them on whatever size board you have. If you are interested in electronics, it’s well
worth getting a full-sized one as it will become the core of many of your projects.

FIGURE 11-3: With solderless breadboards, you can easily prototype circuits, and then dismantle
them and build new circuits using the same components.

You can push most components straight into the holes, and make connections using either
male-male jumpers, or pieces of single-core wire.

Stripboards and Prototyping Boards

Once you've prototyped your circuits on a solderless breadboard, you may wish to build them
on a stripboard. This will permanently join all the components together, and is far more
durable than a solderless breadboard. These are a little beyond the content in this chapter,
but if you want to take things further, you'll probably soon find yourself using these.

An alternative is the prototyping board. This simply contains lots of holes you can solder
into. There are no connections between the holes so you have to solder on whatever connec-
tions you want.

221

222

LEARNING PYTHON WITH RASPBERRY PI

PCB Manufacturing

The most advanced option involves making your own PCBs (Printed Circuit Boards). There
are a number of options for doing this, including commercial printing. This is for the final
stage when you have a complete design. If you want to go down this route, Fritzing is an
excellent resource (see http://fritzing.org). They produce software to help you design
the boards, and a service to print them.

Getting the Best Tools

You won’t necessarily need any tools to build simple circuits (as long as you have male-male
jumpers for the breadboard), but there are a few that’ll make life easier for you.

Wire Cutters/Strippers

These are pretty self-explanatory. You'll need these (they usually come as a single tool) if
you're planning on using single-core wire to make connections. However, if you have a set of
jumpers for your breadboard, these aren’t necessary.

Multimeters

These devices give you the ability to check a range of different things, including the voltage,
current, and resistance. It you're having problems with a circuit, they’re invaluable tools to
help you find out what’s wrong. Without one, it’s hard to tell if a particular connection is
conducting well, or if a component is broken. They're also a lazy way of checking the value of
a resistor (discussed later in this chapter).

Soldering Irons

Soldering irons are for creating permanent connections between two components or between
one component and a circuit board. You'll need one if you're using stripboard, or if you buy a
Raspberry Pi add-on that needs soldering together. We won'’t cover soldering in this chapter,
but if you need to do it, there’s an excellent guide called “Soldering Is Easy” at http://
mightyohm.com/files/soldercomic/FullSolderComic_EN.pdf.

All of these tools are shown in Figure 11-4.

http://fritzing.org
http://mightyohm.com/files/soldercomic/FullSolderComic_EN.pdf
http://mightyohm.com/files/soldercomic/FullSolderComic_EN.pdf

CHAPTER 11 INTERFACING WITH HARDWARE 223

FIGURE 11-4: A set of tools for building your own hardware. None of them is essential for the
projects in this chapter, though.

Hardware Needed for this Chapter

We've tried hard to keep the hardware for this chapter as simple, as easy to get, and as cheap
as possible. In order to follow along, you'll need at least the following:

m Light emitting diode (LED)

m Resistors: 220 ohm, 1.1K ohm, and 6.2K ohm

m Solderless breadboard (any size should do)

m Jumpers for the breadboard (or single-core wire and a wire cutter)

m A way of connecting the breadboard to the Pi — either female-to-male jumpers or a Pi

Cobbler
m MCP3008 chip
m Push switch

m Light-dependent resistor (LDR)

Each of these is discussed in the following sections.

224

LEARNING PYTHON WITH RASPBERRY PI

The First Circuit

Before getting too far into the details of circuitry, let’s create a simple circuit. You'll need a
breadboard, an LED, a 220 ohm resistor, and some way of connecting the GPIOs to the
breadboard (either female-male jumpers or a Pi Cobbler).

This circuit is simply going to let you turn an LED (a type of light) on and off from Python.
LEDs are a bit like mini light bulbs except for two things: firstly, they’re much more power-
efficient, so they shouldn’t get too warm when running normally, and secondly they will only
run one way round. That is, they have a positive leg and a negative leg, and the positive has
to be connected to the positive and vice versa. The base of the LED should be round with a
small flat section on one side. The flat side is next to the negative leg.

The resistor is there to stop too much power flowing through the circuit. As a general rule,
you should always have at least one resistor of at least 220 ohms in a circuit; otherwise, you
risk damaging your Pi and the other components. We'll look at this in a bit more detail later.

In this circuit, the resistor doesn't have to be 220 ohms; anywhere between 220 and 470
should be fine (you can try it with higher values, but the LED will be dim).

Resistors are colour-coded so you can tell their values. There are typically four or five bands
of colour (a 220 ohm one will usually have four) and this should be red, red, black, and then
silver or gold. Again, we’ll discuss what this means a bit later.

The resistor and LED should be connected on the breadboard, as shown in Figure 11-5. The
positive leg of the resistor (that is, the one not next to the flat side) should be the one that

connects to the resistor.

R1

2200
§ +5%

7 LED1

__\}* Red (633nm)

FIGURE 11-5: Two diagrams for the circuit. The left one shows how to physically connect it while the
right one shows how it’s linked together.

CHAPTER 11 INTERFACING WITH HARDWARE

In order to make sure the circuit works, connect the wire from the resistor to one of the 3.3v
pins on the Raspberry Pi (see Figure 11-6), while the lead coming from the LED should go to
a ground pin. If it’s connected properly, the LED should light up.

SD
Card

33v O O
10O
200

GPI04 O O
Ground O O
GrI017 O O
30 O
GPI023 O O
33vO O
GrI010 O O
GPI09 O O
GPI011 O O
Ground O O

*1-- GPIO 0 on Revision 1 board
GPIO 2 on Revision 2 boards

*2 --GPIO 1 on Revision 2 boards
GPIO 3 on Revision 3 boards

*3-- GPIO 21 on Revision 1 boards
GPIO 26 on Revision 2 boards

FIGURE 11-6: Raspberry Pi pin layout. Don't try to work out a logic for the pin

numbering; there is none.

This, though, is just using the Raspberry Pi as a power source. In order to be able to control
the circuit from Python, you first need to install the RPi . GPTIO module. First make sure you
have pip (a tool to help you access modules) installed with the following command (in

LXTerminal, not in Python):

bv

v
Ground
GPIO 14
GPIO 15
GPI0 18
Ground
GPIO 23
GPIO 24
Ground
GPIO 25
GPIO 8
GPIO 7

sudo apt-get install python3-pip

Then get the library with this command (also in LXTerminal):

sudo pip-3.2 install RPi.GPIO

225

226

LEARNING PYTHON WITH RASPBERRY PI

When you're working with the GPIO pins, you have to access the Raspberry Pi at a low level.
Because of this, you can’t run the Python scripts normally. Instead, you need to run them
with superuser permissions. This sounds fancy, but in fact it just means prefixing commands
with sudo. So, for example, if you want to run a script in LXTerminal, you need to run:

sudo python3 your-script.py

Alternatively, you can start a Python shell with:

sudo python3

Or you can start IDLE 3 with superuser permissions by running the following in LXTerminal:

sudo idle3

Once you've installed RPi.GPIO, you just need to connect the circuit to a one of the GPIO
pins. Disconnect the pin from 3.3v and connect it to pin 22. Once this is done, open a Python
session (don't forget sudo!) and enter the following:

>>> import RPi.GPIO as GPIO
>>> GPIO.setmode (GPIO.BCM)
>>> GPIO.setup (22, GPIO.OUT)
>>> GPIO.output (22, True)
>>> GPIO.output (22, False)
>>> GPIO.output (22, True)
>>> GPIO.output (22, False)

As you can see, setting the pin to True turns the LED on, while False turns it off. Figure 11-7
shows the running circuit.

CHAPTER 11 INTERFACING WITH HARDWARE

FIGURE 11-7: The fully connected circuit on a small, solderless breadboard.

About Circuits

In essence, a circuit contains three things — a source of power, something that does some-
thing, and a place for the power to go (that is, a ground). Circuits always have to have all
three. Nothing will happen if you connect a power source, but no ground. If you just connect
a power source to the ground, then you have what's called a short circuit and it can draw a
very large current and damager the power supply (see the section “Protecting Your Pi").

Circuits can vary from the very simple (like the one you made here) to the hugely complicated
(such as a computer), but they all follow the same principles.

In this chapter, we only have space to talk about the basics of using the Raspberry Pi’s inputs
and outputs, but if you're interested in circuits, you can take it as far as you want to go.

If you want to take this further, the Penguin Tutor website has a good course to help you
understand a little more about what's going on: www . penguintutor.com/electronics/.

227

http://www.penguintutor.com/electronics/

228

LEARNING PYTHON WITH RASPBERRY PI

Protecting Your Pi

In general, it’s very hard to physically damage a computer by programming. You might be able
to corrupt some files (although even this is rare), but generally, no matter how much you
mess things up, simply reinstalling the operating system will sort things out. However, when
you're adding things to the GPIO, you're sending power directly to the CPU, and you can dam-
age it. There are two properties of electricity that can cause problems, voltage and current.

With voltage, the rule is simple and very important. NEVER CONNECT MORE THAN 3.3
VOLTS TO A GPIO PIN. That’s very important, which is why we’re shouting. Quite a lot of
hobby electronics components are designed to run at 5v because other processors run at that
voltage level. However, if you connect these directly to the Pi, it can cause irreparable damage
to the board. The result is known as bricking the Pi because afterwards its only use is as a brick.

m Never connect more than 3.3 volts to a GPIO pin!

You'll notice that the Raspberry Pi has a 5v pin. This is only there to power external circuits
that don't come back to the Pi. If you need to connect a 5v device to the GPIO ports, you'll
need a logic-level converter. These are available for a few pounds and convert 5v signals into
3.3v and vice versa.

Whereas voltage can be thought of as the amount of energy electricity has, current is the
amount of it that’s flowing through the wires. The two are connected by Ohm’s law, which
states:

Voltage = Current x Resistance
Or, to put it another way:
Current = Voltage / Resistance

Current is measured in amps, voltage in volts, and resistance in ohms. In the previous cir-
cuit, there were 3.3 volts and 220 ohms, so that meant:

Current = 3.3 /220 = 0.015A or 15mA

When using a Raspberry Pi, you must never draw more than 16mA from any one pin, or
50mA from all the GPIO pins combined. That means that you can light up only three LEDs
at a time (or use more resistance to decrease the amount of current each one draws). It also
means that you should never connect a GPIO pin to a circuit unless there is at least 220
ohms of resistance in it. If you're ever unsure about resistors, always err on the side of cau-
tion and use larger ones than you have to.

CHAPTER 11 INTERFACING WITH HARDWARE

Technically, this isn't actually correct because LEDs are a little different from many other
components. This circuit will draw less power than that. However, unless you understand
voltage drop on LEDs, it’s best to stick with these guidelines.

If you need to draw more current, or just want to protect your Pi in case you accidentally
draw more current, you can use an expansion board that has buffered input/output ports
such as the PiFace, or alternatively, use a buffer-integrated circuit (IC or chip) to protect the
GPIO ports.

Power Limits

The amount of current your Pi can supply is also limited by the amount of current it can get.
Some power supplies will struggle to deliver much power, especially if there are several other
things attached to the Pi like optical mice and USB memory. If you find that your Raspberry
Pi becomes unstable or starts turning itself off when you're using GPIOs, then insufficient
power may be the problem.

To combat this problem, you can upgrade to a power supply that can provide more current,
or reduce the amount of current your Pi draws. Things like reducing overclocking in raspi-
config and removing non-essential peripherals will help.

Getting Input
In the previous example, you used the GPIOs to turn an LED on and off. This was the output

side of GPIO — now it’s time to look at the input. You'll also use the previous circuit, so leave
it connected, but add a button.

The push button switch is a really simple component. When it’s open (that is, not pressed) it
doesn’t connect the two pins, so no current can pass. When it’s pressed, it connects the two
pins and therefore acts just like a wire.

As you've seen, you'll need one resistor to stop too much current from flowing through the
circuit. Just to be extra safe, we used a 1.1K ohm resistor here.

However, if you just connected a power supply to a resistor, to a button, to the GPIO, then
when the switch is open, there won'’t be a circuit. If there’s not a circuit, then the GPIO isn’t
on or off (or True or False, if you prefer). You need to ensure that there’s a circuit that ties
the GPIO pin to the ground (and therefore False) when the switch is open. This is known as
a pull-down resistor because it pulls the GPIO down to Ov if there’s nothing else connected to
it. It needs to have quite a high value compared to the other resistor to ensure that enough of
the electricity goes to the GPIO when the switch is closed. We used a 6.2K ohm resistor, but
a 10K ohm one would work just as well.

229

230 LEARNING PYTHON WITH RASPBERRY PI

Take a look at Figure 11-8 to see how to connect it. Note that the resistor between the GPIO
and ground is the larger of the two. The button should, as the diagram shows, be connected
between a 3.3v power source and GPIO 4.

R2 |
1

5% LED1

\\ Red (635nm)

R1
2200
+5%

o

R3
6.8kQ
+5%

Raspberry Pi
Model B

FIGURE 11-8: A circuit diagram that should help you understand what’s going on.

Once it’s set up, the following code will create a simple reactions game. It'll wait a random
amount of time before turning the LED on. Then you have to press the button as soon as you can
and it'll then tell you your reaction time. It’s on the website as chapterll-reaction.py.
Figure 11-9 shows the game in action.

FIGURE 11-9: You can expand this simple circuit to fit a wide range of projects.

CHAPTER 11 INTERFACING WITH HARDWARE

import RPi.GPIO as GPIO
import time

import random

from datetime import datetime

GPIO.setmode (GPIO.BCM)
GPIO.setup (22, GPIO.OUT)
GPIO.setup (4, GPIO.IN)

GPIO.output (22, False)
random. seed ()

while True:
time.sleep (random.random() *10)
start = datetime.now/()
GPIO.output (22, True)
while not GPIO.input (4) :

pass
print ("Your reaction time: ",
(datetime.now() - start).total seconds())

print ("Get ready to try again.")
GPIO.output (22, False)

Expanding the GPIO Options with 12C,
SPI, and Serial

When you're connecting two computers together, you can use an Ethernet network. This is a
series of standards that define things such as the physical cable you use, and the way your
computer addresses other computers on the network. As long as all the computers are com-
patible with Ethernet, they should all be able to talk to each other.

There are also communications protocols designed for working with smaller pieces of hard-
ware, such as different chips. There are three main ones we’ll look at in this chapter— SPI,
12C, and Serial.

The SPI Communications Protocol

SPI or Serial Peripheral Interface uses four wires to provide a two-directional communication
channel between two or more devices—a master (usually the Raspberry Pi) and one or more
slaves (typically chips). The four wires include a clock wire that keeps everything in time, the
Master Out Slave In (MOSI), Master In Slave Out (MISO), and a Slave Select (SS).

231

232

LEARNING PYTHON WITH RASPBERRY PI

Simply connect the pins from the Raspberry Pi to the corresponding pins on the slave, and
you should be ready to go.

There are a wide range of expansion options for SPI, for example, analogue input.

Raspberry Pis have a range of inputs and outputs, but they're all digital. That is, they can only
read on or off. That’s fine for some things, such as buttons and controlling LEDs, but some-
times you'll need to read or write data on a scale. For example, you might want to read data
from a sensor such as a light or temperature sensor. These don’t give on-or-off values, but a
range.

Values like this (that fall within a range) are known as analogue values (as opposed to digital).
In order to read them, you'll need an analogue-to-digital converter (ADC). For this chapter,
we're using an MCP3008, which is a chip that provides eight analogue channels and commu-
nicates with the Raspberry Pi using SPI.

Figure 11-10 shows what the pins on the MCP3008 do, and Figure 11-11 shows how to con-
nect the circuit.

Analogue [U 1 Power in
channel 0
] 1 Reference voltage
] MCP3008] Analogue ground
(- 1 Clock
(- 1 Data out
(. 1 Data in
[1 Slave select
CA;:rl]?]glIJ? [1 Digital ground

FIGURE 11-10: The eight pins on the left input O to 7, while the pins on the right are to control the
chip. This diagram is based on looking down from the top. You should see a semicircle cut into the
plastic case. This should match the one in the diagram.

CHAPTER 11 INTERFACING WITH HARDWARE 233

©® N o AW =
N

§R2
2200

VIDEO AUDIO LDR +5%

N\

Raspberry Pi
Model B

FIGURE 11-11: How to wire the circuit. You can change which GPIO pins the pins on the MCP3008
connect to by altering the appropriate values in the code.

The code for it is as follows. You'll find it on the website as chapterll-spiadc.py.
Figure 11-12 shows the connected circuit.

FIGURE 11-12: The MCP3008 being used to convert the analogue signal from the LDR to a digital
signal for the Raspberry Pi.

import time
import RPi.GPIO as GPIO
GPIO.setmode (GPIO.BCM)

read SPI data from MCP3008 chip, 8 possible adc's (0 thru 7)
def readadc (adcnum, clockpin, mosipin, misopin, cspin):

234 LEARNING PYTHON WITH RASPBERRY PI

if ((adcnum > 7) or (adcnum < 0)):
return -1
GPIO.output (cspin, True)

GPIO.output (clockpin, False) # start clock low

GPIO.output (cspin, False) # bring CS low
commandout = adcnum

commandout |= 0x18 # start bit + single-ended bit
commandout <<= 3 # we only need to send 5 bits here

for i in range(5):

if (commandout & 0x80) :

GPIO.output (mosipin, True)
else:

GPIO.output (mosipin, False)
commandout <<= 1
GPIO.output (clockpin, True)
GPIO.output (clockpin, False)

adcout = 0
read in one empty bit, one null bit and 10 ADC bits
for i in range(12):

GPIO.output (clockpin, True)

GPIO.output (clockpin, False)

adcout <<= 1

if (GPIO.input (misopin)) :

adcout |= 0x1

GPIO.output (cspin, True)

adcout >>= 1 # first bit is 'null' so drop it
return adcout

SPICLK = 4
SPIMISO = 17
SPIMOSI = 18
SPICS = 23

set up the SPI interface pins
GPIO.setup (SPIMOSI, GPIO.OUT)
GPIO.setup (SPIMISO, GPIO.IN)
GPIO.setup (SPICLK, GPIO.OUT)
GPIO.set'up (SPICS, GPIO.OUT)

ldr adc = 0;

CHAPTER 11 INTERFACING WITH HARDWARE

I
o

last read

I
ul

tolerance

while True:
we'll assume that the light didn't change
input changed = False
read the analog pin
ldr value = readadc(ldr_ adc, SPICILIK,
SPIMOSI, SPIMISO, SPICS)
ldr movement = abs(ldr value - last read)

if (ldr_movement > tolerance):
input changed = True

if (input changed):
print ('Light = ', int(ldr value))
last_read = ldr_value

hang out and do nothing for a half second
time.sleep(0.5)

Don’t worry too much about how the readadc () function works. It manipulates the indi-
vidual bytes and sends and receives them down the MOSI and MISO wires. You can simply
take it and use it to read the other ports on the ADC if you want to add more. Support for SPI
is planned for the RPi.GPIO library, but at the time of writing, hadn’t been implemented.
You can see how the project’s progressing at ht tp: //code.google.com/p/raspberry-
gpio-python/.

The main loop then uses this function to get the value of the ADC connected to the LDR and
(if it's changed by more than the threshold), print its value onto the screen.

The I12C Communications Protocol

Inter-Integrated Circuit (I2C or 1°C, pronounced ‘I squared C”) is a more powerful protocol
than SPI. It still uses four wires, but one of them is the power line, and another is the ground,
so there are only two data wires. Up to 127 devices can be connected to an I2C bus, and it has
addressing capabilities rather than the rather simplistic slave select on SPL

Quick2wire makes a series of I2C boards that expand the functionality of the Pi. You don’t need
these boards to use 12C, although they do make the process a bit easier. They also make a
Python module that can communicate over I2C regardless of whether you're using their boards.
You can find itat https://github.com/quick2wire/quick2wire-python-api.

235

http://code.google.com/p/raspberry-gpio-python/
http://code.google.com/p/raspberry-gpio-python/
https://github.com/quick2wire/quick2wire-python-api

236

LEARNING PYTHON WITH RASPBERRY PI

Like SPI, support for I2C is planned for RPi .GPIO. Again, follow the website for up-to-date
information.

The Serial Communications Protocol

The previous two methods are generally used for sending binary data between devices. Serial
communication, on the other hand, is generally used for sending text back and forwards
(although there are exceptions in both cases).

Serial communications are supported by the pyserial module that you can get with the
following command:

sudo pip install pyserial

Once the pyserial module is installed, you just have to create a serial connection, then you
canusewrite () and read () methods to send and receive data. For example, the following
code will send the message “Hello” out of the serial port. It was created to work with a Ciseco
PiLite, which will then scroll the letters across the screen.

>>> import serial

>>> pilite = serial.Serial ("/dev/ttyAMAO", baudrate=9600)
>>> pilite.open()

>>> pilite.write (bytes("Hello", "utf-8"))

Taking the Example Further

If you feel like taking this example further, try the following ideas.

Arduino

If you're interested in hobby electronics, perhaps the most useful kit is an Arduino. These are
microcontroller boards slightly larger than Raspberry Pis. They have far more GPIOs (the
exact number depends on the model), as well as analogue inputs and in some cases analogue
outputs as well.

Perhaps the most useful thing about Arduinos, though, is the number of expansion boards
(known as shields) that can slot onto them. With these you can quickly create powerful hard-
ware with little (if any) wiring.

It is perfectly possible to connect your Raspberry Pi GPIOs to an Arduino to get them to talk
via I2C or SPI, although most Arduino models run at 5v, so you'll need to use logic-level con-
verters. They can also communicate over the USB using a serial connection.

CHAPTER 11 INTERFACING WITH HARDWARE

Some people consider Arduinos to be overkill when connected to a Pi, and it’s true that
almost anything you can do with an Arduino, you can also do with a Pi. However, the sheer
amount of existing Arduino hardware and code makes them very useful companions to
Raspberry Pis.

Perhaps the biggest drawback for readers of this book is that they’re programmed in a dialect
C++ rather than Python. The language has a different layout, but it's based on the same gen-
eral principles. If you've read this far into the book, you shouldn’t have too much difficulty
picking up basic C++, although we won’t deal with it here.

PiFace

The PiFace is an expansion board that slots straight onto the GPIO pins of the Raspberry Pi
and is a really useful addition to the GPIO. As well as buffering the input and output (and so
protecting your Pi and providing up to 500mA of current), it also has a pair of relays that can
be used to drive higher powered components such as motors.

It’s the same size as the Raspberry Pi, and fits neatly over the top. It’s a great choice for get-
ting started with simple robotics. It’s around £25 ($41) so, while not as cheap as getting the
components yourself, it’s a great value for its ease of use and the range of projects it sup-
ports. Figure 11-13 shows the PiFace connected to a “Model A Pi”

FIGURE 11-13: The buffered outputs of the PiFace mean you can control far more without worrying
about the small current limits on the Raspberry Pi.

Gertbhoard

The Gertboard is the Goliath of the Raspberry Pi GPIO options. It crams just about every-
thing you could want into a board. It has the similar ATMega chips to Arduinos for learning
microprocessing, a motor controller, digital-to-analogue converters, analogue-to-digital

237

238

LEARNING PYTHON WITH RASPBERRY PI

converters, push buttons, and a whole bunch of LEDs. Of course, all this comes at a cost, not
just in terms of price (expect to pay a little under £60/$98), but also in terms of size, which
could make it unsuitable for many projects where this is important (such as with robotics).

It is perhaps best thought of as a board for learning about electronics and control, and once
you have a good idea what’s going on, you can design a smaller circuit for implementing your
project.

The fact that it’s designed by the Raspberry Pi Foundation’s hardware supremo Gert Van Loo
means you can trust that it’s been built by someone who really knows the Raspberry Pi inside
and out (literally).

Wireless Inventor’s Kit

Everything we've done here so far has used wires to connect various components. For most
projects, this is fine. However, some projects require a bit more freedom. Ciseco has put
together a Wireless Inventor’s Kit, which contains everything you need to get started with
simple radio communications and the Raspberry Pi.

It uses a radio system that’s designed to work at a lower level than WiFi networking, and it’s
best used to connect sensors to your Pi remotely, or to use your Pi to control circuits from a
distance.

Trying Some Popular Projects

You can create almost anything with a handful of components and a Raspberry Pi, but to get
you started, the following sections include a few ideas.

Robots

These can range from simple wheeled devices powered by two motors, to vastly complex
humanoid walking robots, to the bizarre such as those that move like snakes or spiders. To
work with robots, you'll need to learn how to control motors (the GPIOs don’t provide
enough power to do this straight from the pin). The PiFace has a pair of relays, which is one
option for getting started.

You'll also probably need some servos. Servos are a bit like motors, but can be turned a few
degrees at a time. There are also a vast array of sensors that can be hooked up to your Pi to
help your creation see the world around them.

CHAPTER 11 INTERFACING WITH HARDWARE

Home Automation

Imagine a world where you can control your heating and lights from your smartphone. It’s
not an impossible dream—it can be achieved with a Raspberry Pi, some circuitry, and
Python. Chapter 7 showed you how to control a Python program from the web, so combined
with what you've learned here, you should be able to make this dream a reality.

Burglar Alarms

Maybe these are less glamorous than home automation, but they might keep you safe. With
a Raspberry Pi’s camera and a few things like passive infrared (PIR) movement sensors, you
should be able to create your very own Fort Knox.

Digital Art

Art doesn’t have to be lifeless painting in dusty rooms. Nor does it have to be sculptures or
poetry or dance. It can be anything you want it to be. One of the emerging forms is digital
art, which uses some form of computing to add a new dimension to an installation. It could
be, for example, to add shifting light patterns, or pressure sensitive pads to create feedback
for people touching it. You can let your imagination run wild, and then use a Raspberry Pi to
give life to your imagination’s creation.

Summary
After reading this chapter, you should understand the following a bit better:

m The pins that stick up from one corner of the Raspberry Pi are General Purpose Input
and Outputs (GPIOs) that can be programmed from within Python.

m The RPi.GPIO library offers a simple interface for switching the pins on and off, or
reading values from them.

m You have to be careful when working with GPIOs because sending too much voltage, or
drawing too much current, can cause irreparable damage to your Pi.

m You can expand your Pi by adding devices using protocols such as SPI, I12C, and Serial,
all of which can be programmed from Python.

m One example of this is the MCP3008 chip, which has eight analogue-to-digital
converters that can be read via SPL.

m Your Pican control circuits of almost any complexity. The only limit is your imagination.

239

Chapter
Testing and Debugging

THERE ARE ALWAYS times when your code won't do what it should be doing. You see the
inputs and work through the code, but somehow, it spits out an output that just shouldn’t be
possible. This can be one of the most infuriating parts of programming,

Investigating Bugs by Printing Out the Values

There are loads of ways to find out exactly what’s happening, but one of the simplest is judi-
cious use of print () statements. By using these to print out the value of every variable, you
can usually get to the bottom of what’s going on.

Take a look at the following code for a simple menu system. It doesn’t produce any errors,
but whatever input you give it, it always says "Unknown choice". (It’s on the website as
chapterl2-debug.py):

choices = {1:"Start", 2:"Edit", 3:"Quit"}
for key, value in choices.items():

print ("Press ", key, " to ", value)
user input = input ("Enter choice: ")

if user input in choices.values() :

print ("You chose", choices[user input])

242

LEARNING PYTHON WITH RASPBERRY PI

else:

print ("Unknown choice")

Perhaps you've seen the problem already, but if you haven’t, what’s the best way to find it?
The problem is that the if statement isn't correctly identifying when the user input is
valid, so add some print () statements to see what’s happening:

choices = {1:"Start", 2:"Edit", 3:"Quit"}

for key, value in choices.items():

print ("Press ", key, " to ", value)

user input = input ("Enter choice: ")

print ("user input: ", user_ input)
print ("choices: ", choices)

print ("choices.values(): ", choices.values())

if user input in choices.values() :
print ("You chose", choices[user input])
else:

print ("Unknown choice")

Straight away you should see the problem: choices.values () should be choices.
keys (). The code was checking the wrong part of the choices dictionary. Make the change
in the code and try running it again. With that bug fixed, everything should be fine.

CHAPTER 12 TESTING AND DEBUGGING

Oh no, it still doesn’t work! There must be another bug. Have another look at the output
from the print statements:

user input: 1

choices: {1: 'Start', 2: 'Edit', 3: 'Quit'}

choices.values(): dict values(['Start', 'Edit', 'Quit'])

Can you see why it’s failing? After the value of variable, the second most important thing is

the data type of that value, so expand the print statements to include more details about
what’s going on there:

print ("user input: ", user_ input)

print ("choices: ", choices)

print ("choices.values(): ", choices.values())
print ("type (user input): ", type(user_ input))

for key in choices.keys():

print ("type (key): ", type(key), "key: ", key)

If you run this, it should output:

Press 1 to Start

Press 2 to Edit

Press 3 to Quit

Enter choice: 1

user input: 1

choices: {1: 'Start', 2: 'Edit', 3: 'Quit'}
choices.values(): dict values(['Start', 'Edit', 'Quit'])

type(user input): <class 'str's

243

244

LEARNING PYTHON WITH RASPBERRY PI

type (key): <class 'int's> key: 1
type (key): <class 'int's> key: 2
type (key): <class 'int's> key: 3

Unknown choice

Now you can see that the cause of the problem is that user input is a string, but the keys
of choices are integers. The easiest way to solve this is to change the invocation of choices to
make the keys strings:

choices = {"1":"Start", "2":"Edit", "3":"Quit"}

Now the basic logic of the program is working as expected; however, it still spits out loads of
extra text that the user doesn’t want to see. Obviously you could just delete the print ()
statements, but they may be useful again in the future. You can keep them in the code, but
have a flag that can be set to turn them off and on like as follows:

debug = True

choices = {"1":"Start", "2":"Edit", "3":"Quit"}

for key, value in choices.items() :

print ("Press ", key, " to ", value)
user input = input ("Enter choice: ")
if debug:
print ("DEBUG user input: ", user input)
print ("DEBUG choices: ", choices)

print ("DEBUG choices.values(): ", choices.values())

CHAPTER 12 TESTING AND DEBUGGING

print ("DEBUG type (user input): ", type(user input))
for key in choices.keys():

print ("DEBUG type (key): ", type(key), "key: ", key)

if user input in choices.keys():
print ("You chose", choices[user input])
else:

print ("Unknown choice")

If you encounter any problems in the future, all you need to do is change the debug variable
to True. Prefixing all the lines with DEBUG also makes it easy to see which output is normal,
and which is debugging,.

Finding Bugs by Testing

Debugging is the process of getting rid of problems in your programs. It can be quite
challenging, but it can be even more difficult to find the problems in the first place. This
might sound silly, but it’s true. As a program gets larger, the number of different ways it can
be used increases, and the more different ways something can be used, the more places there
are to check for bugs.

Imagine, for example, a word processor that has options for style, page layouts, file formats,
layout managers, and so on. Bugs could lurk in any of these areas, so it’s important for the
developers to check to make sure everything’s running as it should. They could even hide in
combinations; for example, a problem may occur only if a particular font is used with a
particular layout.

Checking Bits of Code with Unit Tests

The most basic form of testing programs is the unit test. This is where you take one small
piece of code and make sure it’s behaving as it should. Typically, these are used to check that
individual methods and functions are working properly.

Essentially, all a unit test does is run a piece of code with a particular set of inputs and check
that their outputs are correct.

245

246 LEARNING PYTHON WITH RASPBERRY PI

Take, for example, a function that takes a string of characters and returns a string with the
same letters, but converted to uppercase. This could be implemented and tested as follows:

def capitalise(input string) :
output_ string = ""
for character in input string:
if character.isupper() :
output string = output string + character
else:
output_ string = output string + chr(ord(character)-32)

return output_ string

print (capitalise ("helloWorld"))

This should behave as expected. It works because the UTE-8 character encoding that Python
uses stores characters as numbers, and uppercase letters are 32 places below their lowercase
counterparts.

In this example, we've used a simple test case, and we're printing it to the screen to check
manually. We can get Python to check the test case for us using the unittest module in the

following code:

import unittest

def capitalise(input string):
output_ string = ""
for character in input string:

if character.isupper () :

CHAPTER 12 TESTING AND DEBUGGING 247

output string = output string + character
else:
output string = output string + chr(ord(character)-32)

return output string

class Tests(unittest.TestCase) :
def test_1(self):

self.assertEqual ("HELLOWORLD", capitalise("helloWorld"))

if name == ' main ':

unittest.main ()

This does more or less what the previous code did. If you run it, it'll check one string to make
sure "helloWorld" goes to "HELLOWORLD". At this level, it’s not much better or worse
than just having a print statement.

When yourununittest.main (), Python runs every method in subclasses of unittest.
TestCase that start with test . In this case it’s just test 1. The real advantage of using
unit tests is that you can combine lots of tests in order to check at a glance whether things
have worked properly.

You can add a second test case that checks that the string "hello world" capitalises to
"HELLO WORLD":

def test 2(self):

self.assertEqual ("HELLO WORLD", capitalise("Hello World"))

If you run this, you should get the following output:

FAIL: test 2 (__main__ .Tests)

248

LEARNING PYTHON WITH RASPBERRY PI

Traceback (most recent call last):
File "capitalise.py", line 17, in test 2
self.assertEqual ("HELLO WORLD", capitalise("Hello World"))
AssertionError: 'HELLO WORLD' != 'HELLO\xXO0OWORLD'

- HELLO WORLD

+ HELLOWORLD

Oh dear, it looks like the test failed. You can see that the space wasn't properly dealt with. If
you go back to the original code, you can see that the problem is that everything that isn’t
an uppercase character gets 32 taken off its UTF-8 value. Since space isn't uppercase, this
happens to it too, but this isn’t what the program should do.

Test cases should be designed to try a wide range of valid inputs. For example:

class Tests(unittest.TestCase) :

def test 1(self):

self.assertEqual ("HELLOWORLD", capitalise("helloWorld"))

def test 2(self):

self.assertEqual ("HELLO WORLD", capitalise("Hello World"))

def test 3(self):
self.assertEqual (' I"£3%%&* () _+-="',

capitalise ('!"£8%%&* () _+-='))

CHAPTER 12 TESTING AND DEBUGGING

def test 4 (self):

self.assertEqual ("1234567890", capitalise("1234567890"))

def test 5(self):
self.assertEqual ("HELLO WORLD", capitalise ("HELLO WORLD"))
def test 6 (self):

self.assertEqual ("~ -#~'@;:, .<>/?",
capitalise (" =#~'@;:,.<>/?"))

If you run these, you'll see that most fail. The problem is a flaw in the program logic. The code
leaves it alone if it’s an uppercase letter and changes it otherwise. However, what you want is
for the code to change it if it's a lowercase letter, and leave it alone otherwise.
If you change the capitalise function to the following, it'll do this:
def capitalise(input string):

output string = ""

for character in input string:

if character.islower():
output string = output string + chr(ord(character)-32)

else:

output string = output string + character

return output string

249

250

LEARNING PYTHON WITH RASPBERRY PI

Now if you run the code, you should find that it passes all the tests.

By default, unittest will give you details only if one or more tests fail. Otherwise, it just
returns an overall OK. For most purposes, this is what you want, but you can specify how
verbose you want the output to be in two ways. If you're running the script from the com-
mand line, you can add the -v flag for more output. So, for example, if you've saved the
program as capitalise.py, you can run the tests with verbose output using:

python3 capitalise.py -v

Alternatively, you can specify that you want a more verbose output in the code itself by
changing:

if name == ' main_ ':

unittest.main ()

to:
if name == ' main ':

unittest.main (verbosity=2)

Before going any further, we should point out that the capitalise () function is here for
this example. If you actually need to capitalise text, you should use upper () method of the
string class. For example:

>>> 'hello world'.upper ()

Getting More Assertive

All these tests have a call to self.assertEqual (). This line tells the unit test module
what the output of the test should be. That is, the test should pass if the two values passed
are the same, and fail if they're different. This covers a large proportion of cases, but you may
wish to check different things. There are a number of different assert methods that you can
use in your tests.

CHAPTER 12 TESTING AND DEBUGGING

These check that various structures are the same:

B assertSequencesEqual (sequencel, sequence2)
B assertListEqual (listl, list2)

m assertTupleEqual (tuplel, tuple2)

B assertSetEqual (setl, set2)

m assertDictEqual (dictl, dict2)

With these structures, you may want to check that the value is in the structure rather than if
two structures are the same. The following methods check if a value is in a structure:

m assertIn(value, structure)

m assertNotIn(value, structure)
Strings are a special type of structure and have their own method:
B assertMultilineEqual (stringl, string2)
You can also check values using tests other than equality using these assert methods:

m assertNotEqual (valuel, value2)

m assertGreater (valuel, value2)

B assertGreaterEqual (valuel, value2)
m assertLess (valuel, wvalue2)

m assertlessEqual (valuel, value2)
There are also a few that allow a margin of error:

m assertAlmostEqual (valuel, value2)

m assertNotAlmostEqual (valuel, wvalue2)

These check that the two values differ (or not) by less than 0.000001. These are useful if you're
testing floating-point functions that might have small rounding errors that are acceptable.

251

252

LEARNING PYTHON WITH RASPBERRY PI

You can also test anything that you can reduce to a True or False value using:

m assertTrue (value)
m assertFalse (value)

Whatever you want to check, each test method should have one assert method call that
is used to determine the success or failure of that particular test.

You can use these unit tests in a number of ways. There is a style of development called test-
driven development that says that the tests are the first thing you should write and then you
use those tests as the specifications for the code. Most programmers, though, write the tests
towards the end of development to make sure everything’s working propetly.

Using Test Suites for Regression Testing

Writing programs isn’t usually a single effort. You don't usually sit down, create software,
and then stop and go on to do something else. Instead, you generally code some of the fea-
tures, distribute it to users, then fix bugs and add new features in later versions.

There is a risk of breaking things that once worked as you add new features, so it’s important
to test not only newly created things, but also older things that have worked. Testing older
code is called regression testing, and having a properly ordered set of tests makes it really easy.

To make sure that you're not introducing bugs into previously working code, you should
rerun the tests after you make any changes. However, as your programs become bigger, you’ll
end up with more and more tests. Eventually, you'll get to the point where it’s not practical to

run every test every time. You can group tests together into test suites. These allow you to
test just particular areas of your program at a time.

Using the previous code, you can change the final code block to:
if name == ' main_ ':
letters suite = unittest.TestSuite()
symbols_suite = unittest.TestSuite()
letters suite.addTest (Tests("test 1"))

symbols_suite.addTest (Tests("test_2"))

CHAPTER 12 TESTING AND DEBUGGING

symbols_suite.addTest (Tests("test_3"))
symbols_suite.addTest (Tests("test_4"))
symbols_suite.addTest (Tests("test_5"))
symbols_suite.addTest (Tests("test_6"))
all suite = unittest.TestSuite()
all suite.addTest (letters suite)
all suite.addTest (symbols suite)

unittest.TextTestRunner (verbosity=2) .run(all suite)

This bit of code by itself does exactly what the previous code block did. That is, it runs all the
tests. However, it has grouped them into different test suites. There’s letters suite that
runs the test that checks letters, symbols suite that runs the tests that check symbols,
and all suite that combines both of them. You can use the final line to run any of these
three suites.

Using this code, you should find it quite easy to build a simple testing menu to help you make
sure that everything’s running smoothly.

Testing the Whole Package

Unit testing is great because you can automate it, and quickly check that everything’s run-
ning properly. However, it doesn’t cover everything. Even though everything seems to work
propetly by itself, you may still find that there are problems when everything comes together.

In commercial software development, after the unit tests have been done, the code will be
passed to the quality assurance team to make sure everything’s working fine. This team will
outline a series of test cases that cover how the software will be used. It should check every
aspect of the program and test it with a variety of inputs to make sure it behaves as expected.
This is sometimes done manually with testers interacting with the software just as users would,
and sometimes by specialist testing software that can simulate mouse and keyboard input.

253

254

LEARNING PYTHON WITH RASPBERRY PI

Of course, it’s unlikely that you'll have a quality assurance team to help you with your soft-
ware, but there are some things you can take from the professional approach. You should be
methodical. Before you start testing, make a list of everything that the program does, and
come up with test input and expected outputs. You can then go through this list and make
sure it’s all functioning correctly.

It’s probably a bit excessive to do this after every code change, but you should do it
periodically, and especially before any big releases.

Making Sure Your Software’s Usable

By the time you've finished a program, you know everything there is to know about it. You
know how to interact with it, how to get the best out of it, and what all the various options
are. Your users, however, don’t have any of this knowledge. Your software has to help them
understand it and provide enough information for them to know what to do. After all, it
doesn’t matter how awesome your features are if the users don’t know how to invoke them.

User testing is the area of testing devoted to making sure this is possible. In an ideal world,
youd get a room full of people, sit them down in front of your software, and ask them to
perform certain tasks and see how they get on. Again, you're unlikely to be able to do this.
Sometimes you may be able to persuade a friend or relative to help you out, but the more
programs you create, the fewer volunteers you seem to find. The only real solution to this is
to listen to people using the software, and make sure to ask for feedback.

How Much Should You Test?

There’s an old saying about software bugs that goes, “Absence of proof isn't proof of
absence.” Basically, no matter how much you test your software, there’s no way of ever
proving that there aren’t any bugs in it. In fact, it’s almost impossible to write software
that doesn’t have any bugs in it. The purpose of testing isn’t to make perfect software, but
to make software that’s good enough. What “good enough” means will vary from project to
project. The more important the software, the more you should test it, but all software
deserves at least some testing. It's not as glamorous as implementing new features, but
most of the time it is more important to have a few features that are properly tested than
have loads that are buggy, so it’s worth spending some time writing unit tests and making
sure everything’s working properly. After all, it could well be your data that the program
loses when there’s a problem.

CHAPTER 12 TESTING AND DEBUGGING

Summary
After reading this chapter, you should understand the following a bit better:

m Debugging is the process of removing any problems from the code.
m Judicious use of print () statements can help you find out what the problems are.

m [t sometimes helps to have a way of switching these print () statements on and off
so you can reuse them if you find more problems.

m Testing is the process of finding bugs in code.

m Unit tests are the most basic form of testing and can be automated using the
unittest module.

m Test cases can be grouped together into test suites to help you test particular areas of a
program.

m It's easy to accidentally introduce new bugs when you add features, so you should
always regression test after you make changes to your code.

m Unit tests won't pick up all problems though, so you should also test at a complete-
system level.

m Usability problems are also bugs, so you need to listen to your users to make sure they
are addressed.

This brings us to the end of the book. Hopefully, you're now confident and knowledgeable
enough to create your own programs. Don’t worry if you feel you don’t know everything
about every aspect of Python, very few people do. If you ever get stuck, you can always refer
back to this book, or the Python documentation at http://docs.python.org/3/.

Hopefully you've seen that programming isn’t overly complex, and if you break up a problem
into small steps, it’s usually quite straightforward to code. The main thing to remember is
that programming should be fun! Find an area that interests you and explore it. Despite its
small size, there’s very little you can’t do with a Raspberry Pi.

255

http://docs.python.org/3/

Index

SYMBOLS

* (asterisk), 203

: (colon), 17

{} (curly braces), 37,113,114, 137
{{}} (double curly braces), 153

== (double equal sign), 19

“” (double quote marks), 30, 205
- (hyphen), 9

(number), 16

. (period), 203

+ (plus sign), 203

" (quote marks), 30, 31, 114, 205
() round brackets, 34

; (semicolon), 113, 137

[] (square brackets), 34

/// (three slashes), 73

<> (triangular brackets), 149

A

-a flag, 202

actions, as methods to run when event
happens, 60

ADC (analogue-to-digital converter), 232,
237-238, 239

add_options () calls, 203

addStretch () method call, 67

all value, 157

--all, 202

all suite, 253

Alpha (transparency) value, 111

Alt+Tab, to switch back to non-Minecraft
window, 164

ambient light value, 122

analogue input/signal/values, 232, 233

analogue-to-digital converter (ADC), 232,
237-238, 239

animation, 86, 169

answering questions, by program, 181-182

apple_ freqloops, 174

apple_invariable, 174

Application Programming Interface
(API), 145,159

apt-get command, 7,10, 77

Arch, 7

Arduino, 236-237

arguments, 101-102, 154, 157,158, 214

array_ spec (vertex attrib), 114

ArraySpec object, 114

array spec.glsl (),114

assert method call, 252

asterisk (*), 203

ATMega chips, 237

attribute shader, 137

attributes, 50

audio. See sound

audio Swiss Army knife (sox), 184, 196

AWB, 192

B

babbage, 15,17, 49

Babbage, Charles (inventor of concept of
computer), 15

babbage.color () method, 19

back button, in web browser, 65

background image, for platform game, 99

backups, 215

backup_types list, 213

Bash environment, 199

begin fill () method, 18

bind (), 136

birthday () method, 50

BLEND RGB_SUB flag, 187

blit (),187

blit (draw), 186

block types 18/22/246, 168

Blue value, 111

bookmarks picker, 68

bool type, 31-32, 38, 42, 55

box layout, 63, 66, 74

boxsize variable, 24

LEARNING PYTHON WITH RASPBERRY PI

breadboard, 220, 221, 223, 224

break statement, 41

bricking, 228

brightness variable, 120, 121

Browser class, 65, 66, 68, 69

Browser’s self.menu bar, 65

BrowserWindow class, 71, 72

buffered input/output ports, 229

buffer-integrated circuit (IC), 229

buffers, 112

bumpedspere.py, 136

burglar alarms, 239

button clicks, events as, 60, 65

button presses, 74

buttons, 7, 59, 65, 66, 73, 74, 76, 103,
229, 230, 232, 238

bytes data type, 179

C

C language, GLSL as similar to, 113
C++ language, 237
camera module, 5, 184, 190-193
camera object, 186
cameras, 177,184, 188
capital letters, 49-50
capitalise () function, 250
cascade file, 189
cat command, 199
cat/proc/cpuinfo, 200
cd command, 8, 165
Celsius (temperature), 148
Central Processing Unit (CPU), 109, 112, 199
chat server, building of, 141-144
checkbounds () function, 24
choices.keys (), 242
choices.values (), 242
Chrome, 68
chunk size, 179
circle () method, 15
circlearea (1) function, 20
circuits, 224-227, 230, 232, 233
classes. See also specific classes
advantage of, 51
building objects with, 49-54
defined, 49, 55
inheritance, 58
instances of, 50
in Qt graphical toolkit, 59

client, 141
clock wire, 231
clock.tick (fps), 83
closing tag, 149
code, reusability of, 43-46, 51, 55
code blocks
indentation in, 38-39
loops as, 17
code editor, 21
code examples
adding light to spinning cube, 123-126
chat server, 142-143
circuit with MCP3008, 233-235
converting speech to text, 180
copying files into tar . gz file, 209-212
for creating browser window, 63-64
design of platform game, 79-82
as downloads, 21
for making game Snake, 169-172
for saving sound, 177-179
speech recognition oracle (Pyri), 182-184
spinning cube, 116-119
for spinning cube visualiser, 130-135
collided () method, 96
collide get_y () method, 92
colliderect () method, 88
collisions, in platform game, 88-90, 96
colon (5, 17
color (colourl, colour2)
method, 18
color variable, 120
combo box/combo box changes, 68, 74
command line, 8, 9. See also Linux
command-line flags, 202-203
communications protocols
Inter-Integrated Circuit (12C), 235-236, 239
serial, 236, 239
Serial Peripheral Interface (SPI), 231-235,
236, 239
comparison operators for numerical types, 29
complex layouts, 63
compressed archive, 212
computer vision features, adding of with
OpenCV, 187-190
computers
communicating between two, 142, 144, 159
getting sound into, 177-181
as under-utilised, 1

INDEX 259

conditional logic, flow of, 19 dirs subdirectories, 213
conditionals, 18-20 dmesg, use of to locate source of
<condition>B, 19 problems, 12
conditions, as true or false, 19 Doom class, 93, 95, 96
connect calls, 60 dot product function, 122, 123
connection variable, 141 double curly braces ({{}}), 153
controls, adding, 60-62 double equal sign (==), 19
convert (), 100 double quote marks ("), 30, 205
cookies, 155, 160 draw () method call, 137
coordinate systems, 107 drawing pictures, 13-21, 166-167
copy .deepcopy (), 45 Dropbox, 208
count (), 36 DVIinput, 6
CPU (Central Processing Unit), 109,

112,199 E

crashing, 6, 196

Creative Commons, 85

crontab feature, 215

Ctrl+C, 39, 41, 82

curly braces ({}), 37,113, 114, 137
current, 228

-e jpg option, 192
electricity properties, 228
ElementTree, 182

elif, as short for else if, 19
elif (else-if) statements, 42
else statements, 42

cursor, as turtle, 20 o end £ill () method, 18
cv2.Cascade Classifier (),189 equip_ment, required/optional, 5
error messages, 6, 201

D escaped characters, in regular expressions, 206
data types, 32, 243 /etc, 199
database, 46-48, 51-54 Ethernet network, 231
datetime.datetime. ethoo0, 140
fromtimestamp (), 214 exceptions, catching, 42-43
DEBUG prefix, 245 exercise 1, chapter 3, 33
debugging, 241-245, 255 exercise 1, chapter 4, 62
demos subfolder, 136 exercise 1, chapter 7, 149
depth, creating sense of, 100 exercise 2, chapter 3, 43
.dest="filename" flag, 203 exercise 2, chapter 4, 73
detectMultiScale (), 189,190 exercise 2, chapter 7, 155
/dev/video0, 186 exercise 3, chapter 3, 48
development files, 77 expansion boards (shields), 236
dialogs, defined, 72, 74 extension .dev, 77
dictionaries extension .py, 11
grouping values in, 55 extra features, getting of from modules, 54-55
non-sequential values in, 37-38 eye matrix, 129
as odd data type, 40
dictionary of dictionaries, 48 F
Digia, 57 F1,25

digital art, 239

digital inputs/outputs/signal, 232, 233
digital-to-analogue converter, 237
directory tree, 8

Fabric module, 207
factor_down value, 190
factor_up value, 190

260

LEARNING PYTHON WITH RASPBERRY PI

False value, 31-32, 38, 39, 55, 88,
91, 92, 226, 229, 252
Fedora, 7
female to male jumper wires, 219-220, 223
file, cannot be used as variable name, 216
filename attribute, 203
filenames, 72, 213, 214
files, working with, 216-217
filter, 72
Fireball class, 99

fireball high speed global variable, 95

fireball low_ speed global variable, 95
fireball plain, 96
fireballs, in platform game, 94-96
Firefox, 68
5v pin, 228
FLAC format, 180, 184
flac program, 184, 196
flag -h, 202,203
flags, 187, 202-203, 205, 214, 250
flip (), 186
float, 120
float () function, 32
float type, 55
floating-points, 32, 120
for loops, 39-40, 55,179, 187, 213, 216
forecast_dict data structure, 148
forms, 153-155, 160
forums, 7
forward button, in web browser, 65
forward () method, 15
4D vector, 115
fragment shader, 111, 113, 115, 116,120
fragment glsl variable, 111,113
frame rate variable, 127
frames, 127
freezing, how to counteract, 107
Fritzing, 222
from byte () method, 127
functions. See also specific functions
defining, 24
making code reusable with, 43-46, 55
methods as defined much like, 50
starting with lowercase letters, 49
use of to structure code, 20-21
value of in allowing code to be reused, 25

G

games
cat and mouse, 21-25
distribution of, 99
Minecraft, 163
platform, 77-108
simple reactions, 230
Snake, 169-175

General Purpose Inputs and Outputs (GPIOs),

2,219
Gertboard, 237-238
get method, 152
GET requests, 153, 154, 157
getBlock () method, 173
getOpenFileName () method, 72
github.com/ashtons/picam, 191
github.com/quick2wire/
quick2wire-python-api, 235
glesutils.Texture.from surface
method, 136
gl FragColor, 115,120
GL_LINE STRIP, 116
GL_POINTS, 116
gl PointSize, 115
gl_Positionvariable, 114,115,129
GLSL (Graphics Library Shader Language),
113,122,137
GL_TRIANGLE_STRIP, 116
Go button, in web browser, 66
go_btn clicked () method, 67
Google
Drive, 6, 208
home page, 64
request, 183
search, 69
speech-to-text web service, 180, 196
google.com, 140
GPIO options, expansion of, 231-236

GPIO pins, 219, 220, 224-226, 228, 229, 232,

236,237,239

GPIOs (General Purpose Inputs and
Outputs), 2, 219

graphical programming, 57-74

graphical system (LXDE), 7. See also
LXDE (Lightweight X11 Desktop
Environment)

()

INDEX

graphical user interface (GUI) programming,
58-60, 128,197

graphics cards, 109

Graphics Library Shader Language
(GLSL), 113,122,137

Graphics Processing Units (GPUs), 109,
111-112

gray frame image, 189

Greenvalue, 111

grid layout, 59, 63, 66, 74

grow_inlist, 173

GTK graphical toolkit, 57

GUI, 197

gzipped file (compressed file), 215

H

Haar cascades, 188, 189, 190

hardware, interfacing with, 219-239

HDMI-to-DVI converter, 6

HDMI-to-VGA converter, 6

headers parameter, 180

“Hello World!” website, 151

HelloHandler class, 153, 154

hello-template.html, 153,155

hello-template.html.
self.get_argument (), 154

help= parameters, 203

-help/-help flag, 9, 202, 203

hierarchy, 197

high-definition multimedia interface (HDMI)
video output, 6

hobby electronics, 236

home automation, 239

home directory, 9

/home, 199

/home/p1i root directory (HTTP), 150, 153

/home/pi/images with mkdir/home/
pi/images, 193

horizontal boxes, 63

hostnames, 140

hosts, 139-140, 159

HTML (Hypertext Markup Language), 149-150,
152, 153,158,160

HTTP (Hypertext Transfer Protocol), 149, 150,
153,157,160, 180

http://, use of, 67, 70
HTTPError, 183

https://, use of, 70
http.server module, 151, 160
hyphen (-), 9

I

12C (Inter-Integrated Circuit)
communications protocol, 235-236, 239
IC (buffer-integrated circuit), 229
icosa.py, 136
IDE (Integrated Development
Environment), 11, 21
identical code, repetition of, 16
IDLE 3,11, 13,18, 21, 226
id_rsa file, 208
id_rsa.pub file, 208
if block, 41, 42, 89, 90, 100
if clause, 20
if condition, 19
if .. elif .. elseblock, 18
if line, 205
if statements, 25, 31, 41-43
ifconfig, 140
ImageHandler class, 194
images
background image for platform game, 99
creation of training ones, 190
for games, 84
JPEGs, 192
manipulation of, 187-190
import copy, 45
import lines, 54
increment () function, 46
indentation, 38-39, 41, 114
index (), 36
indexes, need for, 37
index.html file, 150
indices face 1 tuple, 111
information, storage of in text files,
216-217
inheritance, 51, 58, 84
initialise pygame, 83
__init__method, 50, 51, 60, 87, 98
input, getting, 229-231

261

LEARNING PYTHON WITH RASPBERRY PI

input () function, 43

instability, of Raspberry Pi, 229

instances, created/initiated, 50

int class, 127

int () function, 32

int type, 55

integer (int), 29, 32, 244

Integrated Development
Environment (IDE), 11, 21

Inter-Integrated Circuit (I2C) communications
protocol, 235-236, 239

Internet, sending data over, 193

Internet Protocol (IP) address, 139, 140, 144

[Pv4 (version 4, IP address), 139, 144

[Pv6 (version 6, IP address), 139

J

JavaScript Object Notation (JSON),
147-149,159, 181

JPEG image, 192

json module, 147

jump () method, 90, 99

jumpers, 223

jumping sound effect, 98

K

Kelvin (temperature), 148

kernel buffer, 7

keyboard, 184

keypress events, 58, 91, 96

keys, need for, 37

key/value pairs, in dictionaries, 37, 40

L
LANs (local area networks), 144
laplacian transform, 187
layouts
box layout, 63, 66, 74
complex layouts, 63
grid layout, 59, 63, 66, 74
QGridLayout, 59
QHBoxLayout, 63
Qt graphical toolkit, 59
QVBoxLayout, 63

LDR (light-dependent resistor),
223,233
Leafpad, 11, 103
LED (light emitting diode), 223, 224-225,
228, 229, 230, 238
left () method, 15
length () function, 121
letters suite, 253
LibreOffice’s Writer, 11
Lightweight X11 Desktop
Environment (LXDE), 7-8, 57, 197
lines image, 187
Linux
command line, 180, 188, 197-199
command-line book, 9
command-line flags, 202-203
command-line program scp, 207
command-line tools, 196
compressed archive, 212
crontab feature, 215
flexibility of, 2
kernel, 197
log files, 205
as open source, 85
output from running command
on, 201
start of directories in, 8
system commands, 157
timestamp, 214
using Arch or Fedora, 7
list of lists, 35, 48
listen (), 141
lists, 33-34, 35-36, 37, 45, 55
live streams, 193-196
live.jpg, 194
local area networks (LANs), 144
local variables, 50, 84
localhost, 140, 150
local-only address, 144
lo.etho, 140
logic-level converter, 228
login method, 159
login-fail.html, 158
login-template.html, 158
logout template.html, 159

loops
for, 39-40, 55,179,187, 213, 216
apple freqgloops, 174
bool type used in conditions for, 31
in cat and mouse game, 25
defined, 16
nested, 40-41
as way to control how Python moves
through program, 25
while, 38, 55,173, 187,189
lowercase letters, 49
1s, 202
LXDE (Lightweight X11 Desktop
Environment), 7-8, 57, 197
LXTerminal application, 8-11

M

main function, 114, 115
MainHandler class, 152
master, 231
Master In Slave Out (MISO), 231
Master Out Slave In (MOSI), 231
matrices, 112
matrix multiplication, 129
mc object, 165
MCP3008 chip, 223, 232, 233, 239
/media, 199
/media/MyStick, 199
menus, adding, 62, 71, 74
metering mode, 192
method calls, 74
methods. See also specific methods
in babbage, 15
defined, 49
as defined much like functions, 50
starting with lowercase letters, 49
use of to structure code, 20-21
use of to take care of much of the work, 25
micro USB power supply, 6
microcontroller boards, 236
microphones, 177
microprocessing, 237
Midori, 68, 85, 139
Minecraft, 163-169

INDEX 263

minecraft-pi-0.1.1.tar.gz, 164
MISO (Master In Slave Out), 231
mixer, initialising, 98
-m option, 214
modified time (- -mt ime option), 214
module example import line, 54
modules. See also specific modules
advantages to creating, 55
getting extra features from, 54-55
importation of, 25
as time-savers for getting functionality, 66
monitors, 5, 6
MOSI (Master Out Slave In), 231
motor controller, 237
motors, 237, 238
mouse, 57,184, 229
move (), 90
move ip (), 90
movement variable, 173
move x () method, 94
move_ vy (), 89
movies, making, 184-196
MP3 sound files, 98, 126
mpgl23 command-line tool, 126
—-mt ime option (modified time), 214
multimedia
making movies, 184-196
using PyAudio to get sound into your
computer, 177-184
multimeters, 222, 223
music
copyrights on, 99
downloading source, 127
for spinning cube, 126-136
mutable data types, 45
myfile.txt, 217
mylevel file, 101
MyStick, 199

N

name server, 140
namespace clashes, 55
nested loops, 40-41
network interfaces, 140

264

LEARNING PYTHON WITH RASPBERRY PI

network port, on model B Raspberry Pi, 5

network value, 157

networking, scripting with, 207-209

Nokia, 57

non-sequential values, 37-38

NOOBS, 7

normal, as vector that sticks out of a face at 90
degrees, 121-122, 123,136

normalize () function, 122

number (#), 16

numbers, 29-30

numerical operations, 29

numerical operators, 30

0

object recognition, 188
objects
building of with classes, 49-54
as mutable data type, 45
OGG files, 98
Ohm’s law, 228
open () function, 216, 217
open source, 84, 85
Open Web Application Security Project, 159
OpenCV, 196
openCV module, 187-190, 191
opencv_traincascades
program, 188
opengameart.org, 84, 97, 98
OpenGL, 109, 111,112,136
OpenGL ES, 120
OpenGL ES 2.0, 136
opening tag, 149
OpenWeatherMap.org, 147, 155
operations on lists, 35-36
operations on sets, 38
operators for numerical types, comparison, 29
OptionParser object, 203
#options, 86
optparse module, 202
os module, 209, 217
os.path.getmtime (), 214
os.path.join (),214
os.path.splittext () function, 213

os.walk () function, 213
output .wav file, 179
overclocking, 10, 107, 190
owasp.org, 159

P

page IDs, 153

parallax scrolling, 100

parameters
defined, 44
in methods start with sel£, 50
optional ones, 46
use of brackets with, 60-61

Parent class, 50, 51

parser.add option (), 203,212

pass statement, 82

passiver infrared (PIR) movement
sensors, 239

passwords, 8, 207, 209

PCBs (Printed Circuit Boards), 222

Penguin Tutor website, 227

period (.), 203

peripherals, 6, 205, 229

permissions, superuser, 226

Person class, 50, 51

physics, realistic game, 103-108

Pi Cobbler, 220, 223

pi directory, 9

pictures, drawing of, 13-21, 166-167

PiFace, 229, 237, 238

pi.minecraft.net, 164

pin 22, 226

pin joint, 106

pip (tool), 224-225

PIR (passive infrared) movement
sensors, 239

platform game
adding movement to sprites, 86
building of, 79-82
creating a world, 86-88
detecting collisions, 88-90
drawing sprites for, 84-85
making a challenge, 93-97
making it your own, 97-103

moving left and right, 90-92
reaching the goal, 92-93
Player class, 83, 84, 86, 90, 94, 98, 99
player object, 165
player image variable, 84
player plain, 85,96
player.setPos(x, y, z),175
plus sign (+), 203
PNG files, 84, 100, 187,192

pop (),173
pop (x),36
port 22, 140

port 80, 140, 150
port 8000, 150
port 8888, 152
ports, 140, 141
position matrix, 129
POST requests, 153, 154, 160
postTo-Chat () method, 173
power
as most common cause of problems with
Raspberry Pi, 6
with power comes complexity, 137
supply/limits, 5, 229
powered USB hub, 5, 6
prefixes
DEBUG prefix, 245
with module name, 55
protocol prefix, 67, 70, 73
sudo prefix, 11, 226
<pre>B tags, 158
print () function, 20, 43
print () statements, 201, 241, 242, 243,
244,255
Printed Circuit Boards (PCBs), 222
print-file.py, 203
private key, 208
problems, common ones, 6
processes value, 157
/proc, 199
/proc/cpuinfo, 199
program flow, control of, 38-39
programmers/programming, 1
projects

INDEX

burglar alarms, 239
digital art, 239
home automation, 239
robots, 238
protection, for Pi, 228-229
protocol prefix, 67, 70, 73
prototyping boards, 221
pseudo-widgets, 67
public address, 144
public key, 208
pull-down resistor, 229
push button switch, 223, 229, 238
PyAudio module, 177,196
PyAudio object, 179
pygame directory, 78, 185
PyGame mixer, 127
PyGame module, 77, 82-86, 103, 106, 107,
110,173, 185,187,188, 196
pygame.key.get pressed (),91
pygame.sprite.Sprite, 84
PyMunk module, 103, 106, 107, 108
Pyri (speech recognition oracle), 182
pyserial module, 236
pyside module, 57, 62, 73, 74, 77
Pythagorean theorem, 121
Python
bringing everything together, 46-48
building objects with classes, 49-54

controlling the way the program flows, 38-43

documentation for, 25, 255

getting extra features from modules, 54-55
making code reusable with functions, 43-46

shell, 11, 226
storing values in structures, 33-38
turtle module, 13-21
using of from saved programs, 11
using of from shell, 11
variables, values, and types, 27-33
ways to write programs for, 11
Python 2, 187
Python 3, 185, 187, 207
Python API, 164
Python interpreter, 11, 27, 30, 39, 165, 200
Python variable to print, 153

265

LEARNING PYTHON WITH RASPBERRY PI

python3 client.py, 142
python3 server.py, 142

q key, 188

QActions, 71

QColor type, 73

QColorDialog, 73

QColorDialog.getColor (),73

QComboBRox, 68, 69

QFileDialog, 72,73

QGridLayout, 59

QHBoxLayout, 63

QLineEdit, 66

QLineEntry, 70

QMainWindow, 62, 64, 71, 74

QPlainTextEdit, 66

QPushButton, 70

QPushButtons, 65

QSlider, 70

Qt graphical toolkit, 57, 59, 62, 66, 67, 72,
73,74

QTextEdit, 66

questions, asking of the program, 181-182

Quick2wire, 235

quote marks ("), 30, 31, 114, 205

QVBoxLayout, 63

QWebView, 63, 64, 65, 70, 71, 73

Qwidget, 59

R
randint (a, b) method, 95
range (%, y),39
Raspberry Pi
as great device on which to learn
programming, 2
model A, 5
model B, 5
online shop, 6
speaking to, 180-181
turning of into mirror, 185-186
Raspberry Pi Foundation camera module,
184,190-193, 196
Raspbian, 6, 7,197, 199, 205

raspi-config, 10,107, 190

raspistill, 191,192

reactions game, simple, 230

read () method, 236

realistic game physics, 103-108

record _sound () function, 179

Rect class, 78, 90

recv () method, 141

Redvalue, 111

red varying variable, 129

-regex flag, 205, 214

regression testing, 252-253, 255

regular expressions (regex), 203-207,
214,217

relays, 237, 238

re.match (), 204, 207,214

RenderPlain, 85, 96

re.search (),204,207,6214

reset () method, 95

resistors, 223, 224-225, 228, 229

RGB values, 73, 87

right () method, 15

robotics, 190, 237, 238

root directory, 8, 197-198, 213, 217

round brackets (), 34

RPiGL module, 110, 136

RPi.GPIO module, 224-225, 226,
235, 239

-r flag, 205, 214

Run button, 103

S

sample rate, 179

scaling factor, 112

scenery, adding of, 99-101

scp (secure copy), 207, 208, 215, 217

Screen class, 49

screen_x variable, 95

scripting
bringing it all together, 209-215
command-line flags, 202-203
getting started with Linux command line,

197-199

networking with, 207-209

INDEX

regular expressions (regex), 203-207
using subprocess module, 200-202
working with files in Python, 216-217

SD card, 5, 6,196, 219

search bar/box, in web browser, 69, 70

security, 155-159, 196

self.assertEqual () call, 250

self.image variable, 84

self .programl.uniform.transform
matrix.value attribute, 116

self.rect variable, 84

self.render (),152

self.url entry.text () parameter, 67

self .verteces buffer.draw (), 116

self.webview.load call, 69

self.write (),152

semicolon (;), 113, 137

send () method, 141

sequences, 33

serial communications protocol, 236

Serial Peripheral Interface (SPI) communications
protocol, 231-235, 236, 239

server socket, 141

servers, 141, 160

servos, 238

setBlock method, 165,166, 175

setBlocks (),175

setMaximumSize () method, 66, 67

setMinimumSize () method, 67

sets
grouping values in, 55
as mutable data type, 45
non-sequential values in, 37-38
operations on, 38

setup.py, 103

shader objects, 111

shaders, 128, 136. See also attribute shader;
fragment shader; vertex shader

shields (expansion boards), 236

simple reactions game, 230

size variable, 187

skeleton of the program, 79

Slave Select (SS), 231

slaves, 231

slider movements, 74
small_gray_frame image, 189
Snake (game), 169-175
SoC (System on a Chip), 109
socket module, 141
sockets, 140, 141, 159
software
installation of, 10-11
making sure it’s usable, 254
soldering, guide on, 222
soldering irons, 222, 223
solderless breadboard, 220, 221, 223
sort (), 36
sound
adding of to platform game, 98-99
calculating level of in spinning
cube, 129-135
getting of into computer, 177-181
recording of, 179
sox (audio Swiss Army knife), 184, 196
Space module, 106
speaking, to Pi, 180-181
special characters, 203, 205
speech recognition oracle (Pyri), 182
speech-to-text web service, 180, 196
speed_y local variable, 84
SPI (Serial Peripheral Interface) communications
protocol, 231-235, 236, 239
spinbox, 59, 60
spinning cube
adding some texture, 136
addling light, 120-126
bringing it all together, 116-120
building the 3D model, 128-129
calculating sound level, 129-135
creation of, 110-116
making screen dance, 126-128
taking things further, 135-136
Sprite class, 78, 94, 99
sprites, 84-85, 86, 97
square brackets ([]), 34
square () function, 44
SS (Slave Select), 231
. ssh folder, 208

267

LEARNING PYTHON WITH RASPBERRY PI

statements. See specific statements
stderr.Stdout (or standard out), 201
stdout . Stderr (or standard error), 201
stdout=subprocess.PIPE parameter, 201
storage value, 157
str (string, piece of text), 29
str () function, 32
stretching matrix, 128
string operations, 31
string type, 30
strings
converting other data types to, 32
creation of, 30
defined, 34
each level of platform game as list of, 86
stripboards, 221, 222, 223
.strip (), 216
structures, storing of values in, 33-37
subclasses, 51
subdirectories, 8
subprocess module, 158, 200-201
subprocess.call (), 184,200,208
subprocess.Popen (), 195,200
sudo prefix, 11, 226
superclasses, 51, 58, 152
superuser permissions, 226
symbols suite, 253
sys module, 101
sys.argv, 101, 167
syslogvalue, 157
SysStatusHandler, 157
sysstatus-template.html, 157
/sys, 199
system log file (syslog), 7, 205
System on a Chip (SoC), 109
systemvalue, 157

T

tags, for web pages, 149
tarfile module, 214-215
tar.gz file, 212

templates, 153, 154-155, 160
terminal command, 164-165
test_method, 252

test suites, 252-253, 255
test your knowledge
adding button to launch a
QColorDialog, 73
extending turtle controller program, 62
getting current weather, 149
of Python statements, 32-33, 38
on regular expressions, 206-207
test-drive development, 252
testing
defined, 255
getting more assertive, 250-252
how much should you test?, 254-255
purpose of, 254
regression testing, 252-253
unit tests, 245-250
test.png, 191
text, keeping of in strings, 30
text editors, Leafpad, 11, 103
text input/entry, in web browser, 66
texture, adding of to spinning cube, 136
three slashes (///), 73
3D graphics, 109, 112, 119, 136, 163,
168,169,173
three-dimensional float (3f) vectors, 114
time-lapse cartoon video, 192
time.sleep (), 25
timestamp, 214
Tk graphical toolkit, 57
tools, getting the best, 222-223
tornado module, 151
Tornado server, 193, 196
Tornado web application, 152, 153, 160, 194
tornado.web.RequestHandler, 152
tornado.web.StaticFileHandler, 194
touch screen, 57
training images, 190
transform matrix variable, 114,
116,123
transforms.compose (),112,128
transforms.rotation degrees (), 113
transforms.scaling (), 113
transforms.stretching (), 113
translation matrix, 128

INDEX

triangular brackets (<>), 149
True value, 31-32, 39, 42, 88, 91, 92,
226, 229, 245, 252
tuples, 33-34, 35, 36, 37, 55
Turtle cass/turtle dass, 49, 51
turtle module, 13-21, 49
TurtleControl cass, 59, 60
turtle.Screen () statement, 49
turtle.Turtle () statement, 49
tweeting/tweets, 144-146
Twitter, 145, 159
2D graphics, 109, 168, 169, 173
two-dimensional list, 35
type () function, 28
type IDs, 166
type page argument, 157
typeID type, 165
types
converting between data types, 32
values as associated with, 28-29

U

uniformvariables, 137

unit tests, 245-250, 252, 253, 255

unittest.main (), 247

universal character set Transformation Format
8-bit (UTE-8), 141, 246, 248

Universal Resource Locator (URL), 67

Unix systems, 214

update () method, 87,94

upper () method, 250

URL entry bar/box/control, 67, 70, 71

urllib.request.Request (), 180

usability problems, 255

USB devices, 205

USB keyboard, 5, 6

USB memory stick, 6,199, 208, 229

USB microphone, 177

USB mouse, 5, 6

USB webcam, 5, 6, 184-187,190-191, 196

USB WiFi dongle, 5, 6

use () method, 111

user-info.html, 154

269

user input, 242,244

usernames, 8, 21, 22, 33, 160

user-template.html, 154

UTE-8 (universal character set Transformation
Format 8-bit), 141, 246, 248

\

valueChanged action, 71
ValueError, 43
values
associated with types, 28-29, 55
as being numbers or text, 28
storing of in structures, 33-37
Van Loo, Gert (Raspberry Pi Foundation’s
hardware supremo), 238
variable name getRgb () [:3],73
variables. See also specific variables
defined, 24, 27, 55
naming convention, 28, 49
for storing information, 25
understanding, 24
/var/log folder, 205
varying keyword, 121
varying variables, 120, 129
varying vectors, 137
varying.uniformvariable, 120
vector-matrix algebra, 112
vectors, 112,120, 121, 122, 137
vertex shader, 111, 113,115, 116,
120,122,137
vertex attrib attribute, 114
vertex glsl variable, 111,113
vertical boxes, 63
vertices list, 111
VGA input, 6
video, making, 184-196
video encoder, 192
virtual filesystems, 199
visualiser, 130
voice control, 180
voice-driven menu, 184
voltage, 228
-v flag, 250

LEARNING PYTHON WITH RASPBERRY PI

W

w2schools.org (HTML resource), 150

WAV files, 126,177,179, 184,196

wave module, 127,179

weather forecasts, with JSON, 147-149

Web, getting on, 149-155

web browser
adding of window menus to, 71-73
adding speech recognition oracle to, 184
creation of, 62-71

web pages, 63, 149

web server, 150

webcam viewer, 188

webcams, 6

websites, making them dynamic, 151-152

webview's load method, 67

w:gz parameter, 215

while loops, 25, 38, 42, 55,173, 187, 189

widgets, 59, 62, 63, 66, 71, 74

window menus, adding of, 71-73

windowing system, 7

wire cutters/strippers, 222, 223

Wireless Inventor’s Kit, 238

with block, 216

Wolfram Alpha, 181, 182

Wolfram Alpha app ID, 182
wolframalapha.com, 181

word processors, LibreOffice’s Writer, 11
World class, 87,92

world cube net.png, 136

write () method, 236

X

x and y attributes, 84, 90

x coordinate (horizontal position), 112, 165
XML, 182,188

xml module, 182

Y

y coordinate (vertical position), 112, 165

Z

z coordinate (depth), 112, 165
zoom slider bar, in web browser, 69
zoom_changed () method, 71

	About the Authors
	Contents
	Introduction
	What Is Programming?
	Why the Raspberry Pi?
	How Does this Book Work?

	Chapter 1: Getting Up and Running
	Setting Up Your Raspberry Pi
	Solving Problems
	A Quick Tour of Raspbian
	Python 3
	Summary

	Chapter 2: A Really Quick Introduction to Python
	Drawing Picture with Turtles
	A Python Game of Cat and Mouse
	Summary

	Chapter 3: Python Basics
	Variables, Values, and Types
	Keeping Text in Strings
	Boolean: True or False
	Converting Between Data Types
	Test Your Knowledge
	Storing Values in Structures
	Controlling the Way the Program Flows
	Making Code Reusable with Functions
	Bringing Everything Together
	Building Objects with Classes
	Getting Extra Features from Modules
	Summary
	Solutions to Exercises

	Chapter 4: Graphical Programming
	Graphical User Interface (GUI) Programming
	Adding Controls
	Creating a Web Browser
	Adding Window Menus
	Summary
	Solutions to Exercises

	Chapter 5: Creating Games
	Building a Game
	Initialising PyGame
	Creating a World
	Making It Your Own
	Adding Sound
	Adding Scenery
	Taking the Game to the Next Level
	Realistic Game Physics
	Summary

	Chapter 6: Creating Graphics with OpenGL
	Getting Modules
	Creating a Spinning Cube
	Making the Screen Dance
	Taking Things Further
	Adding Some Texture
	Summary

	Chapter 7: Networked Python
	Understanding Hosts, Ports, and Sockets
	Testing Your Knowledge
	Getting On the Web
	Keeping Things Secure
	Summary
	Solutions to Exercises

	Chapter 8: Minecraft
	Exploring Minecraft
	Making the Game Snake
	Taking Things Further
	Summary

	Chapter 9: Multimedia
	Using PyAudio to Get Sound into Your Computer
	Making Movies
	Summary

	Chapter 10: Scripting
	Getting Started with the Linux Command Line
	Testing Your Knowledge
	Scripting with Networking
	Bringing It All Together
	Working with Files in Python
	Summary

	Chapter 11: Interfacing with Hardware
	Setting Up Your Hardware Options
	Getting the Best Tools
	Hardware Needed for this Chapter
	Expanding the GPIO Options with I2C, SPI, and Serial
	Taking the Example Further
	Trying Some Popular Projects
	Summary

	Chapter 12: Testing and Debugging
	Investigating Bugs by Printing Out the Values
	Finding Bugs by Testing
	How Much Should You Test?
	Summary

	Index

‘‘‘‘‘‘‘‘‘‘‘‘

