Chapter 1. Getting Started with Python
and Arduino

This chapter introduces the Python programming language and the open source electronic
prototyping platform Arduino. The first section of the chapter focuses on Python and
briefly describes the benefits of Python along with installation and configuration steps.
The remaining part of the chapter describes Arduino and Arduino’s development
environment.

At the end of this chapter, you will have configured a programming environment for both
Python and Arduino for your favorite operating system. If you are a beginner with either
or both platforms (that is, Python and Arduino), it is advisable that you follow the given
steps in this chapter, as the later chapters will assume that you have the exact
configuration described here. If you have previous experience of working with these
platforms, you can skip to the next chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction to Python

Since its introduction by Guido van Rossum in 1991, Python has grown into one of the
most widely used general-purpose, high-level programming languages, and is supported
by one of the largest open source developer communities. Python is an open source
programming language that includes a lot of supporting libraries. These libraries are the
best feature of Python, making it one of the most extensible platforms. Python is a
dynamic programming language, and it uses an interpreter to execute code at runtime
rather than using a compiler to compile and create executable byte codes.

The philosophy behind the development of Python was to create flexible, readable, and
clear code to easily express concepts. The emphasis on using whitespace indentation in a
unique way differentiates Python from other popular high-level languages. Python
supports functional, imperative, and object-oriented programming with automatic memory
management.

www.it-ebooks.info

http://www.it-ebooks.info/

Why we use Python

Python is considered to be one of the easiest languages to learn for first-time
programmers. Compared to other popular object-oriented languages such as C++ and
Java, Python has the following major benefits for programmers:

e It is easy to read and understand
e It enables rapid prototyping and reduces development time
¢ It has a humongous amount of free library packages

Python has a huge open source community that drives forth the effort for continuous
improvement of Python as a programming language. The Python community is also
responsible for the development of a large amount of open library packages, which can be
used to build applications that span from dynamic websites to complex data analysis
applications, as well as the development of simple GUI-based applications to plot charts
from complex math functions. The majority of Python library packages have
systematically maintained the code that was obtained from the community with regular
updates. The de facto repository that indexes the largest number of Python packages is
PyPI (http://pypi.python.org). PyPI also provides simple ways to install various packages
on your operating system, which will be covered in the upcoming section.

While working with the hardware platform, it is necessary to have some means of
communication between the hardware and the computer that you are using for
development. Among the common computer to hardware interfacing methods, serial- port-
based communication is the most popular, and it is really simple to establish, especially
for the Arduino platform. Python provides a library called pySerial that is really easy to
use and quick to implement to interface a serial port. It is really simple to use similar
libraries and Python’s interactive programming abilities to rapidly test and implement your
project ideas.

Nowadays, complex Internet of Things (IoT) applications not only require serial
communication support, but they also need additional high-level features such as
graphical user interfaces (GUIs) for operating systems, web interfaces for remote
access, plots for data visualization, tools for data analysis, interfaces for data storage, and
so on. Using any other programming language such as C++ or Java, the development of
these features would require a large amount of programming effort due to the distributed
and unorganized nature of the supporting tools. Thankfully, Python has been very
successful at providing support for these types of applications for years. Python has a
number of libraries to support the development of each of the features mentioned here,
which are available through PyPI. These libraries are open source, easy to use, and widely
supported by the community. This makes Python a language of choice for IoT
applications. Additionally, Python also has support to create and ship your custom-built
applications as libraries so that everyone else can also utilize them in their projects. This is
a helpful feature if you are developing custom protocols, APIs, or algorithms for your own
hardware products.

www.it-ebooks.info

http://pypi.python.org
http://www.it-ebooks.info/

When do we use other languages

So, when should we not use Python for our projects? As mentioned earlier, Python is a
dynamic language that reduces development time, but it also makes the execution of your
code slower as compared to other static high-level languages such as C, C++, and Java.
These static languages use a compiler to compile the code and create binaries that get
executed during runtime, thereby increasing the runtime performance. When the
performance of the code is more important than a longer development time and higher
cost, you should consider these static languages. Some other drawbacks of Python include
being memory heavy, not having the proper support for threading, and lacking data
protection features. In short, we can say that even though Python provides quicker and
easier ways for quick prototyping, we should consider other static high-level languages for
development after we are done testing our prototype and we are ready to ship our product.
Nowadays, this scenario is changing rapidly and companies have started utilizing Python
for their industrial products.

Note

You can obtain more Python-related information from the official website at
http://www.python.org.

www.it-ebooks.info

http://www.python.org
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Installing Python and Setuptools

Python comes in two versions: Python v2.x and Python v3.x. (Here, x represents an
appropriate version number.) While Python v2.x is a legacy branch and has better library
support, Python v3.x is the future of Python. Most Linux distributions and Mac OS X
operating systems are equipped with Python, and they have v2.x as their preferred and
default version of Python. We will be using Python v2.7 as the default version of Python
for the rest of the book due to the following reasons:

e [t is the most current version of the Python v2.x branch

e [t has large community support and solutions for its known issues are available
through support forums

e It is supported by most of the major Python libraries

Even though the code samples, exercises, and projects provided in this book should work
in any variant of Python 2.7.x, it’s better to have the latest version.

www.it-ebooks.info

http://www.it-ebooks.info/

Installing Python

Your fondness for an operating system is developed due to multiple factors, and you can
never ignore someone’s bias towards a particular OS. Thus, this book provides installation
and configuration guidelines for three of the most popular operating systems: Linux, Mac
OS X, and Windows. Let’s begin by configuring Python for a Linux computer.

www.it-ebooks.info

http://www.it-ebooks.info/

Linux

The majority of Linux distributions come with Python preinstalled. To check the latest
version of the installed Python, use the following command at the terminal window:

$ python -V

Make sure that you are using an uppercase V as the option for the previous command.
Once you execute it on the terminal, it will print the complete version number of your
current Python installation. If the version is 2.7.x, you are good to go and your Linux is
updated with the latest version of Python that is required for this book. However, if you
have any version that is less than or equal to 2.6.x, you will need to first upgrade Python to
the latest version. This process will require root privileges, as Python will be installed as a
system component that will replace the previous versions.

Ubuntu

If you are using Ubuntu 11.10 or later versions, you should already have Python v2.7.x
installed on your machine. You can still upgrade Python to the latest revision of v2.7.x
using the following command:

$ sudo apt-get update && sudo apt-get --only-upgrade install python

If you are running an older version of Ubuntu (such as 10.04 or older), you should have
2.6 as the default version. In this case, you will need to run the following set of commands
to install version 2.7:

$ sudo add-apt-repository ppa:fkrull/deadsnakes
$ sudo apt-get update
$ sudo apt-get install python2.7

The first command will add an external Ubuntu repository, which will allow you to install
any version of Python. The next command will update and index the list of available
packages. The last command will install the latest version of Python 2.7.

Fedora and Red Hat

Fedora and Red Hat Linux also ships with Python as an in-built package. If you want to
upgrade the version of Python to the latest one, run the following command at the
terminal:

$ sudo yum upgrade python
Tip
Downloading the example code

You can download the example code files from your account at http://www.packtpub.com
for all the Packt Publishing books you have purchased. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have the files e-
mailed directly to you.

www.it-ebooks.info

http://www.packtpub.com
http://www.packtpub.com/support
http://www.it-ebooks.info/

Windows

Installation and configuration of Python on Windows is not as straightforward as it is for
Linux. First of all, you’ll need to download a copy of Python from

http://www.python.org/getit.

You need to be careful about the version of Python that you are downloading. From the
system properties of your Windows OS, check whether the operating system is of 32 bit or
64 bit. At the time this book was being written, the latest version of Python was 2.7.6. So,
download the latest available version of Python, but make sure that it is 2.7.x and not 3.x.

For many third-party Python libraries, the installation binary files for Windows are
compiled for the 32-bit version. Due to this reason, we will recommend that you install the
32-bit version of Python for your Windows OS.

If you are really familiar with Python and know your way around installing libraries, you
can install the 64-bit version of Python. Select and run the downloaded file to install
Python. Although you can install it to any custom location, it is advisable to use the
default installation location as the upcoming configuration steps use the default location.
Once the installation is complete, you can find the Python command-line tool and IDLE
(Python GUI) from the Start menu.

Although you can always open these tools from the Start menu for basic scripting, we
will modify the Windows system parameters to make Python accessible through the
Windows command prompt. To accomplish this, we will have to set up PATH in
environment variables for the location of the Python installation directory. Let’s open
System Properties by right-clicking on My Computer and then selecting Properties.
Otherwise, you can also navigate to Start | Control Panel | System and Security |
System.

You will be able to see a window similar to the one that is displayed in the following
screenshot. The System window shows you the basic information about your computer,
including the type of Windows operating system that you are using (such as the 32-bit or
the 64-bit version):

www.it-ebooks.info

http://www.python.org/getit
http://www.it-ebooks.info/

' | Lo B
- [» C | Panel » AllC | Panel It 5 | 55 W Seonch Control Pone
I\._.-f"\..__v'l i ¢ Control Panel » ontrol Panel tems » Systemn v | *y earch Lonirol Fanel pe)
File Edt View Tools Help
ﬂ -
Cantrol Panel Home . i ; E
View basic information about your computer
¥ Device Manager Windows edition
¥ Remote settings Windows 7 Ultimate
% System protection Copyright © 2009 Microsoft Corporation. All rights reserved.
4 Advanced system settings Sarvice Pack1
Systemn
Rating: m Windows Experience Index
Processor: Intel(R) Core{TM) i7-36320QM CPU @ 2.20GHz 2.20 GHz
Installed memory (RAM): 12,0 GB (11.9 GB usable)
System type 64-bit Operating System
Pen and Touch: Mo Pen or Touch Input is available for this Display
e Computer name, domain, and workgroup settings
Action Cent 2
o Computer name: chheplo-PC By Change settings
Wind Updat
R S Full computer name: chheplo-PC
Performance Information and C d S
Tools omputer descrnption:
Workgroup: WORKGROUP -
il = L ==

In the System window, click on Advanced system settings in the left navigation bar to
open a window called System Properties. Click on the Environment Variables... button
in the System Properties window, which is located at the bottom of the window. This will
open an interface similar to the one shown in the following screenshot. In Environment
Variables, you need to update the PATH system variable to add Python to the default
operating system’s path.

Click on the PATH option as displayed in the following screenshot, which will pop up an
Edit System Variable window. Add c:\Python27 or the full path of your custom Python
installation directory at the end of your existing PATH variable. It is required to put a
semicolon (;) before the Python installation path. If you already see Python’s location in
the Path variable, your system is set up for Python and you don’t need to perform any
changes:

www.it-ebooks.info

http://www.it-ebooks.info/

Efn*.-'iru:unment Variables | £3 |

s

Edit System Variable
Yariable name: Path
Variable value: 32\WindowsPowerShelly 1.0 C: \Python 23

[Ok, J| Cancel]

New.. || Edit.. || Delete |
System variables
Variable Yalue =
MUMBER_OF_P... 4
05 Windows_NT
Fath C:\Windows'system32;C: \Windows;C:\. ..
PATHEXT JCOM;. EXE; .BAT;.CMD; MBS, . MBE;. 15;.... [T
New.. || Edit.. || Delete |
[K, H Cancel I

The main benefit of adding Python to the environment variables is to enable access to the
Python interpreter from the command prompt. In case you don’t know, the Windows
command prompt can be accessed by navigating to Start | Programs | Accessories |

Command Prompt.

www.it-ebooks.info

http://www.it-ebooks.info/

Mac OS X

Mac OS X ships with a preinstalled copy of Python, but due to the long release cycle of
the operating system, the frequency of updates for the default Python application is slow.
The latest version of Mac OS X, which is 10.9 Maverick, comes equipped with Python
2.7.5, which is the latest version:

Tests-Mac:~ test$ python

Python 2.7.5 (default, Aug 25 2013, 00:04:04)

[6CC 4.2.1 Compatible Apple LLVM 5.0 (clang-500.0.68)] on darwin

Type "help", "copyright", "credits" or "license" for more information.
>>>

Previous versions such as Mac OS X 10.8 Mountain Lion and Mac OS X 10.7 Lion
included Python 2.7.2 and Python 2.7.1 respectively, which are also compatible versions
for this book. If you are an experienced Python user or someone who wants to work with
the latest version of Python, you can download the latest version from

http://www.python.org/getit.

Older versions of Mac OS X such as Snow Leopard and later, which came with an older
version of Python, can be updated to the latest version by downloading and installing it

from http://www.python.org/getit.

www.it-ebooks.info

http://www.python.org/getit
http://www.python.org/getit
http://www.it-ebooks.info/

Installing Setuptools

Setuptools is a library containing a collection of utilities for building and distributing
Python packages. The most important tool from this collection is called easy_install. It
allows a user to look into PyPI, the Python package repository that we mentioned
previously, and provides a simple interface to install any package by name. The
easy_install utility automatically downloads, builds, installs, and manages packages for
the user. This utility has been used in the later part of this book to install the necessary
packages required for the upcoming projects of Python and Arduino. Although
easy_install has been used as a simple way of installing Python packages, it misses out
on a few useful features such as tracking actions, support for uninstallation, and support
for other version control systems. In recent years, the Python community has started
adopting another tool called pip over easy_install that supports these features. As both
easy_install and pip utilize the same PyPI repository, going forward, you can use any of
these utilities to install the required Python packages.

Just to narrow down the scope, we will be focusing on methods to install Setuptools and
the default utilities that get installed with it, that is, easy_install. Later in this section,
we will also install pip, just in case you want to use it too. Let’s first begin by installing
Setuptools for the various operating systems.

Linux

In Ubuntu, Setuptools is available in the default repository and it can be installed using the
following command:

$ sudo apt-get install python-setuptools

For Fedora, it can be installed using the default software manager yum:

$ sudo yum install python-setuptools

For other Linux distributions, it can be downloaded and built using the following single-
line script:

$ wget https://bitbucket.org/pypa/setuptools/raw/bootstrap/ez_setup.py -0 -
| sudo python

Once it is installed on your Linux distribution, easy_install can be directly accessed
from the terminal as a built-in command.

Windows

Installation of Setuptools is not that straightforward for Windows as compared to Linux. It
requires the user to download the ez_setup.py file from the Windows section at

https://pypi.python.org/pypi/setuptools.

Once this is downloaded, press Shift and right-click in the folder where you downloaded
the ez_setup.py file. Select Open command window here and execute the following
command:

www.it-ebooks.info

https://pypi.python.org/pypi/setuptools
http://www.it-ebooks.info/

> python ez_setup.py

This will install Setuptools in the scripts folder of your default Python installation folder.
Using the same method that we used when we added Python to Environment Variables,
now include Setuptools by adding c:\Python27\Scripts to PATH, followed by the
semicolon (;).

This will enable the installation of various Python packages using easy_install to your
Python packages folder called Libs. Once you have added the package manager to the
environment variables, you need to close and reopen the command prompt for these
changes to take effect.

Mac OS X

Setuptools can be installed in Mac OS X using any of the following methods. It is
advisable for beginners to use the first method, as the second method requires the external
package manager Homebrew.

If you have never worked with Homebrew before, you will need to follow these steps to
install Setuptools on your Mac:

1. Download ez_setup.py from the Unix/Mac section at

https://pypi.python.org/pypi/setuptools.
2. Open the terminal and navigate to the directory where you downloaded this file. For

most browsers, the file gets saved to the bownload folder.
3. Run the following command in the terminal to build and set up Setuptools:

$ sudo python ez_setup.py

If you are familiar with Homebrew-based software installation, just follow these quick
steps to install Setuptools:

1. First, install wget from Homebrew if you don’t have it already:
$ brew install wget
2. Once you have installed wget, run the following command in the terminal:

$ wget https://bitbucket.org/pypa/setuptools/raw/bootstrap/ez_setup.py
-0 - | python

Note

More information regarding the Homebrew utility can be obtained from
http://brew.sh.

You can install Homebrew on your Mac by running the following simple script in the
terminal:

ruby -e "$(curl -fsSL
https://raw.githubusercontent.com/Homebrew/install/master/install)"

www.it-ebooks.info

https://pypi.python.org/pypi/setuptools
http://brew.sh
http://www.it-ebooks.info/

Installing pip

As you have successfully installed Setuptools, let’s use it to install pip. For Linux or Mac
OS X, you can run the following command in the terminal to install pip:

$ sudo easy_install pip

For Windows, open the command prompt and execute the following command:

> easy_install.exe pip

If you have already installed pip on your computer, please make sure that you upgrade it
to the latest version to overcome the few bugs that are associated with the upgrade. You
can upgrade pip using the following command at the terminal:

$ sudo easy_install --upgrade pip

Since you have already used easy_install to install a Python package, let’s get ourselves
more familiar with Python package management.

www.it-ebooks.info

http://www.it-ebooks.info/

Installing Python packages

With the installation of pip, you have two different options to install any third-party
Python package listed on the PyPi repository (http://pypi.python.org). The following are
the various procedures that you need to know to work with the installation of Python
packages. In the following examples, the term PackageName is a pseudo name that is used
for a Python package that you want to work with. For your package of choice, identify the
appropriate package name from the PyPi website and put its name in place of
PackageName. In some cases, you will need root (super user) privileges to install or
uninstall a package. You can use sudo followed by an appropriate command for these
cases.

To install a Python package, execute the following command at the terminal:

$ easy_install PackageName

Otherwise, you can also execute the following command:

$ pip install PackageName

If you want to install a specific version of a package, you can use the following command:

$ easy_install "PackageName==version"

If you are not aware of the exact version number, you can also use comparison operators
such as >, <, >=, or <= to specify a range for the version number. Both easy_install and
pip will select the best matching version of the package from the repository and install it:

$ easy_install "PackageName > version"

Meanwhile, for pip, you can use the following identical commands to perform similar
operations:

$ pip install PackageName==version
$ pip install "PackageName>=version"

As an example, if you want to install a version between 1.0 and 3.0, you will need to use
the following command:

$ pip install "PackageName>=0.1,<=0.3"

It is really easy to upgrade a package using either easy_install or pip. The command
options used by both are also very similar:

$ easy_install --upgrade PackageName
$ pip install --upgrade PackageName

Although easy_install doesn’t support clean uninstallation of a package, you can use the
following command to make sure that Python stops searching for the specified package.
Later, carefully remove the package files from the installation directory:

$ easy_install -mxN PackageName

A much better way to perform a clean uninstallation of the majority of packages is to use

www.it-ebooks.info

http://pypi.python.org
http://www.it-ebooks.info/

pip instead of easy_install:

$ pip uninstall PackageName
A detailed list of the Python packages supported by Setuptools can be found at the PyPI
website at https://pypi.python.org/.

www.it-ebooks.info

https://pypi.python.org/
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

The fundamentals of Python
programming

If you have previous experience of working with any other programming language,
Python is very easy to get started with. If you have never done programming before, this
section will walk you through some of the basics of Python. If you have already worked
with Python, you should skip this section and move on to the next one.

Assuming that the setup instructions are followed correctly, let’s open the Python
interpreter by executing the Python command at the terminal or the command prompt. You
should get results similar to those displayed in the following screenshot. If you have
installed Python by downloading the setup files from the website, you should have the
Python integrated development environment (IDLE) installed as well. You can also
start the Python interpreter by opening its IDLE from the location where it was installed.

As you can see, after printing some system information, the interpreter opens a prompt
with three greater-than signs (>>>), which is also known as the primary prompt. The
interpreter is now in the interactive mode and it is ready to execute scripts from the
prompt.

B CAWindows' system32\cmd.exe - python = | G [
Microzoft Windows [Uepsion 6.1.76H11
Copyright {c? 2807 Hicroszoft Corporation. ALl rights reserved.

C:xUserssTest>python
Python 2.7.5 (default, May 15 2813, 22:43:36> [MSC v.1588 32 hit <{Intel>] on win
32

1
2 "help",. “copyright'. “creditszs" or "licensze" for more information.
e

To close the interactive mode of the Python interpreter, run the either exit () or quit(), at
the primary prompt. Another method to exit from the interactive mode is to use the
keyboard shortcut Ctrl + D.

Note
Note that Python’s built-in functions are case sensitive. This means the following:
exit() # EXIT() # Exit()

The official Python website provides comprehensive tutorials for beginners to get started
with Python programming. It is highly recommended that you visit the official Python
tutorials at https://docs.python.org/2/tutorial/index.html if you are looking for detailed
programming tutorials as compared to the upcoming brief overviews.

www.it-ebooks.info

https://docs.python.org/2/tutorial/index.html
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Python operators and built-in types

Now that you have a brief idea regarding the Python prompt, let’s get you familiar with
some of the basic Python commands. For these exercises, we will be using the Python
IDLE, which also opens with the Python interactive prompt. You will require a method to
describe the code segments, tasks, and comments when writing large and complex code.
Non-executable content is called comments in any programming language, and in Python,
they start with the hashtag character (#). Like comments, you will be frequently required
to check the output by printing on the prompt using the print command:

>>> # Fundamental of Python
>>> # My first comment

>>> name = "John" # This is my name
>>> print name

John

Note

Instead of IDLE, you can also access the Python interactive prompt from the terminal.
When using Python from the terminal, make sure that you are taking care of the
indentation properly.

www.it-ebooks.info

http://www.it-ebooks.info/

Operators

Python supports the usage of basic mathematical operators such as +, -, *, and /, directly
from the interpreter. Using these operators, you can perform basic calculations in the
prompt, as shown in the following examples. Try these operations in your prompt in order
to start using the Python interpreter as a calculator:

>>> 2 + 2

4

>>> (2*3) + 1
7

>>> (2*3) / 5
1

Note

When working with the Python interpreter, it is recommended that you follow the Style
Guide for Python Code, which is also popularly known as PEP-8 or pep8. For more

information about PEP-8, visit https://www.python.org/dev/peps/pep-0008/.

www.it-ebooks.info

https://www.python.org/dev/peps/pep-0008/
http://www.it-ebooks.info/

Built-in types

Python is a dynamically typed language, which means that you don’t have to explicitly
declare the type of the variables when initializing them. When you assign a value to a
variable, the Python interpreter automatically deduces the data type. For example, let’s
declare the following variables in the interactive mode of the interpreter:

>>> weight = height = 5

>>> weight * height

25

>>> type(weight)

<type 'int'>

While assigning the value to the weight variable, we didn’t specify the data type, but the
Python interpreter assigned it as an integer type, int. The interpreter assigned the int type
due to the reason that the numerical value didn’t contain any decimal points. Let’s now
declare a variable with a value containing a decimal point. The built-in function type ()
that can be used to find out the data type of a specified variable:

>>> length = 6.0

>>> weight * height * length
150.0

>>> type(length)

<type 'float'>

As you can see, the interpreter assigns the data type as float. The interpreter can also
deduce the type of complex numbers, as shown in following examples. You can access the

real and imaginary value of a complex number using the dot (.) operator followed by real
and imag:

>>> val = 2.0 + 3.9j
>>> val.real

2.0

>>> val.imag

3.9

Just to play more with complex numbers, let’s try the abs() and round() functions as
displayed in the following examples. They are built-in Python functions to obtain the
absolute value and the rounded number respectively:

>>> abs(val)
4.382921400162225
>>> round(val.imag)
4.0

Like numbers, the Python interpreter can also automatically identify the declaration of
string data types. In Python, string values are assigned using single or double quotes
around the value. When the interpreter sees any value enclosed within quotes, it considers
it to be a string. Python supports the usage of the + operator to concatenate strings:

>>> s "Hello"

>>> s2 = "World!"
>>> s1 + s2

www.it-ebooks.info

http://www.it-ebooks.info/

'HelloWorld!'
>>> 681 + " " + s2
'Hello World!'

A character type is a string of size one and the individual characters of a string can be
accessed by using index numbers. The first character of a string is indexed as 0. Play with
the following scripts to understand indexing (subscripting) in Python:

>>> s1[0]

IHI

>>> s1[:2]

lHel

>>> s1 + s2[5:]
'Hello!'

Note

Similar to the primary prompt with default notation >>>, the Python interactive interpreter
also has a secondary prompt that uses three dots (...) when it is being used from the
terminal. You won’t be able to see the three dots in IDLE when you use the secondary
prompt. The secondary prompt is used for a multiline construct, which requires continuous
lines. Execute the following commands by manually typing them in the interpreter, and do
not forget to indent the next line after the if statement with a tab:

>>> age = 14
>>> if age > 10 or age < 20:
print "teen"

teen

Data structures

Python supports four main data structures (1ist, tuple, set, and dictionary) and there
are a number of important built-in methods around these data structures.

Lists

Lists are used to group together values of single or multiple data types. The 1ist structure
can be assigned by stating values in square brackets with a comma (,) as a separator:

>>> myList = ['a', 2, 'b', 12.0, 5, 2]

>>> myList

['a', 2, 'b', 12.0, 5, 2]

Like strings, values in a list can be accessed using index numbers, which starts from 0. A
feature called slicing is used by Python to obtain a specific subset or element of the data
structure using the colon operator. In a standard format, slicing can be specified using the
myList[start:end:increment] notation. Here are a few examples to better understand
the notion of slicing:

e You can access a single element in a list as follows:

>>> myList[0]
lal

www.it-ebooks.info

http://www.it-ebooks.info/

You can access all the elements in the list by having empty start and end values:

>>> myList[:]
['a', 2, 'b', 12.0, 5, 2]

You can provide start and end index values to obtain a specific subset of the list:

>>> myList[1:5]

[2, 'b', 12.0, 5]

Use of the minus symbol with an index number tells the interpreter to use that index
number backwards. In the following example, -1 backwards actually represents the
index number 5:

>>> myList[1:-1]

[2, 'b', 12.0, 5]

You can obtain every other element of the list by providing the increment value with
start and end values:

>>> myList[0:5:2]

[1 a 1 , 1 b 1 , 5]

You can check the length of a list variable using the 1en() method. The usage of this
method will be handy in the upcoming projects:

>>> len(myList)
6

You can also perform various operations to add or delete elements in the existing list.
For example, if you want to add an element at the end of the list, use the append()
method on the list:

>>> myList.append(10)
>>> myList
['a', 2, 'b', 12.0, 5, 2, 10]

To add an element at a specific location, you can use the insert(i, x) method,

where i denotes the index value, while x is the actual value that you want to add to
the list:

>>> myList.insert(5, 'hello')
>>> myList
['a', 2, 'b', 12.0, 5, 'hello', 2, 10]

Similarly, you can use pop() to remove an element from the list. A simple pop()
function will remove the last element of the list, while an element at a specific
location can be removed using pop (i), where i is the index number:

>>> myList.pop()

10

>>> myList

['a', 2, 'b', 12.0, 5, 'hello',K6 2]
>>> myList.pop(5)

'hello'

>>> myList

www.it-ebooks.info

http://www.it-ebooks.info/

['a', 2, 'b', 12.0, 5, 2]
Tuples

Tuples are immutable data structures supported by Python (different from the mutable
structures of lists). An immutable data structure means that you cannot add or remove
elements from the tuple data structure. Due to their immutable properties, tuples are faster
to access compared to lists and are mostly used to store a constant set of values that never
change.

The tuple data structure is declared like 1ist, but by using parentheses or without any
brackets:

>>> tupleA
>>> tupleA
(1, 2, 3)

>>> tupleB
>>> tupleB
(1, 'a', 3)

]
(Y
N
w

1
—
Y

<4
w
N

Just like in a 1ist data structure, values in tuple can be accessed using index numbers:

>>> tupleB[1]

1 a)

As tuples are immutable, list manipulation methods such as append(), insert(), and
pop() don’t apply for tuples.

Sets

The set data structure in Python is implemented to support mathematical set operations.
The set data structure includes an unordered collection of elements without duplicates.
With its mathematical use cases, this data structure is mostly used to find duplicates in
lists, as conversion of a list to a set using the set () function removes duplicates from the
list:

>>> listA = [1, 2, 3, 1, 5, 2]
>>> setA = set(listA)

>>> setA

set([1, 2, 3, 5])

Dictionaries

The dict data structure is used to store key-value pairs indexed by keys, which are also
known in other languages as associative arrays, hashes, or hashmaps. Unlike other data
structures, dict values can be extracted using associated keys:

>>> boards = {'uno':328, 'mega’':2560, '1lily':'128'}
>>> boards['lily']

'128'

>>> boards.keys()

['1lily', 'mega', 'uno']

Note

www.it-ebooks.info

http://www.it-ebooks.info/

You can learn more about Python data structures and associated methods at
https://docs.python.org/2/tutorial/datastructures.html.

www.it-ebooks.info

https://docs.python.org/2/tutorial/datastructures.html
http://www.it-ebooks.info/

Controlling the flow of your program

Just like any other language, Python supports controlling the program flow using
compound statements. In this section, we will briefly introduce these statements to you.
You can get detailed information about them from the official Python documentation at

https://docs.python.org/2/reference/compound _stmts.html.
The if statement

The if statement is the most basic and standard statement used to set up conditional flow.
To better understand the if statement, execute the following code in the Python interpreter
with different values of the age variable:

>>> age = 14

>>> if age < 18 and age > 12:
print "Teen"

elif age < 13:
print "Child"

else:
print "Adult"

This will result in Teen being printed on the interpreter.

The for statement

Python’s for statement iterates over the elements of any sequence according to the order
of the elements in that sequence:

>>> celsius = [13, 21, 23, 8]
>>> for ¢ in celsius:
print " Fahrenheit: "+ str((c * 1.8) + 32)

This will result in the Python interpreter generating the following output that will display
the calculated Fahrenheit values from the given Celsius values:

Fahrenheit: 55.4
Fahrenheit: 69.8
Fahrenheit: 73.4
Fahrenheit: 46.4

The while statement

The while statement is used to create a continuous loop in a Python program. A while
loop keeps iterating over the code block until the condition is proved true:

>>> count = 5

>>> while (count > 0):
print count
count = count - 1

The while statement will keep iterating and printing the value of the variable count and

also reduce its value by 1 until the condition, that is (count >), becomes true. As soon
as the value of count is lower than or equal to 0, the while loop will exit the code block
and stop iterating.

www.it-ebooks.info

https://docs.python.org/2/reference/compound_stmts.html
http://www.it-ebooks.info/

The other compound statements supported by Python are try/catch and with. These
statements will be explained in detail in the upcoming chapters. Python also provides loop
control statements such as break, continue, and pass that can be used while a loop is
being executed using the compound statements mentioned earlier. You can learn more
about these Python features from https://docs.python.org/2/tutorial/controlflow.html.

www.it-ebooks.info

https://docs.python.org/2/tutorial/controlflow.html
http://www.it-ebooks.info/

Built-in functions

Python supports a number of useful built-in functions that do not require any external
libraries to be imported. We have described a few of these functions as a collection of a
respective category, according to their functionalities.

Conversions

Conversion methods such as int (), float(), and str() can convert other data types into
integer, float, or string data types respectively:

>> a = 'a'

>>> int(a, base=16)
10

>> 1 =1

>>> str(1i)

I1l

Similarly, 1ist (), set(), and tuple() can be used to convert one data structure into
another.

Math operations

Python also supports built-in mathematical functions that can find the minimum and/or
maximum values from a list. Check out the following examples and play around with the
different data structures to understand these methods:

>>> list = [1.12, 2, 2.34, 4.78]
>>> min(list)

1.12

>>> max(list)

4.78

The pow(x, y) function returns the value of x to the power of y:

>>> pow(3.14159, 2)
9.869587728099999

String operations

Python provides easy access to string manipulation through built-in functions that are
optimized for performance. Let’s take a look at the following examples:

e Code to replace occurrences of a string or substring with a different one:

>>> str = "Hello World!"
>>> str.replace("World", "Universe")
'Hello Universe!'

e Code to split a string with a separating character where the default character is space:

>>> str = "Hello World!"
>>> str.split()
['Hello', 'World!']

e Code to split a string from a separating character for any other character:

www.it-ebooks.info

http://www.it-ebooks.info/

>>> str2 = "John, Merry, Tom"
>>> str2.split(",")
['John', ' Merry', ' Tom']

Code to convert an entire string value into uppercase or lowercase:

>>> str = "Hello World!"
>>> str.upper()

'"HELLO WORLD'!'

>>> str.lower()

'hello world!'

Note

The Python documentation on the official website covers every built-in function in
detail with examples. For better understanding of Python programming, visit

https://docs.python.org/2/library/functions.html.

www.it-ebooks.info

https://docs.python.org/2/library/functions.html
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction to Arduino

Any electronic product that needs computation or interfacing with other computers first
requires a quick prototyping of the concept using simple tools. Arduino is an open source
hardware prototyping platform designed around a popular microcontroller family, and it
includes a simple software development environment. Besides prototyping, you can also
use Arduino for the development of your own do-it-yourself (DIY) projects. Arduino
bridges the computational world with the physical world by letting you simply connect the
sensors and actuators with a computer. Basically, you can write code to monitor and
control various electronic components in your daily life by using Arduino’s input/output
pins and microcontroller. Examples of these components include motors, thermostats,
lights, switches, and many more.

www.it-ebooks.info

http://www.it-ebooks.info/

History

In 2005, Massimo Banzi, the Italian cofounder of Arduino, developed the technology for
his students at Interaction Design Institute Ivrea (IDII). Since then, Arduino has
developed into one of the largest open source hardware platforms. All software
components and schematics of the Arduino design are open source, and you can buy the
hardware at a very low cost—approximately 30 dollars—or you can even make it
yourself.

www.it-ebooks.info

http://www.it-ebooks.info/

Why Arduino?

The major goal of the Arduino community is to continuously improve the Arduino
platform with the following objectives in mind:

The Arduino platform should be an affordable platform

It should be easy to use and easy to code

It should be an open source and extensible software platform
It should be an open source and extensible hardware platform
It should have community-supported DIY projects

These simple but powerful objectives have made Arduino a popular and widely used
prototyping platform. Arduino uses Atmel’s ATmega series of microcontrollers that are
based on the popular hardware architecture of AVR. The huge support that is available for
AVR architecture also makes Arduino a hardware platform of choice. The following
image shows the basic version of the Arduino board, which is called Arduino Uno (Uno
means one in Italian):

o =0
I

& m o~
= = 4 4
= v !

DIGITAL (PUR=~)

L - 'lﬂttttttttt tlﬁ
U 0);
T IR ll‘::::,‘::::,l Pﬁiuum BON
Arduino .

ANALOG IN

2 A4 U m F Wn
=3

= - - = = |

www.it-ebooks.info

http://www.it-ebooks.info/

Arduino variants

Like any other project, hardware requirements are driven by project specifications. If you
are developing a project that requires you to interface with a large number of external
components, you need a prototyping platform that has a sufficient number of input/output
(I/0) pins for interfacing. If you are working on a project that needs to perform a huge
amount of complex calculations, you require a platform with more computation capability.

Fortunately, the Arduino board exists in 16 different official versions, and each version of
Arduino differs from the others in terms of form factor, computational power, I/O pins,
and other on-board features. Arduino Uno is the basic and most popular version, which is
sufficient enough for simple DIY projects. For the majority of exercises in this book, we
will be using the Arduino Uno board. You can also use another popular variant called
Arduino Mega, which is a larger board with extra pins and a powerful microcontroller.
The following table shows the comparison of some of the more popular and active
variants of the Arduino board:

Name Processor Processor Digital Digital I/0 with Analog
frequency 1/0 PWM 1/0

Arduino Uno ||ATrnega328 ||16 MHz ||14 ||6 ||6
Arduino ATmega32ud 16 MHz 14 6 12
Leonardo
Arduino Mega ||ATrnega2560 ||16 MHz ||54 ||14 ||16
Arduino Nano ||ATrnega328 ||16 MHz ||14 ||6 ||8
Arduino Due ||AT915AM3X8E ||84 MHz ||54 ||12 ||12

. . ATmegal68v or
LilyPad Arduino ATmega328v 8 MHz 14 6 6

Any of these variants can be programmed using a common integrated development
environment called Arduino IDE, which is described in the upcoming section. You can
select any one of these Arduino boards according to your project requirements, and the
Arduino IDE should be able to compile and download the program to the board.

www.it-ebooks.info

http://www.it-ebooks.info/

The Arduino Uno board

As Uno is going to be the de facto board for the majority of the projects in this book, let’s
get ourselves familiar with the board. The latest revision of the Uno board is based on
Atmel’s ATmega328 microcontroller. The board extends the I/O pins of the
microcontroller to the peripheral, which can then be utilized to interface components using
wires. The board has a total of 20 pins to interface, out of which 14 are digital I/O pins and
6 are analog input pins. From the 14 digital I/O pins, 6 pins also support pulse-width
modulation (PWM), which supports the controlled delivery of power to connected
components.

The board operates on 5V. The maximum current rating of the digital I/O pins is 40 mA,
which is sufficient to drive most of the DIY electronic components, excluding motors with
high current requirements.

While the previous image provided an overview of the Uno board, the following diagram
describes the pins on the Uno board. As you can see, the digital pins are located on one
side of the board while the analog pins are on the opposite side. The board also has a
couple of power pins that can be used to provide 5V and 3.3V of power to external
components. The board contains ground pins on both sides of the board as well. We will
be extensively using 5V of power and ground pins for our projects. Digital pins D0 and
D1 support serial interfacing through the Tx (transmission) and Rx (receiver) interfaces
respectively. The USB port on the board can be used to connect Arduino with a computer.

Analog pins
> P I = B = = ¥ = 3
m B W R = O - &8 m m
G A TR omom
~ £ .
Ly
= —
et
— E
FCa Z2f—
-~ < =2 C
- 2 W @ 5
=} — = -
- zZr—
8
~ A 2 @
mﬁ% MEEE‘\: T |)
T 5 W] = = = = =
sz £ £ : : z¢
un _- . [2 o o o
2 2 & w o =2 o2 8 9 ¥ RXRBREE
Digital pins

Now that we are familiar with the Arduino hardware, let’s move on to programming the
Arduino board.

www.it-ebooks.info

http://www.it-ebooks.info/

Installing the Arduino IDE

The first step to start getting familiar with Arduino is to install the Arduino integrated
development environment (IDE). According to the operating system that you selected at
the beginning of the Python installation section, follow the appropriate subsection to
install the correct IDE.

Linux

The installation of the Arduino IDE is really simple in Ubuntu. The Ubuntu repository
already includes the Arduino IDE with the required dependencies.

For Ubuntu 12.04 or a newer version, execute the following command in the terminal to
install Arduino:

$ sudo apt-get update && sudo apt-get install arduino arduino-core

The latest version of the Arduino IDE in the Ubuntu repository is 1.0.3. You can obtain
more information regarding other Ubuntu-related questions at

http://playground.arduino.cc/Linux/Ubuntu.

For Fedora 17 or a newer version of Red Hat Linux, execute the following script in the
terminal:

$ sudo yum install arduino

Answers to additional installation questions for Fedora can be obtained at
http://playground.arduino.cc/Linux/Fedora.

Mac OS X
To install the Arduino IDE on Mac OS X (10.7 or newer), perform the following steps:

1. From http://arduino.cc/en/Main/Software, download the latest version of the Arduino
IDE for Mac OS X, which was 1.0.5 when this book was being written.
2. Unzip and drag Arduino to the application folder.

The Arduino IDE is built in Java and requires that your computer is equipped with the
appropriate version of Java. Open the IDE from your applications. If you don’t have Java
installed on your Mac, the program will prompt you with a pop-up window and ask you to
install Java SE 6 runtime. Go ahead and install Java (as per the request) as the OS X will
automatically install it for you.

Windows

Installation of Arduino for Windows is very simple. Download the setup file from
http://arduino.cc/en/Main/Software. Select the most recent version of the Arduino IDE,
that is, 1.0.x or a newer version.

Make sure you download the appropriate version of the Arduino IDE according to your
operating system, that is, 32 bit or 64 bit. Install the IDE to the default location as
specified in the installation wizard. Once installed, you can open the IDE by navigating to

www.it-ebooks.info

http://playground.arduino.cc/Linux/Ubuntu
http://playground.arduino.cc/Linux/Fedora
http://arduino.cc/en/Main/Software
http://arduino.cc/en/Main/Software
http://www.it-ebooks.info/

Start | Programs.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Getting started with the Arduino IDE

The Arduino IDE is a cross-platform application developed in Java that can be used to
develop, compile, and upload programs to the Arduino board. On launching the Arduino
IDE, you will find an interface similar to the one displayed in the following screenshot.
The IDE contains a text editor for coding, a menu bar to access the IDE components, a
toolbar to easily access the most common functions, and a text console to check the
compiler outputs. A status bar at the bottom shows the selected Arduino board and the port
name that it is connected to, as shown here:

sketch_decl4a | Arduino 1.0.5 el

File Edit Sketch Tools Help

& o [% |':J e D

sketch_declda

Arduino Uno on COMS

www.it-ebooks.info

http://www.it-ebooks.info/

What is an Arduino sketch?

An Arduino program that is developed using the IDE is called a sketch. Sketches are
coded in Arduino language, which is based on a custom version of C/C++. Once you are
done with writing the code in the built-in text editor, you can save it using the.ino
extension. When you save these sketch files, the IDE automatically creates a folder to
store them. If you are using any other supporting files for a sketch, such as header files or
library files, they are all stored at this location (which is also called a sketchbook).

To open a new sketchbook, open the Arduino IDE and select New from the File menu, as
shown in the following screenshot:

[@ sketch decl4a | Arduino 1.0.5 E=REEE)
Edit Sketch Tools Help
Mew Ctrl+M
Open... Ctrl+0
Sketchbook *
Examples J B
Close Ctrl+W
Save Ctrl+5
Save As... Ctrl+ Shift+5
Upload Ctrl+U -
Upload Using Programmer Ctrl+5Shift+U ’

Page Setup Ctrl+5Shift+P
Print Ctrl+P
Preferences Ctrl+ Comma
Quit Ctrl+Q

Arduino Uno on COMS

You will be prompted with an empty text editor. The text editor supports standard features
(that is, copy/paste, select, find/replace, and so on). Before we go ahead with an Arduino
program, let’s explore the other tools provided by the IDE.

Note

The Arduino IDE version prior to 1.0 used the . pde extension to save sketchbooks.
Starting from 1.0, they are saved with the . ino extension. You can still open files with the
.pde extension in the latest IDE. Later, the IDE will convert it to the . ino extension when
you save them.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with libraries

The Arduino IDE uses libraries to extend the functionalities of existing sketches. Libraries
are a set of functions combined to perform tasks around a specific component or concept.
The majority of the built-in Arduino libraries provide methods to start working with
external hardware components. You can import any library by navigating to Sketch |
Import Library..., as shown in the following screenshot:

[@ sketch nov03a | Arduino 105 oo S
File Edit [Sketch] Tools Help _
Verify / Compile Ctrl+R
sketch, Show Sketch Folder Ctrl+K

Add File... _ 2

Import Library...] Add Library...
EEPROM
Esplora
Ethernet
Firmata
GSM =

]
LiquidCrystal
Robot_Control
Robot_Motor
5D
Servo
SoftwareSerial e o
e ——————————————— SPI

Stepper
TFT
WiFi
Wire

You can also use a library for your sketch by just specifying the library with the #include
statement at the beginning of the sketch, that is, #include <wire.h>.

The Arduino IDE also provides the capability to add an external library that supports a
specific hardware or provides additional features. In the upcoming chapters, we will be
dealing with some of these external libraries, and we will go through the process of
importing them at that time.

You can learn more about built-in Arduino libraries from
http://arduino.cc/en/Reference/Libraries.

www.it-ebooks.info

http://arduino.cc/en/Reference/Libraries
http://www.it-ebooks.info/

Using Arduino examples

The Arduino IDE contains a large number of built-in example sketches. These examples
are designed to get the user familiar with basic Arduino concepts and built-in Arduino
libraries. The examples are well maintained by the Arduino community since they have
comprehensive support for each example through the Arduino website
(http://arduino.cc/en/Tutorial/HomePage). In the Arduino IDE, you can access these
examples by navigating to File | Examples, as shown in the following screenshot:

3 1 [

€D sketch_declda | Arduino 1.0.5 01 Basics = AieiogResdterial
[E\ Edit Sketch Tools Help 02.Digital 3 BareMinimum

Mew Ctrle N 03.Analog ¥ Blink

Open... Ctri+0 04.Communication # DigitalReadSerial

Sketchbook ¥ 05.Control ¥ Fade

Examples * 06.5ensors k ReaddnalogVoltage

Close Ctrl+ W 07.Display ¥

Save Ctrl+5 08.5trings ¥

Save As... Cerl+Shift+5 09.USB b

Upload Ctri+L 10.5tarterKit k

Uplead Using Programmer Ctrl+Shift+LU ArduinolsP &

Page Setup Ctri+ Shift+P BH1750 b ’

Prnt Crl+P PubSubChent b

Preferences Ctrl+Comma s i f

Quit Ctri+Q EEPROM 3

Esplora ¥

Let’s start with a simple in-built example. Open the Blink example by navigating to File |
Examples | 01.Basics | Blink. The IDE will open a new window containing code that is
similar to the code in the following program:

/*
Blink
Turns on an LED on for one second, then off for one second, repeatedly.

This example code is in the public domain.
*/

// Pin 13 has an LED connected on most Arduino boards.
// give it a name:
int led = 183;

// the setup routine runs once when you press reset:
void setup() {
// initialize the digital pin as an output.
pinMode(led, OUTPUT);

}

// the loop routine runs over and over again forever:

www.it-ebooks.info

http://arduino.cc/en/Tutorial/HomePage
http://www.it-ebooks.info/

void loop() {
digitalWrite(led, HIGH); // turn the LED on (HIGH is the voltage level)

delay(1000); // wait for a second
digitalwWrite(led, LOW); // turn the LED off by making the voltage LOW
delay(1000); // wait for a second

}

This Arduino sketch is designed to blink an LED on digital pin 13. You must be
wondering why we didn’t discuss or ask you to bring any hardware. That’s because the
Arduino Uno board is equipped with an on-board LED that is connected to digital pin 13.
Now, instead of diving deeper into the Arduino code, we are going to focus on the process
of dealing with the Arduino board through the IDE.

www.it-ebooks.info

http://www.it-ebooks.info/

Compiling and uploading sketches

Once you have your code opened in the IDE, the first thing you need to do is to select the
type of Arduino board on which you are going to upload your sketch. The Arduino IDE
needs to know the type of board in order to compile the program for the appropriate
microcontroller, as different Arduino boards can have different Atmel microcontrollers.
Therefore, you need to perform this step before you go ahead with the compiling or
uploading of the program to the board.

You can select the Arduino board by navigating to Tools | Board, as displayed in the
following screenshot:

(@ sketch_novo3a| Arduing 105 ESE)
_Fil: Edit Sketch M| Help

Auto Format Ctrl+T ﬂ
Archive Sketch

sketch_novl3s & Encoding & Reload M
Serial Monitor Cirl+Shift+M ‘
Board ¥ @ Arduine Uno
Serial Port ¥ Arduino Duemilanove w/ ATmega328

Programmer L Arduino Diecimila or Duemilancve w/ ATmegal68
Boin Boctads Arduine Nano w/ ATmega32s

Arduine Nano w/ ATmegal 63

Arduino Mega 2560 or Mega ADK

Arduine Mega [ATmegal 280)

Arduine Leonardo

Arduino Esplora

Arduino Micro

Arduine Mini w/ ATmega328

Arduino Mini w' ATmegal 68

Arduino Ethernet

i Arduine Fio

Arduino BT wy ATmega328

Arduino BT wy/ ATmegal6s

LilyPad Arduino USE

LilyPad Arduing w/ ATmega32B

LilyPad Arduino w/ ATmegal 68

Arduine Pro or Pro Mini (5V, 16 MHz) w/ ATmega328
—_— Arduing Pro or Pro Mini (5V, 16 MHz) w/ ATmegals8
Arduino Pro or Pro Mini (3.3V, 8 MHz) w/ ATmega32g
Arduine Pro or Pro Mini 3.3V, B MH:z) w/ ATmegal 68
Arduing NG or older w/ ATmegal 68
Arduino NG or older wy/ ATmegal

Arduino Robot Control
Arduino Robot Motor

Select Arduino Uno from the list of boards, unless you are using a different Arduino
board. Once you have selected the board, you can go ahead and compile the sketch. You
can compile the sketch by navigating to Sketch | Verify / Compile from the menu bar or
by using the keyboard shortcut Ctrl + R. If everything is set up well, you should be able to

www.it-ebooks.info

http://www.it-ebooks.info/

compile the code without any error.

After successfully compiling the sketch, it is time to upload the compiled code to the
Arduino board. To do this, you need to make sure that your Arduino IDE is properly
connected to your computer. If it is not already connected, connect your Arduino board to
your computer using a USB port. Now, it is time to let your IDE know the serial port on
which the board is connected. Navigate to Tools | Serial Ports and select the appropriate
serial port.

Note

In the case of some Linux distributions, you may not be able to see or upload the Arduino
program to the board due to permission restriction(s) on the serial port. Running the
following command on the terminal should solve that problem:

$ sudo usermod -a -G uucp, dialout, lock <username>

You can now upload the compiled sketch to your Arduino board by navigating to File |
Upload. This process will use the serial connection to burn the compiled firmware in the
microcontroller. Please wait for some time or until the LEDs (Tx and Rx LEDs) on the
board stop flashing. Now, you have your Arduino board ready with your first sketch. You
can observe the performance of the blinking LED near digital pin 13.

www.it-ebooks.info

http://www.it-ebooks.info/

Using the Serial Monitor window

In the previous process, we used a Universal Serial Bus (USB) cable to connect your
Arduino board to a USB port of your computer. The USB port is an industrial standard to
provide an interface for connecting various electronic components to a computer using the
serial interface. When you connect an Arduino board using USB, the computer actually
interfaces it as a serial peripheral device. Throughout the book, we are going to refer to the
connections made using a USB as serial connections. The Serial Monitor window is a
built-in utility of the Arduino IDE. The Serial Monitor window can be accessed by
navigating to Tools | Serial Monitor or by using the Ctrl + Shift + M keyboard shortcut. It
can be configured to observe data that is being sent or received on the serial port that is
used to connect the Arduino board to the computer. You can also set the baud rate for the
serial communication using the drop-down menu option. This utility is going to be very
useful (further on in the book) when testing your prototypes and their performances.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction to Arduino programming

The Arduino platform was introduced to simplify electronic hardware prototyping for
everyone. For this reason, Arduino programming was intended to be easy to learn by
nonprogrammers such as designers, artists, and students. The Arduino language is
implemented in C/C++, while the fundamentals of the sketch and program structures are
derived from an open source programming language called Processing and an open source
electronic prototyping language called Wiring.

www.it-ebooks.info

http://www.it-ebooks.info/

Comments

Arduino follows a commenting format that is adopted from C and it is similar to higher-
level languages; however, it is different from the Python comment format that we learned
earlier in this chapter. There are various methods of commenting, which are as follows:

¢ Block comment: This is done by covering the commented text between /* and */:

/* This is a comment.

* Arduino will ignore any text till it finds until the ending comment
syntax, which 1is,

*/

¢ Single-line or inline comment: This is done by using // before the line:

// This syntax only applies to one line.
// You have to use it again for each next line of comment.
int pin = 13; //Selected pin 13

Usually, a block comment at the beginning of the sketch is mostly used to describe the
program as a whole. Single-line comments are used to describe specific functions or to-do
notes, such as the following one:

//TODO: explain variables next.

www.it-ebooks.info

http://www.it-ebooks.info/

Variables

Like any other high-level language, a variable is used to store data with three components:
a name, a value, and a type. For example, consider the following statement:
int pin = 10;

Here, pin is the variable name that is defined with the type int and holds the value 10.
Later in the code, all occurrences of the pin variable will retrieve data from the
declaration that we just made here. You can use any combination of alpha-numeric
characters to select the variable name as long as the first character is not a number.

www.it-ebooks.info

http://www.it-ebooks.info/

Constants

In the Arduino language, constants are predefined variables that are used to simplify the
program:

e HIGH, Low: While working with digital pins on the Arduino board, only two distinct
voltage stages are possible at these pins. If a pin is being used to obtain an input, any
measure above 3V is considered a HIGH state. If you are using a pin for output, then
the HIGH state will set the pin voltage to 5V. The opposite voltage levels are
considered as LOW states.

e false, true: These are used to represent logical true and false levels. false is
defined as 0 and true is mostly defined as 1.

e INPUT, OUTPUT: These constants are used to define the roles of the Arduino pins. If
you set the mode of an Arduino pin as INPUT, the Arduino program will prepare the
pin to read sensors. Similarly, the OUTPUT setting prepares the pins to provide a
sufficient amount of current to the connected sensors.

We will utilize these constants later in the book and we will also explain them with
example code.

www.it-ebooks.info

http://www.it-ebooks.info/

Data types

The declaration of each custom variable requires the user to specify the data type that is
associated with the variable. The Arduino language uses a standard set of data types that
are used in the C language. A list of these data types and their descriptions are as follows:

e void: This is used in the function declaration to indicate that the function is not going
to return any value:

void setup() {
// actions

}

e boolean: Variables defined with the data type boolean can only hold one of two
values, true or false:

boolean ledState = false;

e byte: This is used to store an 8-bit unsigned number, which is basically any number
from 0 to 255:

byte b = OxFF;

e int: This is short for integers. It stores 16-bit (Arduino Uno) or 32-bit (Arduino Due)
numbers and it is one of the primary number storage data types for the Arduino
language. Although int will be used to declare numbers throughout the book, the
Arduino language also has 1long and short number data types for special cases:

int varInt = 2147483647;
long varLong = varInt;
short varShort = -32768;

e float: This data type is used for numbers with decimal points. These are also known
as floating-point numbers. float is one of the more widely used data types along
with int to represent numbers in the Arduino language:

float varFloat = 1.111;

e char: This data type stores a character value and occupies 1 byte of memory. When
providing a value to char data types, character literals are declared with single
quotes:

char myCharacater = 'P';

e array: An array stores a collection of variables that is accessible by an index
number. If you are familiar with arrays in C/C++, it will be easier for you to get
started, as the Arduino language uses the same C/C++ arrays. The following are
some of the methods to initialize an array:

int myIntArray[] = {1, 2, 3, 4, 5},

int tempValues[5] { 32, 55, 72, 75};
char msgArray[10] "hello!";

An array can be accessed using an index number (where the index starts from number

www.it-ebooks.info

http://www.it-ebooks.info/

0):

myIntArray[0] ==
msgArray[2] == 'e'

www.it-ebooks.info

http://www.it-ebooks.info/

Conversions

Conversion functions are used to convert any data type value into the provided data types.
The Arduino language implements the following conversion functions that can be utilized
during programming;:

char (): This converts the value of any data type to the character data type

byte(): This converts the value of any data type to the byte data type

int(): This converts the value of any data type to the integer data type

float(): This converts the value of any data type to the floating-point number data

type

As a demonstration of using these functions, check out the following example:

int myInt = 10;
float myfloat = float(myInt);

Implementation of the preceding code will create a floating-point variable, myFloat, with
value 10.0 using the integer value initialized by the myInt variable.

www.it-ebooks.info

http://www.it-ebooks.info/

Functions and statements

Functions, also called subroutines or procedures, are a piece of code implemented to do
specific tasks. The Arduino language has some predefined functions and the user can also
write custom functions to implement certain program logic. These custom functions can
then be called from any part of the sketch to perform a specific task. Functions help
programmers to simplify debugging, to reduce chances for error, and to organize coding
concepts:

void blinkLED(){
// action A;
// action B;

}

The Arduino language has a set of library functions to simplify the programming
experience. Although not all of these library functions are required by an Arduino sketch,
setup() and loop() are mandatory functions and they are required to successfully
compile the sketch.

The setup() function

When Arduino runs a sketch, it first looks for the setup() function. The setup() function
is used to execute important programming subroutines before the rest of the program, such
as declaring constants, setting up pins, initializing serial communication, or initializing
external libraries. When Arduino runs the program, it executes the setup() functions only
once. If you check out the Blink sketch that we used in the previous section, you can see
the initialization of the setup() function, as displayed in the following code snippet:

void setup() {
// initialize the digital pin as an output.
pinMode(led, OUTPUT);

}

As you can see in our example, we used the pinMode () function to assign the role of the
LED pin in the setup() function.

The loop() function

Once Arduino has executed the setup() function, it starts iterating the loop() function
continuously. While setup() contains the initialization parameters, loop() contains the
logical parameters of your program:

void loop() {
digitalWrite(led, HIGH);
delay(1000);
digitalwWrite(led, LOW);
delay(1000);

}

As you can see in the preceding code snippet from the Blink sketch, the 1oop() function
executes the main code that blinks the LED and repeats the process iteratively.

www.it-ebooks.info

http://www.it-ebooks.info/

The pinMode() function

The pinMode () function is used to set the behavior of Arduino. As we saw in the setup()
function of the Blink sketch, the pinMode () function configures the LED pin for ouTPUT:

pinMode(led, OUTPUT)

Here, the led variable is assigned to digital pin 13, whose mode will be changed by the
pinMode() function.

Working with pins

Once you are done configuring the pins that will be used by your program, you also need
help in reading the input from these pins or for sending signals to them. Arduino provides

a few specific functions to handle these scenarios:

e digitalwrite(): This was developed for digital I/O pins. This function sets the pin
to HIGH (5V) or Low (0V), which are already configured as OUTPUT using pinMode ().

For example, the following line of code sets digital pin 13 to HIGH:

digitalwWrite(13, HIGH);

e digitalRead(): Similar to digitalwrite(), this function helps you to read the state

of a digital pin that is configured as INPUT:

value = digitalRead(13);

e analogRead(): This function reads the value from a specific analog pin. The value is

linearly mapped between the integer value of 0 and 1023 to represent the voltage
from OV to 5V:

value = analogRead(0);

analogwrite(): This function is used to provide analog output results at a digital pin.
The technique is called PWM, and this will be explained in Chapter 4, Diving into
Python-Arduino Prototyping. It is still important to note that this function is not
designed for all digital pins, but it is only for pins that are designated as PWM pins.

Statements

If you are familiar with any other object-oriented programming language, you must have

used statements extensively for your programs. The Arduino language uses traditional
C/C++ statements such as if/else, while, switch/case, and for to control the flow of
your program. Instead of diving deep into these statements right now, they are described
later in the book with practical examples.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Summary

Alright! You have successfully completed the comparatively mundane tasks of installing
and configuring Python and the Arduino IDE. Your system, whether it is a Mac OS X,
Linux, or Windows system, is now ready for the upcoming chapters. In this chapter, we
went through the history and building blocks of Arduino. We also learned the basics of
Python programming and the Arduino language. Now, you are ready to get your hands on
real hardware and start exploring computer to hardware interfacing. In the next chapter,
we will go through the first step of interfacing, that is, connecting Arduino to the computer
using a serial interface.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2. Working with the Firmata
Protocol and the pySerial Library

In the previous chapter, you learned the fundamentals of the Python programming
language and the Arduino hardware platform so that you could get started. If you are
reading this chapter directly without going through the previous chapter, it is assumed that
you have some level of expertise or working experience with these technologies. This
chapter describes two important components that are required to bridge Arduino with
Python:

e The Arduino Firmata protocol
e Python’s serial library called pySerial

Although the Firmata protocol is useful to interface Arduino with Python, it can also be
used as an independent tool to develop a large variety of applications.

It is time to take your Arduino hardware out and start getting your hands dirty. During the
course of this chapter, you will require an LED, a breadboard, and a 1 kilo-ohm resistor as
well as the components that you already used in the previous chapter, that is, Arduino Uno
and a USB cable.

Note

If you are using any other variant of Arduino, you can obtain further information about it
from http://arduino.cc/en/Guide/HomePage or the community-supported Arduino forum
that is located at http://forum.arduino.cc/.

www.it-ebooks.info

http://arduino.cc/en/Guide/HomePage
http://forum.arduino.cc/
http://www.it-ebooks.info/

Connecting the Arduino board

As mentioned in the previous chapter, this book supports all major operating systems, and
this section will provide you with steps to connect and configure the Arduino board for
these operating systems. In the previous chapter, we utilized example code to get started
with the Arduino IDE. If you were unable to successfully communicate with Arduino by
following the information given in the previous chapter, follow the instructions provided
in this section to establish a connection between your computer and your Arduino. First,
connect your Arduino board to your computer’s USB port using a USB cable and follow
the steps according to your operating system.

www.it-ebooks.info

http://www.it-ebooks.info/

Linux

If you are using the latest version of Ubuntu Linux, once you connect the Arduino board
and open the Arduino IDE, you will be asked to add your username to the dailout group,
as displayed in the following screenshot. Click on the Add button and log out from the
system. You don’t need to restart the computer for the changes to take effect. Log in with
the same username and open the Arduino IDE.

You need to be added to the "dailout”

group to upload code to an Arduino
microcontroller over the USB or
serial ports.

You must log out and log in again
before any group changes
will take effect.

Ignore Add

If you don’t see this dialog box, check whether you can see the Serial Port option in the
Tools menu of the Arduino IDE. It is possible that the installation of other programs might
have added your username to the dailout group already. If you don’t get the dialog box and
don’t have any options to select in Serial Port, execute the following script in the
terminal, where <username> is your Linux username:

$ sudo usermod -a -G dialout <username>

This script will add your username to the dialout group, and it should also work for other
Linux versions. In Linux, the Arduino board mostly gets connected as /dev/ttyACMXx,
where x is the integer value and depends on your physical port address. If you are using
any other distribution of Linux other than Ubuntu, you might want to check out the proper
groups associated with the Arduino serial port from the Linux installation page
(http://playground.arduino.cc/I.earning/Linux) of the Arduino website.

Note

For the Fedora Linux distribution, add the uucp and lock groups with the dialout group
to control the serial port:

$ sudo usermod -a -G uucp,dialout, lock <username>

www.it-ebooks.info

http://playground.arduino.cc/Learning/Linux
http://www.it-ebooks.info/

Mac OS X

In Mac OS X, when you connect your Arduino through a serial port, the OS configures it
as a network interface. In OS X Mavericks, once the Arduino board is connected, open
Network from System Preferences. A dialog box should appear that states that a new
network interface has been detected. Click on OK for Thunderbolt Bridge and then click
on Apply. The following screenshot displays the dialog box to add a new network
interface:

Y 8 Network

New Interface Detected

A new network interface has been detected:

m
ﬂi:

a Wi-Fi Thunderbolt Bridge
Please verify that it is configured correctly, then press e
@ USB Modem Apply to activate it. ki
| oK f
o Th.und...ther —
@ Fitbit B...Station (3 3 IP Address:
E Subnet Mask:
@ Bluetooth PAN 0
t Y Router:
DNS Server:

Search Domains:

Advanced... (7)

Assist me., Revert Apply

For OS X Lion or later versions, on connecting the Arduino board, a dialog box will
appear that will ask you to add a new network interface. In this case, you will not have to
navigate to your network preferences. If you see the network interface with the status Not
connected and highlighted in red, don’t worry about it as it should work just fine.

Open the Arduino IDE and navigate to Serial Port from the Tools menu. You should be
able to see options similar to those displayed in the following screenshot. The serial port
on which the Arduino board is connected might vary according to your OS X version and
the physical port to which it is connected. Make sure that you select a tty interface for a
USB modem. As displayed in the following screenshot, the Arduino board is connected to
the serial port /dev/tty.usbmodemfdi121:

www.it-ebooks.info

http://www.it-ebooks.info/

Board >
/dev/tty.Bluetooth-Incoming-Port
/dev/cu.Bluetooth-Incoming-Port
/dev/tty.Bluetooth-Modem
{dev/cu.Bluetooth-Modem
v [dev/tty.usbmodemfdl1211
fdev/cu.usbmodemfd1211

Programmer >
Burn Bootloader

www.it-ebooks.info

http://www.it-ebooks.info/

Windows

The configuration of the Arduino serial port is very straightforward if you are using
Windows. When you connect your Arduino board the very first time, the operating system
will automatically install the necessary drivers by itself. Once this process is complete,
select an appropriate COM port from the Serial Port option in the menu bar. From the
main menu, navigate to Tools | Serial Port and select the COM port.

www.it-ebooks.info

http://www.it-ebooks.info/

Troubleshooting

Even after following the steps mentioned earlier, if you still don’t see the highlighted
Serial Port option as displayed in the following screenshot, then you have got a problem.
There can be two main reasons for this: the serial port is being used by another program or
the Arduino USB drivers are not installed properly.

If any program other than the Arduino IDE is using the specific serial port, terminate that
program and restart the Arduino IDE. Sometimes in Linux, the br1tty library conflicts
with the Arduino serial interface. Remove this library, log out, and log back in:

$ sudo apt-get remove brltty

In Windows, reinstalling the Arduino IDE also works, as this process installs and
configures the Arduino USB driver again.

h_novi2a | Arduino 1.0.3

- [TOBE Help

! Auto Format
Archive Sketch
Fix Encoding & Reload

Serial Monitor Cerl+Shift+i
Board v
Frogrammer b

Burm Bootloader

Tip
The Arduino board can be used by only one program at a time. It is very import to make
sure that any previously used program or other services are not using the serial port or

Arduino when you try to use the Arduino IDE. This check will become very important
when we start using multiple programs to control Arduino in the next section.

Assuming that you can now select the serial port in the Arduino IDE, we can go ahead
with compiling and uploading sketches to your Arduino board. The Arduino IDE ships
with preinstalled example sketches with which you can play around. However, before we
go ahead and start playing with complex examples, let’s go through the next section,
which explains the Firmata protocol and also guides you through step-by-step instructions
to compile and upload a sketch.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Introducing the Firmata protocol

Before Arduino, the domain of microcontroller-based applications was limited to
hardware programmers. Arduino made it simple for developers that came from other
software fields and even for the non-coding community to develop microcontroller-based
hardware applications. Arduino consists of a simple hardware design with a
microcontroller and I/O pins to interface external devices. If one can write an Arduino
sketch that can transfer the control of the microcontroller and these pins to an external
software mechanism, then it will reduce one’s efforts to upload Arduino sketches for every
modification. This process can be performed by developing such an Arduino program that
can then be controlled using a serial port. There exists a protocol called Firmata, which
does exactly that.

www.it-ebooks.info

http://www.it-ebooks.info/

What is Firmata?

Firmata is a generic protocol that allows communication between the microcontroller and
the software that is hosted on a computer. Any software from any computer host that is
capable of serial communication can communicate with the microcontroller using Firmata.
Firmata gives complete access of Arduino directly to the software and eliminates the
processes of modifying and uploading Arduino sketches.

To utilize the Firmata protocol, a developer can upload a sketch that supports the protocol
to the Arduino client as a onetime process. Afterwards, the developer can write custom
software on the host computer and perform complex tasks. This software will provide
commands via a serial port to the Arduino board that is equipped with Firmata. He or she
can keep altering the logic on the host computer without interrupting the Arduino
hardware.

The practice of writing custom Arduino sketches is still valid for standalone applications
where the Arduino board has to perform a task locally. We will explore both these options
in the upcoming chapters.

Note

You can learn more about the Firmata protocol and its latest version from the official
website at http://www.firmata.org.

www.it-ebooks.info

http://www.firmata.org
http://www.it-ebooks.info/

Uploading a Firmata sketch to the Arduino board

The best way to start testing the Firmata protocol is to upload a standard Firmata program
to the Arduino board and use the testing software from the host. In this section, we are
going to demonstrate a method to upload an Arduino sketch, which has this standard
Firmata program, to the board. This is going to be the default method to upload any sketch
in the future.

Implementation of the Firmata protocol requires the latest version of the Firmata firmware
and you don’t have to worry about writing it. The latest Arduino IDE ships with a standard
version of the Firmata firmware, and we recommend that you use the latest IDE to avoid
any conflict. Now, follow the following steps to upload the program to your Arduino
board:

1. As shown in the following screenshot, open the StandardFirmata sketch by
navigating to File | Examples | Firmata | StandardFirmata in the Arduino IDE:

Arduino m Edit Sketch Tools Help

New N

Open... ®O

Sketchbook *

[Bamples » EEIEUS >

Close wnw 02.Digital >

Save 5 03.Analog >

Save As... M5 04.Communication *

Upload ®u 05.Control »

Upload Using Programmer XU 06.5ensors >
07.Display >

F'a..ge Setup {+XP 08.5trings >

Print P 09.USE 9
10 5tarterkit >
ArduinolSP
EEPROM 3
Esplora 3
Ethernet >

AllinputsFirmata

C5M > AnalogFirmata
LiquidCrystal > EchoString
Robot_Control > I2CFirmata
Robot_Motor > DidStandardFirmata
5D * ServoFirmata
Servo - SimpleAnalogFirmata
SoftwareSerial > SimpleDigitalFirmata
P @ StndardFirmata |
Stepper *
TFT 3
WiFi 3
Wire *

2. This action will open another sketchbook in a new window with the
StandardFirmata sketch loaded in the editor. Do not modify anything in the sketch
and go ahead with the compiling process that is described in the next step. It is
important not to modify anything in the code as the test software that we are going to
use complies with the latest unchanged firmware.

3. Once the StandardFirmata sketch is opened, the next step is to compile it for your
Arduino board. In the previous section, we already connected the Arduino board to
the computer and selected the proper serial port. However, if the new sketchbook has

www.it-ebooks.info

http://www.it-ebooks.info/

a different configuration than that, follow the steps from the previous section, that is,
select the appropriate serial port and the Arduino board type.

4. To compile the current sketch, click on the Verify icon from the toolbar as displayed
in the following screenshot. You can also compile it by navigating to Sketch | Verify
/ Compile or clicking on Ctrl + R (command + R if you are using Mac OS X):

StandardFirmata | Arduino 1.0.5

StandardFirmata

Firmata iz a generic protocol for communicating with microcontrollers
from software on a host computer. It iz intended to work with
any host computer software packoge.

To downlogd g hoszt software packoge, please clink on the following Lind
to open the download poge in wour default browser.

xE X E X E E X =

http://Firmota.org/wiki/Downlood

=
T

The compilation process should complete without any errors as we are using default
example code from the IDE itself. Now it’s time to upload the sketch to the board.
Make sure that you have connected the board.

5. Press the upload icon in the toolbar as displayed in the following screenshot. This
action will upload the compiled code to your Arduino board:

8006 StandardFirmata | Arduine 1.0.5

| Upload Using Programmer

StandardFirmata

T
=

Firmato iz a generic protocol for communicating with microcontrollers
from software on a host computer. It iz intended to work with
any host computer software package.

To downlood g host zoftware packoge, pleaze clink on the following Lin
to open the download poge in wour default browser.

xE X E X E E X =

http://Ffirmota.org/wiki/Download

=
e

On completion, you should see the Done uploading. text in the IDE, as displayed in the
following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

for (byte i = B3 1 = queryIndex + 1; i++) {
reqdéndReportDota{query [i]..oddr, query[i].red, query[i].bytes);

Binary sketch size: 11,948 bytes (of a 32,256 byte mocimum)

Arduino Uno on fdev/tty.usbmodemfd1211

Your Arduino board is now ready with the latest Firmata firmware and is waiting for a
request from your computer. Let’s move on to the next section and start testing the Firmata
protocol.

www.it-ebooks.info

http://www.it-ebooks.info/

Testing the Firmata protocol

In the previous chapter, we used an on-board LED at pin 13 to test the Blink program.
This time, we are going to use an external LED to get you started with the assembly of
hardware components using your Arduino board. As all the upcoming exercises and
projects will require you to interface hardware components such as sensors and actuators
to your Arduino board using a breadboard, we want you to start getting hands-on
experience with wiring these components.

Now is the time to use the LED that we asked you to get at the beginning of the chapter.
Before we start wiring the LED, let’s first understand the physics of it. The LED that you
obtained should have two legs: a short one and a long one. The short leg is connected to
the cathode of the LED and it needs to be connected to the ground via a resistor. As you
can see in the following figure, we are using a 1 k-ohm resistor to ground the cathode of
the LED. The long leg, which is connected to the anode, needs to connect to one of the
digital pins of the Arduino board.

As shown in the following figure, we have connected the anode to the digital pin number
13. Look at the figure and wire the connection as displayed. Make sure that you
disconnect the Arduino board from the host computer to avoid any kind of damage from
static electricity.

N e werr e

Long leg '~ Short leg 1
(Anode) {Cathode)

= « @ « = =

fritzing

In this example, we are going to use an LED to test some basic functionalities of the
Firmata protocol. We have already uploaded the Firmata code to the Arduino board and
we are ready to control the LED from the host computer.

Note

The preceding wiring figure was created using an open source tool called Fritzing. We are
going to cover the Fritzing tool comprehensively in the next chapter, as it will be our

www.it-ebooks.info

http://www.it-ebooks.info/

standard software to create the wiring diagram before we perform the actual physical
wiring.

There are multiple ways to communicate with the Arduino board from the host computer
using Firmata, such as writing your own program in Python using the supported library or
using the prebuilt testing software. Starting from the next section, we are going to write
our own programs to use Firmata, but at this stage, let’s use a freely available tool for
testing purposes. The official Firmata website, http://www.firmata.org, also provides test
tools that you can download from the Firmata Test Program section on the main page.
The website includes a different variant of the tool called firmata_test for different
operating systems. Using the following steps, you can test the implementation of the
Firmata protocol:

1. Download the appropriate version of the firmata_test program to your computer.
2. Now, connect your Arduino board with the LED to the host computer using the USB
cable and run the downloaded firmata_test program. You will be able to see an

empty window on the successful execution of the program.
3. As displayed in the following screenshot, select the appropriate port from the drop-
down menu. Make sure to select the same port that you used to upload the Arduino

sketch.
ﬂ_ Firmata Test _Ei_le m Window Help
800 Firmat: (none}
/dev{cu.Bluetooth-Incoming-Port
/dev/cu.Bluetooth-Modem
' /dev/cu.usbmodemfd1211
Tip

At this point, make sure that your Arduino IDE is not connected to the board using
the same port number. As we mentioned earlier, the serial interface grants exclusive
access to only one application at a time.

4. Once you select the Arduino serial port, the program will load multiple drop-down
boxes and buttons with labels that contain the pin number. You can see in the
following screenshot that the program is loaded with 12 digital pins (from pin 2 to
pin 13) and six analog pins (from pin 14 to pin 19). As we are using the Arduino Uno
board for our applications, the test program only loads pins that are part of Arduino
Uno. If you are using Arduino Mega or any other board, the number of pins displayed
in the program will be according to the pins supported by that particular variant of the

www.it-ebooks.info

http://www.firmata.org
http://www.it-ebooks.info/

Arduino board.

anon Firmata Test

Pin 2 | Output Low

A

Pin 3 | Output

i

Low

Pin 4 | Output

Ak

Low

Pin 5 | Output

Ak

Liow

Ak

Pin 6 | Output Low

Low

ar

Pin 7 | Output

Low

Pin 8 | Output

Ak

Pin @ | Output

Ak

Low

Pin 10| Output

Ak

Liovw

Ak

Pin 11 | Output Low

Lo

ar

Pin 12 | Output

aw

Pin 13 | Output

Low

Pin 14| Analog | AD: 175
Pin 15| Analog ;| Al: 173
Pin 16 | Analog - | A2: 170
Pin 17 | Analog » |A3: 168
Pin 18| Analog ;| A4: 180
Pin 19| Analog + |AS: 177

Jdev/cu.usbmodemfdl21]l StandardFirmataino-2.3 Tx:149 Rx:76522 |

Tip
Working with the firmata_test program on Linux

On a Linux platform, you might have to modify the property of the downloaded file
and make it executable. From the same directory, run the following command in the
terminal to make it executable:

$ chmod +x firmata_test

Once you have changed the permissions, use the following command to run the
program from the terminal:

$./firmata_test

As you can see in the program window, you have two other columns as well as the
column containing the labels. The second column in the program lets you select the
role for the appropriate pins. You can specify the role of digital pins (in the case of
Arduino Uno, from 2 to 13) as input or output. As displayed in the following
screenshot, you will see Low in the third column as soon as you select the role of

www.it-ebooks.info

http://www.it-ebooks.info/

pins 2 and 3 as input pins. This is correct, as we don’t have any input connected to
these pins. You can play with the program by changing the roles and values of
multiple pins.

Pin2 | Input ~ | Low
Pin3 | Input | Low
pin 4 | Output = Low
Pin5 | Output 3|[Low

As we have connected the LED to digital pin 13, we are not expecting any physical
changes on the board while you are playing around with the other pins.

6. Now, select pin 13 as an output pin and press the Low button. This will change the
button’s label to High and you will see that the LED is turned on. By performing this
action, we have changed the logic of the digital pin 13 to 1, that is, High, which
translates to +5 volts at the pin. This potential will be sufficient to light the LED. You
can change the level of pin 13 back to 0 by clicking on the button again and turning it
to Low. This will change the potential back to 0 volts.

Pin 12 | Output = Law

Pin 13 | Output N E

Pin 14 | Analog 5 |AD: 153

The program that we used here is perfect to test the fundamentals, but it cannot be used to
write complex applications using the Firmata protocol. In real-world applications, we
really need to execute the Firmata methods using custom code, which in addition to
switching the LED status also includes the implementation of smart logic and algorithms,
interfacing other components, and so on. We are going to use Python for these
applications, starting from the next section.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Getting started with pySerial

You learned about the Firmata protocol in the previous section. This is an easy and quick
way to start working with Arduino. Although the Firmata protocol helps you to develop
complex applications from your computer without modifying the Arduino sketch, we are
not ready to start coding these applications.

The first step towards writing these complex applications is to provide an interface
between your programming environment and the Arduino via a serial port. In this book,
you will be required to establish a connection between the Python interpreter and Arduino
for every project that we develop.

Writing your own library, which includes implementation of functions and specifications
to enable communication on a serial protocol, is an inconvenient and time consuming
process. We are going to avoid that by using an open source, well maintained Python
library called pyserial.

The pySerial library enables communication with Arduino by encapsulating the access
for the serial port. This module provides access to the serial port settings through Python
properties and allows you to configure the serial port directly through the interpreter.
pySerial will be the bridge for any future communication between the Python and
Arduino. Let’s start by installing pySerial.

www.it-ebooks.info

http://www.it-ebooks.info/

Installing pySerial

We installed the package manager Setuptools in Chapter 1, Getting Started with Python
and Arduino. If you have skipped that chapter and are not sure about it, then please go
through that section. If you already know how to install and configure Python library
packages, skip these installation steps.

From this stage, we are going to use only pip-based installation commands due to their
obvious advantages that were described in Chapter 1, Getting Started with Python and
Arduino:

1. Open a terminal or command prompt and execute the following command:
> pip install pyserial

The Windows operating system does not require administrator-level user access to
execute the command, but you should have root privileges to install Python packages
in Unix-based operating systems, as follows:

$ sudo pip install pyserial

If you want to install the pySerial library from source, download the archive from

http://pypi.python.org/pypi/pyserial, unpack it, and from the pySerial directory, run
the following command:

$ sudo python setup.py install

2. If Python and Setuptools are installed properly, you should see the following output
at the command line after the installation is complete:

Processing dependencies for pyserial
Finished processing dependencies for pyserial

This means that you have successfully installed the pySerial library and you are
good to go to the next section.

3. Now, to check whether or not pySerial is successfully installed, start your Python
interpreter and import the pySerial library using the following command:

>>> import serial

www.it-ebooks.info

http://pypi.python.org/pypi/pyserial
http://www.it-ebooks.info/

Playing with a pySerial example

Your Arduino board has the Firmata sketch StandardFirmata from the previous example.
To play with pyserial, we are not going to use the Firmata protocol anymore. Instead, we
are going to use another simple Arduino sketch that implements serial communication that
can be captured on the Python interpreter.

Sticking with the promise of not performing any coding for the Arduino sketch, let’s select
an example sketch from the Arduino IDE:

1. As displayed in the following screenshot, navigate to File | Examples | 01. Basics |

DigitalReadSerial.
m Edit Sketch Tools Help
New #N
Open... SED
Sketchbook
AnalogReadSerial
Close 02 Digital [BareMinimum
Save EGS 03.Analog = Blink
Save As... 0 %S 04.Communication >
Upload #U 05.Control (3 Fade
Upload Using Programmer {:32U 06.5ensaors [ReadAnalogVoltage
07 .Display *
Page Setup {r38P 08.Strings >
Print #®P po.use >
10.StarterKit 2
ArduinolSP
EEPROM »
Esplora [
Ethernet 2
Firmata »
G5M >

2. Compile and upload the program to the Arduino board using the same method that
was described earlier. Select the appropriate serial port on which your Arduino is
connected and make a note of it. As you can see in the sketch, this simple Arduino
code transmits the status of digital pin 2 that is on the serial port with a baud rate of
9600 bps.

3. Without disconnecting the Arduino board from your computer, open the Python
interpreter. Then, execute the following commands on the Python interpreter. Make
sure that you replace /dev/ttyAcMo with the port name that you noted down earlier:

>>> import serial
>>> s = serial.Serial('/dev/ttyACMO',6 9600)
>>> while True:

print s.readline()

4. On execution, you should get repeated 0 values in the Python interpreter. Press Ctrl +
C to terminate this code. As you can see, the Arduino code will keep sending
messages due to the loop function that was used in the sketch. We don’t have
anything connected to pin 2, and because of this, we are getting the status 0, that is,

www.it-ebooks.info

http://www.it-ebooks.info/

Low.
5. If you know what you are doing, you can connect any digital sensor to pin 2 and run
the script again to see the changed status.

In the preceding Python script, the serial.Serial method interfaces and opens the
specified serial port, while the readline() method reads each line from this interface,
terminated with \n, that is, the newline character.

Note

The newline character is a special character that signifies the end of a line of text. It is also
known as End of Line (EOL) or Line feed + Carriage Return (LF + CR). Learn more
about the newline character at http://en.wikipedia.org/wiki/Newline.

www.it-ebooks.info

http://en.wikipedia.org/wiki/Newline
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Bridging pySerial and Firmata

In the Firmata section, we already learned how useful it is to use the Firmata protocol
instead of constantly modifying the Arduino sketch and uploading it for simple programs.
pySerial is a simple library that provides a bridge between Arduino and Python via a
serial port, but it lacks any support for the Firmata protocol. As mentioned earlier, the
biggest benefit of Python can be described in one sentence, “There is a library for that.”
So, there exists a Python library called pyFirmata that is built on pySerial to support the
Firmata protocol. There are a few other Python libraries that also support Firmata, but we
will only be focusing on pyFirmata in this chapter. We will be extensively using this
library for various upcoming projects as well:

1.

Let’s start by installing pyFirmata just like any other Python package by using
Setuptools:

$ sudo pin install pyfirmata

In the previous section, while testing pySerial, we uploaded the DigitalSerialRead
sketch to the Arduino board.

To communicate using the Firmata protocol, you need to upload the
StandardFirmata sketch again, just as we did in the Uploading a Firmata sketch to
the Arduino board section.

Once you have uploaded this sketch, open the Python interpreter and execute the
following script. This script imports the pyfirmata library to the interpreter. It also
defines the pin number and the port.

>>> import pyfirmata
>>> pin= 13
>>> port = '/dev/ttyACMO'

After this, we need to associate the port with the microcontroller board type:

>>> board = pyfirmata.Arduino(port)

While executing the previous script, two LEDs on the Arduino will flicker as the
communication link between the Python interpreter and the board gets established. In
the Testing the Firmata protocol section, we used a prebuilt program to turn an LED
on and off. Once the Arduino board is associated to the Python interpreter, these
functions can be performed directly from the prompt.

You can now start playing with Arduino pins. Turn on the LED by executing the
following command:

>>> board.digital[pin].write(1)

You can turn off the LED by executing the following command. Here, in both
commands, we set the state of digital pin 13 by passing values 1 (High) or o (Low):

>>> board.digital[pin].write(0)

Similarly, you can also read the status of a pin from the prompt:

www.it-ebooks.info

http://www.it-ebooks.info/

>>> board.digital[pin].read()

If we combined this script in an executable file with a . py extension, we can have a
Python program that can be run directly to control the LED rather than running these
individual scripts on a terminal. Later, this program can be extended to perform complex
functions without writing or changing the Arduino sketch.

Note

Although we are running individual scripts at the Python prompt, we will be going
through the process of creating Python executable files in the next chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Summary

By introducing the Firmata library, we avoided writing any custom Arduino sketches in
this chapter. We will continue this practice during the remaining part of this book and will
only use or make custom sketches when required. In this chapter, you interacted with the
Arduino board by making the LED blink, which is the easiest way to get started on a
hardware project. Now it’s time for your first project, where we are also going to make
some more LEDs blink. One might ask the question that if we have already done it, then
why do we need another project to make LEDs blink? Let’s find out.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3. The First Project — Motion-
triggered LEDs

In the preceding chapter, you learned the basics of Python-Arduino interfacing. We went
through some exercises to provide hands-on experience with a useful Arduino protocol,
Firmata, and the Python library. Now, it’s time for your first ‘Python + Arduino’ project.

We will start this chapter by discussing the project goals and the required components to
design the software flow and the hardware layout for the project. Just like any other
microcontroller-based hardware project, you can use code and implement the entire logic
of your project on Arduino itself. However, the goal of this book is to help you to utilize
Python in such a way that you can simplify and extend your hardware projects. Although
we will be using a hybrid approach with a Python program assisted by an Arduino sketch
in the upcoming chapters, we would like you to get familiar with both ways of
programming. As this is your first experience of building a hardware project, the chapter
provides you with two different programming methods for the project: just using an
Arduino sketch and using a Python program with the Firmata protocol on Arduino. The
method with the Arduino sketch is included so that you get the complete experience with
the Arduino components such as I/0 pins and serial communication.

www.it-ebooks.info

http://www.it-ebooks.info/

Motion-triggered LEDs — the project
description

When you start learning any programming language, in most cases, you will be writing
code to print ‘Hello World!’. Meanwhile, in hardware projects, the majority of tutorials
begin by helping a user to write the code to blink an LED. These exercises or projects are
useful for developers to get started with the language, but mostly, they do not carry any
importance towards real-world applications. However, we don’t want to overwhelm you
with a complex and sophisticated project that might require you to have a good amount of
domain knowledge.

While working with the Firmata protocol in the previous chapter, we already blinked an
LED on the Arduino board. To keep the tradition alive (of having a blinking LED as a first
major project) and also build excitement towards the project, let’s put a twist in the
blinking LED project. In this project, we will blink two different LEDs, but instead of
performing these actions in a random manner, we will do it for events that are measured
using a motion sensor. Although the difficultly level of the project is simple since it is
your first project, it carries real-world application value and can be used as a simple
application in your day-to-day life.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

The project goal

The project goal can be described in one sentence as follows: “Generate an alert using a
red LED for any detected motion and display the normal condition using a green LED.” In
comprehensive list of goals, you will have to perform the following tasks to satisfy the
mentioned project goal:

¢ Detect any motion in the environment as an event using a passive infrared (PIR)
sensor

e Perform a blink action using a red LED for this event

e Otherwise, perform a blink action using a green LED

e Keep the system in loop after the action has been performed and wait for the next
event

The project can be implemented as a DIY application or as part of other projects with
minor modifications. The following are some examples where the concepts from this
project can be utilized:

e As a DIY security system, to monitor movement in a room
(http://www.instructables.com/id/PIR-Sensor-Security/)

¢ In smart home applications, it can be used to automatically turn off lights if no one is
present (http://www.instructables.com/id/Arduino-Home-Monitor-System/)

e It can be used in automatic garage door opener applications with the support of
additional hardware components and appropriate code

e In DIY wildlife recording projects, it can be used to trigger a camera instead of an
LED when any motion is detected (http://www.instructables.com/id/Motion-

triggered-camera/)

www.it-ebooks.info

http://www.instructables.com/id/PIR-Sensor-Security/
http://www.instructables.com/id/Arduino-Home-Monitor-System/
http://www.instructables.com/id/Motion-triggered-camera/
http://www.it-ebooks.info/

The list of components

In the previous chapter, we only used an LED for programming using Arduino, an
Arduino USB cable, and a computer. The major hardware component required for this
project is a PIR motion sensor. You will also need an additional LED. We recommend that
you have a different colored LED than the one that you already have. The description of
the necessary components is as follows:

¢ PIR sensors: These are widely used as motion detection sensors for DIY projects.
They are small, inexpensive, consume less power, and are compatible with hardware
platforms such as Arduino. A PIR sensor uses a pair of pyroelectric sensors that
detect infrared radiation. If there is no motion, the output of these sensors cancels
each other out. Any movement in the environment will produce different levels of
infrared radiation by these pyroelectric sensors and the difference will trigger an
output that is HIGH (+5 volts). We will be using the PIR sensor that is sold by
SparkFun, and you can obtain it from https://www.sparkfun.com/products/8630. The
PIR sensor comes equipped with the required printed circuit board (PCB). It has
range of up to 20 feet (6 meters), which is sufficient for the project. The following
image displays the PIR sensor available on the SparkFun website:

Image courtasy: Sparkfun Inc.

Source: Sparkfun Inc.

e LEDs: We recommend that you use green and red LEDs for the project. If they are
unavailable, you can use any two LEDs with different colors.

e Wires, resistors, and the breadboard: You will require a bunch of wires and a
breadboard to complete the connections. As a best practice, have at least three
different colors of wire connectors to represent power, ground, and signal. You will
also need two 220 ohm and one 10 kilo-ohm pull resistors.

www.it-ebooks.info

https://www.sparkfun.com/products/8630
http://www.it-ebooks.info/

e The Arduino board: The Arduino Uno board is sufficient for the project
requirements. You can also use Arduino Mega or any other Arduino board for this
project. The project requires only three I/O pins and any available Arduino board is
equipped with more than three I/O pins.

e A USB cable: You will need a USB cable to upload the Arduino code and perform
serial communication with the Arduino board.

e A computer: We have already configured a computer with Python and the Arduino
IDE for your favorite operating system in the previous chapters. You will need this
computer for the project. Make sure that you have all the software components that
we installed and configured in the previous chapters.

www.it-ebooks.info

http://www.it-ebooks.info/

The software flow design

The first step, before jumping to work on any hardware system, is to design the project
flow using logic. We recommend that you have your project sketched as a flowchart to
better understand the layout of the components and the flow of the code. The following
diagram shows the flow of the project where you can see that the project runs in loops
once motion is detected and the appropriate LED actions are performed:

I: Start)

Insert delay Insert delay

1 'I.

Red LED Green LED
Status Status
HIGH HIGH

Check PIR
slatus
(Motion?)

As you can see, the program logic starts by detecting the state of the PIR sensor and
performs the appropriate actions accordingly. With a single Arduino instruction, you can
only turn the LED on or off. To perform the blinking operation, we will need to repeatedly
perform the turning-on and turning-off actions with a time delay between the actions. We
will also insert a delay between the execution of each successive loop so that the PIR
sensor output can settle down. Note that we will use the same flow when writing the code
for both the programming methods.

www.it-ebooks.info

http://www.it-ebooks.info/

The hardware system design

Designing a diagram for your software flow helps you to write the program and also
assists you in identifying actions and events for the project. The process of hardware
system design includes circuit connections, schematic design, simulation, verification, and
testing. This design process provides a detailed understanding of the project and the
hardware components. It also helps in preliminary verification and testing of the project
architecture. Before we jump to the hardware design process of this project, let’s get
ourselves familiar with the helpful tools.

Introducing Fritzing — a hardware prototyping software

You are not required to design the hardware system for this project. By and large, in this
book, the hardware system designs will be provided, as the primary focus of the book is
on programming rather than hardware design.

If you are interested in system design or rapid prototyping of the hardware components,
the open source software tool used for this purpose is called Fritzing. The schematics for
your projects can be designed using Fritzing and it can be obtained from

http://fritzing.org/download/.

Fritzing is a community-supported electronic design automation software initiative for
designers, artists, and hobbyists. It lets you convert your hardware sketch from paper to
software as a circuit diagram. Fritzing also provides you with a tool to create PCB layouts
from your designs. Fritzing extensively supports Arduino and other popular open source
DIY hardware platforms. You can explore Fritzing via built-in example projects.

Install and run Fritzing. The following screenshot shows one of the default projects that
are displayed after opening Fritzing:

www.it-ebooks.info

http://fritzing.org/download/
http://www.it-ebooks.info/

800 J Blink.fzz [READ-ONLY] - Fritzing - [Breadboard View]

PARTS

Core Parts

CoRe

[

[]

| 3|1 0|
A

In this wery simple example, Arduino
will be programmed to blink the LED
on pin 13.

o Q||

ol ¢y - |

Related Arduino example:
httpufarduino.cofenTutorial/Blink

&
&
b ||| | B
s
8

INSPECTOR

Arduino2

- w5
Arduino Una (Feva)
Placement
location 2146 —|-1.707 —ih
rotation 00 [degrees

D Locked
Properties
famiky microcontroller board (arduino)
type. Arduing UNO (Reva} v
part #
rev3, uno, arduino, atmega3ze
Connections
ﬁ IF h 0 of 2 nets routed - 2 connections still to be routed cann..
MAddan

oire1otin 100 % @ L |

As you can see, a toolbox containing virtual hardware components is located to the right
of the opened window. The main editing space, located in the center, lets the user drag and
drop components from the toolbox and also allows the user to complete connections
between these components. You can learn more about the features provided by Fritzing
and go through some hands-on tutorials at http://fritzing.org/learning/.

Working with the breadboard

Once you are familiar with Fritzing, you have the flexibility to create your own circuits, or
you can always use the Fritzing files provided with the book. However, there is another
challenge, that is, porting your virtual circuit to a physical one. One of the fundamental
components used by electronics projects that let you implement connections and build the
physical circuit is the breadboard.

The breadboard contains intelligently organized metal rows hidden under an assembly
containing plastic holes. This assembly helps the user to connect wires without going
through any soldering work. It is really easy to insert and remove wires or electronics
components through the holes. The following figure shows a small breadboard with a
couple of components and a few wire connections:

www.it-ebooks.info

http://fritzing.org/learning/
http://www.it-ebooks.info/

Terminal strips

L J L I - . » L J L] L] L J L]

" & & § @ L " & @ " & ¥ & @ " ® & @ -

% @ §F ®F @& §F ¥ @ §F F 8 §F B 8 "R F R B OF W W I ® & & @

% ¥ & % & & § ® & ®F & & F 8 §F F F & ®F 8 8 " 0" e w

® % § & % ¥ ® ®F ¥ ® % § % & ¥ ® ® % §F 9% % % B " B ® @9

® % @ §F ¥ 8 §F §F @8 §F ¥ 8 §F F 8 F F R R OF R R WO W F W

& B F & 8 8§ & F F & B F @ B F 8 R F B R W i'”-"' L B

DIP support .é
BT PSP F e

® % ® #§ % ¥ ® ®F § § ¥ § % ® ¥ & ® 9§ § % ® % 8 % 8 B @»

® % @ § ®F @ § # @ § ¥ 8 §F F 8 F F B B F B OF B R 8 W@

* ®F ¥ # % ¥ ¥ % % § ¥ § % % ¥ 9§ % 9% ¥ % ¥F ¥ " ¥ 8" W9

* ® F F ¥ F OF F WO FFREEFRY R ROCEFT R YRR W
IO T i T I T e i
—— TSR S R

FPower supply ﬁ
Power rails

Note

Find out more about breadboards and the tutorials to use them at
http://learn.sparkfun.com/tutorials/how-to-use-a-breadboard.

A breadboard mostly has two types of connection strips: terminal strips and power rails.
As displayed in the preceding figure, terminal strips are vertical columns with electrically
shorted holes. In simple words, once you connect any component to one of the terminal
strips, the component will be electrically connected to each hole in the column. The
columns of terminal strips are separated by the Dual in-line Package (DIP) support gap.
(DIP is a common housing for electronics components.) In the same column, terminal
strips above and below the DIP support gap are electrically independent. Meanwhile, the
power rails are shorted horizontally throughout the entire row of the breadboard. The
power rails are mostly used to connect positive and ground connections from the power
supply, so it can be distributed easily to all components.

Note
History of breadboards

In the early years of electronics, people used actual breadboards (that were used to cut
bread) to connect their large components with just nails and wires. Once electronics
components started getting smaller, the board to assemble circuits also became better. The
term stuck through this evolution, and we still call the modern boards breadboards. If you
are interested, you can check out http://www.instructables.com/id/Use-a-real-Bread-
Board-for-prototyping-your-circui/, which provides instructions to assemble a circuit
using the original breadboards.

Designing the hardware prototype

www.it-ebooks.info

http://learn.sparkfun.com/tutorials/how-to-use-a-breadboard
http://www.instructables.com/id/Use-a-real-Bread-Board-for-prototyping-your-circui/
http://www.it-ebooks.info/

It’s time to collect the hardware components mentioned earlier and start building the
system. The next figure shows the circuit for the project that has been developed using
Fritzing. If you have prior experience of working with circuit assembly, go ahead and
connect the components as displayed in the figure:

i F] .
e Ardulno I *
.

LA R B L -

.

L 'i"l"l"l'l'] -

q . B

'k C
15

1

If this is your first experience of working with sensors and the breadboard, use the
following steps to complete the circuit assembly:

1. Connect VCC (+5V) and ground from the Arduino to the breadboard.

2. Connect the anode (long lead) of the red LED to digital pin 12 of the Arduino board.
Connect the cathode (short lead) of the red LED to ground with 220 ohm resistors.

3. Connect the anode (long lead) of the green LED to digital pin 13 of the Arduino
board. Connect the cathode (short lead) of the green LED to ground with 220 ohm
resistors.

4. Connect VDD of the PIR sensor to VCC on the breadboard. Use the same wire color
to represent the same category of connections. This will greatly help in
troubleshooting the circuit.

5. Connect the signal (middle pin) of the PIR sensor to Arduino digital pin 7 with a 10
kilo-ohm pull-up resistor.

The majority of experts prefer a schematic diagram instead of the prototype diagram that
we used previously. Schematic diagrams are useful when you are using compatible
components instead of the exact components from the prototype diagram. The following is
a schematic diagram of the electronics circuit that we designed earlier. This diagram is

www.it-ebooks.info

http://www.it-ebooks.info/

also obtained using Fritzing:

PIA1
| |
3 sV VIN w
=X
] RESET Arduino TR/DO e §m
—) RESET2 Uno RO _
—1 AREF (Rev3) D2 p— E 2
=1 N/C PWM D3 f—
D4 fm .
= A0 PWM D5 i
— Al PWM D6 =
rem— 'ﬁz D:‘ (P—
— A3 D8 frm [
— A4/SDA PWM D9 e
— ASSSCL SS/PWM D1 [
MOSEPWM D17
MISO/D12 [
SCKIDAS
GresnlLED RedLED
ICSP2 MISD) [
ICSP2 SCK frmmm \\." .}l
ICSP MOS]
GND 2200 2200
|

Your system is now ready to run the Arduino program. As we will be using the same
hardware for both the programming methods, you are almost done working with
electronics unless you encounter a problem. Just to make sure that everything is connected
perfectly, let’s check out these connections in the next section.

Note

Note that pull-up resistors are used to make sure that the output signal from a PIR sensor
settles at the expected logic level.

www.it-ebooks.info

http://www.it-ebooks.info/

Testing hardware connections

Once the circuit connections are complete, you can go directly to the programming
sections. As a best practice, we recommend that you verify the circuit connections and
check the sensor’s status. We are assuming that your Arduino board is already equipped
with the StandardFirmata sketch that we discussed in the previous chapter. Otherwise,
refer to the previous chapter and upload the StandardFirmata sketch to your Arduino
board.

The best way to verify our circuit implementation is to use the Firmata test program that
we used in the previous chapter. According to the project setup, the PIR sensor provides
event inputs to Arduino pin 7. In the test program, change the type of pin 7 to Input and
wave your hand over the sensor, and you should be able to see the status of the pin as
High, as displayed in the following screenshot:

LN Firmata Test
Pin2? | Output a Low
pin3 Output B[Low
Pin4 | Output ﬁ Low
pin5 Output B[Low
ping | Output B[cow
pin7 Input [High
ping | Output ﬁ Low
ping Output B[Low
pin10 Output B[cow
pin1 | Output B[row
Pin12 Output ﬁ High
Pin13 Output [Hign

Pin14 Analog [A0: 113
Pin15 Analog [m1: 116
Pin16 Analog [A2: 117
Pin17 Analog [A3:117
Pin18 Analog [A4:108
Pin19 Analog [As: 112

jdev/cu.usbmodemfal3i3l StandardFirmata.ino-2.3 Tx:lSERx:ntzEl%

Check the LED connections by setting up pins 12 and 13 as output pins and toggling the

www.it-ebooks.info

http://www.it-ebooks.info/

buttons to set the status of the pins. If you see the LEDs blinking while you are toggling
the button, then your connections are working perfectly.

If you cannot successfully perform these checks, verify and repeat the design steps.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Method 1 — using a standalone Arduino
sketch

As we discussed in the previous chapters, a project can be implemented by creating
project-specific native Arduino code or by using a Python-Arduino hybrid approach.

The native Arduino sketches are useful in applications where negligible or no
communication with a computer system is required. Although this type of standalone
project enables continuous operation in the absence of serial connectivity, it is difficult to
keep updating and uploading an Arduino sketch for minor modifications.

If you look at the various applications of this project, you will notice that only a few of
them require the project to be implemented as a standalone system that just detects motion
and blinks LEDs. This type of system can be easily implemented by a simple Arduino
sketch.

www.it-ebooks.info

http://www.it-ebooks.info/

The project setup

Before we go ahead with the project, make sure that you have the following things in
place:

e The hardware components are set up and are functioning correctly

¢ Your Arduino is connected to the computer using a USB cable

¢ Your computer has the Arduino IDE and you can access the connected Arduino board
through the IDE

www.it-ebooks.info

http://www.it-ebooks.info/

The Arduino sketch

This section describes the Arduino code for the project. Before we get into a step-by-step
description of the code, let’s first follow these steps to run the project:

1. Open the Arduino IDE.
2. From the File menu, open a new sketchbook.
3. Copy the following Arduino code to the sketch and save it:

int pirPin = 7; //Pin number for PIR sensor
int redLedPin = 12; //Pin number for Red LED
int greenLedPin = 13; //Pin number for Green LED

void setup(){
Serial.begin(9600);
pinMode(pirPin, INPUT);
pinMode(redLedPin, OUTPUT);
pinMode(greenLedPin, OUTPUT);

}
void loop(){

int pirVal = digitalRead(pirPin);
if(pirval == LOW){ //was motion detected
blinkLED(greenLedPin, "No motion detected.");
} else {
blinkLED(redLedPin, "Motion detected.");

}
}
// Function which blinks LED at specified pin number
void blinkLED(int pin, String message){
digitalWrite(pin, HIGH);
Serial.println(message);
delay(1000);
digitalWrite(pin, LOW);
delay(2000);
}

4. Compile and upload the sketch to the Arduino board.

Now, you have completed your project with the first programming method and
successfully deployed it to your hardware. It should be running the designed algorithm to
detect motion events and perform the blink action.

As your project is functioning properly, it’s time to understand the code. Like any other
Arduino program, the code has two mandatory functions: setup() and loop(). It also has
a custom function, b1inkLED(), for a specific action that will be explained later.

The setup() function

As you can see in the preceding code snippet, we assigned variables to the Arduino pin at
the beginning of the program. In the setup() function, we configured these variables to be
defined as input or output pins:

pinMode(pirPin, INPUT);

www.it-ebooks.info

http://www.it-ebooks.info/

pinMode(redLedPin, OUTPUT);

pinMode(greenLedPin, OUTPUT);

Here, pirPin, redLedPin, and greenLedPin are digital pins 7, 12, and 13 respectively. In
the same function, we also configured the Arduino board to provide serial connectively at
the baud rate of 9600 bps:

Serial.begin(9600);

The loop() function

In the loop() function, we are repeatedly monitoring the input from the pirpPin digital pin
to detect motion. The output of this pin is HIGH when motion is detected and Low
otherwise. This logic is implemented using a simple if-else statement. When this
condition is satisfied, the function calls a user-defined function, bl1inkLED(), to perform
the appropriate action on the LEDs.

User-defined functions are a very important aspect of any programming language. Let’s
spend some time learning how you can create your own Arduino functions to perform
various actions.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with custom Arduino functions

Functions are used when a segment of code is repeatedly executed to perform the same
action. A user can create a custom function to organize the code or perform reoccurring
actions. To successfully utilize a custom function, a user needs to call them from
mandatory Arduino functions such as loop(), setup(), or any other function that leads to
these mandatory functions:

return-type function_name (parameters){
Action to be performed
Action_1;
Action_2;
Return expression;

}

In the preceding Arduino function framework, return-type can be any Arduino data type
such as int, float, string, and so on, or void if the code is not returning anything. The
following is the custom function that we used in our project code:

void blinkLED(int pin, String message){
digitalWrite(pin,HIGH);
Serial.println(message);
delay(1000);
digitalWrite(pin, LOW);
delay(2000);

}

In our project, the b1inkLED() function is not retuning any value when it is called from
the loop() function. Hence, return-type is void. When calling the function, we pass the
pin number and a message as parameters:

blinkLED(greenLedPin, "No motion detected.");

These parameters are then utilized in the performed action (writing a message on a serial
port and setting up the LED status) by the b1inkLED() function. This function also
introduces a delay to perform the blink action by using the delay() function.

www.it-ebooks.info

http://www.it-ebooks.info/

Testing

We verified the designed system in the Testing hardware connection section using manual
inputs via the Firmata test program. As we have now implemented the software design, we
need to verify that the project is performing objective tasks autonomously and repeatedly.

With the USB port connected to the computer, open the serial monitoring tool from the
Arduino IDE by navigating to Tools | Serial Monitor or by pressing Ctrl + Shift + M. You
should start seeing a message similar to the one displayed in the following screenshot on
the Serial Monitor window:

800 fdev/tty.usbmodemfd1211

[Send)
No moticn detected.
No motion detected.
Mo moticn detected.
Moticn detected.
Moticn detected.
Moticn detected.
Moticn detected.
Moticn detected.
Moticn detected.
Moticn detected.
Motion detected. -

W Autoscroll "No line ending a 9600 baud |4

While writing the b1inkLED() function to perform actions, we included an action to write
a string via a serial port. Move your hand over the PIR sensor in such a way that the PIR
sensor can detect motion. This event should trigger the system to blink the red LED and
display a string, Motion detected, on the serial monitor. Once you stay steady and avoid
any motion for a while, you will be able to see the green LED blinking until the next
movement gets detected via the PIR sensor.

www.it-ebooks.info

http://www.it-ebooks.info/

Troubleshooting

Troubleshooting is an important process if anything goes awry. These are a few example
problems and the troubleshooting steps for them:

e Serial output is correct, but there are no blinking LEDs:
o Check the LED connections on the breadboard
e The LED blinks, but there is no serial output:

o Check the port on which the serial monitor is configured
o Check whether the baud rate in the serial monitor is correct (9600 bps)

e There is no serial output and no blinking LEDs:

o Check the PIR sensor connection and make sure that you are getting signal from
the PIR sensor

o Check your Arduino code

o Check power and ground connections

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Method 2 — using Python and Firmata

In the previous chapter, we discussed the benefits of using Python programming that is
assisted by Firmata over using native Arduino sketches. The Python-based programming
approach provides tangible experience when performing any algorithmic or parametric
changes. In this section, we are going to explore these benefits and also learn important
Python programming paradigms.

www.it-ebooks.info

http://www.it-ebooks.info/

The project setup

Let’s make sure that you have done the following before we go ahead with Python
programming;:

Made sure that the hardware components are set up, as described in the system design
Connected the Arduino to your computer using a USB cable

Uploaded the StandardFirmata sketch back to Arduino

Made sure that you have Python and the Python packages (pySerial and pyFirmata)
installed on your computer

e Obtained a text editor to write Python codes

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Python executable files

In the previous chapters, we explored Python programming using the interactive Python
interpreter. However, when working with large projects, it is very difficult to keep using
the Python interactive interpreter for repetitive tasks. Like other programming languages,
the preferred method is to create Python executable files and run them from the terminal.

Python executable files carry the . py extension and are formatted as plain text. Any text
editor can be used to create these files. The popular editors used to create and edit Python
files are Notepad++, nano, vi, and so on. This list also includes the default editor that is
shipped with the Python setup files called IDLE. You can use the editor of your choice,
but make sure that you save the files with the . py extension. Let’s copy the following lines
of code in a new file and save it as test.py:

#!/usr/bin/python

a = "Python"
b = "Programming"
print a + " "+ b

To run this file, execute the following command on the terminal where the test.py file is
saved:

$ python test.py

You should be able to see the text Python Programming printed on the terminal. As you
can see, the file starts with #! /usr/bin/python, which is the default Python installation
location. By adding this line in your Python code, you can directly execute a Python file
from the terminal. In Unix-based operating systems, you need to make the test.py file

executable through the following command:

$ chmod +x test.py

Now, as your file is executable, you can directly run the file using the following
command:

$./test.py
Note

For Unix-based operating systems, an alternative way to provide the Python interpreter
location is to use the following line of code instead of the one that we used:

#!1/usr/bin/env python

In Windows operating systems, Python files automatically become executable because of
the . py extension. You can just run the program files by double-clicking and opening
them.

www.it-ebooks.info

http://www.it-ebooks.info/

The Python code

As you now know how to create and run Python code, let’s create a new Python file with
the following code snippet and run it. Make sure to change the value of the port variable
according to your operating system, as described in the previous chapter:

#!/usr/bin/python

Import required libraries
import pyfirmata
from time import sleep

Define custom function to perform Blink action
def blinkLED(pin, message):

print message

board.digital[pin].write(1)

sleep(1)

board.digital[pin].write(0)

sleep(1)

Associate port and board with pyFirmata
port = '/dev/ttyACMO'
board = pyfirmata.Arduino(port)

Use iterator thread to avoid buffer overflow
it = pyfirmata.util.Iterator(board)
it.start()

Define pins

pirPin = board.get_pin('d:7:1"')
redPin = 12

greenPin = 13

Check for PIR sensor input
while True:
Ignore case when receiving None value from pin
value = pirPin.read()
while value is None:
pass

if value is True:
Perform Blink using custom function
blinkLED(redPin, "Motion Detected")

else:
Perform Blink using custom function
blinkLED(greenPin, "No motion Detected")

Release the board
board.exit()

You have successfully created and executed your first Arduino project using Python.
There are two main programming components in this code: pyFirmata methods and the
Python function to perform the blinking action. The program repeatedly detects the motion

www.it-ebooks.info

http://www.it-ebooks.info/

events and performs the blinking action. In the previous section, this problem was solved
by using the default Arduino function loop(). In this method, we have implemented the
while statement to keep the program in loop until the code is manually terminated by the
user. You can terminate the code using the keyboard combination Ctrl + C.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with pyFirmata methods

As part of working with the Arduino board and the Firmata protocol, you have to start by
initializing the Arduino board as a variable. The pyFirmata method that lets a user assign
the board to a Python variable is as follows:

board = pyfirmata.Arduino(port)

Once the value of the variable is assigned, you can perform various actions such as
reading a pin or sending a signal to the pin using that variable. To assign a role to a pin,
the get_pin() method is used. In the following line of code, d represents the digital pin, 7
is the pin number, and i represents that the type of pin is an input pin:

pirPin = board.get_pin('d:7:1i")

Once a pin and its role are assigned to a variable, that variable can be used to read or write
values on the pin:

Value = pirPin.read()
One can directly write data to a specific pin, as described in following code:
board.digital[pin].write(1)

Here, the write(1) method sends a HIGH signal to the pin. We will be learning additional
pyFirmata methods in the upcoming chapters.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Python functions

A Python function begins with the def keyword followed by the function name and the
input parameters or arguments. The function definition ends with a colon (:) and it is
indented afterwards. The return statement terminates the function. It also passes the
expression to the place where the function is called. If the return statement is kept
without an expression, it is considered to pass the return value None:

def function_name(parameters):
action_1
action_2
return [expression]

The preceding framework can be used to create custom functions to perform recurring
tasks. In our project, we have the b1inkLED(pin, message) function to perform the
blinking LED action. This function sends 1 (HIGH) and 0 (Low) value to the specified
digital pin while also printing message on the terminal. It also introduces delay to simulate
the blinking action:

def blinkLED(pin, message):
print message
board.digital[pin].write(1)
sleep(1)
board.digital[pin].write(0)
sleep(1)

www.it-ebooks.info

http://www.it-ebooks.info/

Testing

You can start testing the project as soon as you run the Python code on the terminal. If
everything goes according to design, you should be able to see the following output in the
terminal:

X *Python 2.7.4 Shell*

File Edit Shell Debug Options Windows Help

Python 2.7.4 (default, Sep 26 2013, 03:20:56) -
[GCC 4.7.3] on linux?

Type "copyright®, "credits" or "license ()" for more information.
2*FP ==============———====c=—c=c=c=cc—== RBESTART ===============c====

Motion Detected
Motion Detected
Motion Detected
Mo motion Detected
Mo motion Detected
Mo motion Detected
Mo motion Detected
Motion Detected
Motion Detected
Mo motion Detected
No motion Detected

You should be able to see the Motion Detected string on the terminal when any motion is
detected by the PIR sensor. If you find any abnormal behavior in the output, then please
check the Python code.

A benefit of using Python is that minor modifications such as changing the blinking speed
or swapping roles of the LEDs can be performed by just changing the Python code,
without dealing with the Arduino or the electrical circuit.

www.it-ebooks.info

http://www.it-ebooks.info/

Troubleshooting

When you run the project, you might require troubleshooting for the following probable
problems:

e Serial output is correct, but there are no blinking LEDs:
o Check the LED connections on the breadboard
e The LED blinks, but there is no serial output:

o Check whether you have successfully installed the standard Firmata sketch to
the board

e There is no serial output and no blinking LEDs:

o Check whether any program other than Python is using the serial port. Close any
program that might be using that serial port, including the Arduino IDE.

o Verify all the circuit connections.

o Make sure that the port name specified in the Python code is correct.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Summary

Between the two programming methods that you learned in this chapter, the method that
uses just an Arduino sketch represents the traditional paradigm of programming a
microcontroller. While this method is simple to implement, it lacks the extensiveness that
is achieved by Python-Arduino interfacing. Although we will use extensive Arduino
coding in all the projects beginning from now, exercises and projects will have Python-
Arduino interfacing as the primary way of programming.

Starting from the next chapter, we are going to explore the additional aspects of Python
programming that can extend the usability of an Arduino-based hardware project while
keeping the programming difficulty levels to a minimum. We will begin with Python-
Arduino prototyping and then create graphical interfaces for user interaction, before
stopping for the second project that utilizes these concepts.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4. Diving into Python-Arduino
Prototyping

On the completion of the first project, you successfully started Python-Arduino
interfacing. We also interfaced multiple hardware components, that is, motion sensor and
LEDs with Arduino via digital pins. During the project, you learned more about the
Firmata protocol while utilizing simple Python methods that helped you to establish a
connection between your Arduino board and the Python program. When you are working
on complex projects, you need more than basic methods to implement the different
features that are required by the projects and their associated electronics components. This
chapter is designed to give you a comprehensive experience of interfacing so that you can
start working on hard problems from the next chapter onwards. We have described various
interfacing protocols at the Python-Arduino and Arduino-to-components levels. This
chapter also includes practical examples for these protocols with appropriate code and
circuit diagrams. In this chapter, we are going to cover the following main topics:

¢ Introduction to Prototyping

e Detailed description of various pyFirmata methods to port Arduino functionalities
into Python

e Python-Arduino interfacing examples using Firmata for basic electronic components
such as the potentiometer, the buzzer, the DC motor, and the servomotor

¢ Introduction to the inter-integrated circuit (I2C) protocol and prototyping examples
for the I2C components such as the temperature sensor (TMP102) and the light
sensor (BH1750)

www.it-ebooks.info

http://www.it-ebooks.info/

Prototyping

Just for a moment, let’s step back and look at the project that we built in the previous
chapter. The project had a very simple goal and we were able to develop it quite
comfortably. However, the project is certainly not ready to be a consumer product since it
doesn’t have significant functionalities and most importantly, it is not a robust product that
can be repeatedly produced as it is. What you can tell about your current project is that it
is a DIY project for personal use or just a model that can be developed further to be a great
product.

Now, if you are looking to develop a commercial product or just a DIY project that is
really robust and scalable, you must consider starting it by making a model first. At this
stage, you need to envision the product with the required features that need to be
developed and the number of components that are required to deploy these features.
Prototyping is basically a rapid way to create a working model of your envisioned idea
before developing it into a fully functional project or product. The proof of concept
prototype that is developed during this prototyping process lets you to identify the
feasibility of your idea, and in some cases, it helps you to explore the potential of your
project. The prototyping or functional model-making process is essential for any industry
and not just for electronics.

In the electronics domain, prototyping can be used at the very first stage of interfacing
components to a computer, instead of directly spending a significant amount of resources
for the schematic design, PCB manufacturing, and developing the complete code base.
This stage helps you to identify major flaws in your circuit design and check the mutual
compatibility of the selected components.

Fortunately, Arduino and the existing software support around Arduino have really
simplified electronics’ prototyping. In the upcoming sections, we will go through various
helper functions and interfacing exercises to help you proceed with your own projects.
These examples or templates are designed in such a fashion that they can be used as a
blueprint for larger projects.

Before diving into these prototyping examples, let’s understand two different abstractions
of interfacing that we are going to explore in this chapter:

¢ Interfacing Arduino with Python: We have learned the easiest method of Python-
Arduino interfacing using the Firmata protocol. On the Arduino board, the Firmata
protocol is implemented using the StandardFirmata firmware, while on the Python
end, we used the Firmata libraries, pyFirmata or pyMata, for Python. Another
Python-Arduino interfacing method includes the use of simple but nonstandard serial
commands using the custom Arduino sketch and the pySerial library in the Python
program. It is also possible to use a computer network to establish communication
between Python and Arduino, which is covered later in the book.

¢ Interfacing electronic components with Arduine: The second interfacing
abstraction is associated with Arduino and the physical components. As we already
did, various electronics components can be simply interfaced with the Arduino board

www.it-ebooks.info

http://www.it-ebooks.info/

using digital or analog pins. These components deal with either digital or analog
signals. A few digital pins on the Arduino board support PWM communication for
specific hardware devices. The other alternative interfacing methods include 12C and
serial peripheral interface (SPI) communication. The [2C method is
comprehensively explained in the final section of this chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Working with pyFirmata methods

The pyFirmata package provides useful methods to bridge the gap between Python and
Arduino’s Firmata protocol. Although these methods are described with specific
examples, you can use them in various different ways. This section also provides a
detailed description of a few additional methods that were not used in the previous project
and lists the missing features.

www.it-ebooks.info

http://www.it-ebooks.info/

Setting up the Arduino board

To set up your Arduino board in a Python program using pyFirmata, you need to
specifically follow the steps that we have covered. We have distributed the entire code that
is required for the setup process into small code snippets in each step. While writing your
code, you will have to carefully use the code snippets that are appropriate for your
application. You can always refer to the example Python files containing the complete
code. Before we go ahead, let’s first make sure that your Arduino board is equipped with
the latest version of the StandardFirmata program and is connected to your computer:

1. Depending upon the Arduino board that is being utilized, start by importing the
appropriate pyFirmata classes to the Python code. Currently, the inbuilt pyFirmata
classes only support the Arduino Uno and Arduino Mega boards:

from pyfirmata import Arduino

In the case of Arduino Mega, use the following line of code:

from pyfirmata import ArduinoMega

2. Before we start executing any methods that are associated with handling pins, you
need to properly set up the Arduino board. To perform this task, we have to first
identify the USB port to which the Arduino board is connected and assign this
location to a variable in the form of a string object. For Mac OS X, the port string
should approximately look like this:

port = '/dev/cu.usbmodemfal331'

For Windows, use the following string structure:

port = 'COM3'

In the case of the Linux operating system, use the following line of code:

port = '/dev/ttyACMO'

The port’s location might be different according to your computer configuration. You
can identify the correct location of your Arduino USB port by using the Arduino
IDE, as described in Chapter 2, Working with the Firmata Protocol and the pySerial
Library.

3. Once you have imported the Arduino class and assigned the port to a variable object,
it’s time to engage Arduino with pyFirmata and associate this relationship to another
variable:

board = Arduino(port)
Similarly, for Arduino Mega, use this:
board = ArduinoMega(port)

4. The synchronization between the Arduino board and pyFirmata requires some time.
Adding sleep time between the preceding assignment and the next set of instructions

www.it-ebooks.info

http://www.it-ebooks.info/

can help to avoid any issues that are related to serial port buffering. The easiest way
to add sleep time is to use the inbuilt Python method, sleep(time):

from time import sleep
sleep(1)

The sleep() method takes seconds as the parameter and a floating-point number can
be used to provide the specific sleep time. For example, for 200 milliseconds, it will
be sleep(0.2).

At this point, you have successfully synchronized your Arduino Uno or Arduino Mega
board to the computer using pyFirmata. What if you want to use a different variant (other
than Arduino Uno or ArduinoMega) of the Arduino board?

e Any board layout in pyFirmata is defined as a dictionary object. The following is a
sample of the dictionary object for the Arduino board:

arduino = {
'digital' : tuple(x for x in range(14)),

'analog' : tuple(x for x in range(6)),
'pwm' : (3, 5, 6, 9, 10, 11),
'use_ports' : True,

'disabled' : (0, 1) # Rx, Tx, Crystal
}

e For your variant of the Arduino board, you have to first create a custom dictionary
object. To create this object, you need to know the hardware layout of your board.
For example, an Arduino Nano board has a layout similar to a regular Arduino board,
but it has eight instead of six analog ports. Therefore, the preceding dictionary object
can be customized as follows:

nano = {
'digital' : tuple(x for x in range(14)),
'analog' : tuple(x for x in range(8)),
"pwm' : (3, 5, 6, 9, 10, 11),
'use_ports' : True,

'disabled' : (0, 1) # Rx, Tx, Crystal
}

¢ As you have already synchronized the Arduino board earlier, modify the layout of the
board using the setup_layout (layout) method:

board.setup_layout(nano)

This command will modify the default layout of the synchronized Arduino board to
the Arduino Nano layout or any other variant for which you have customized the
dictionary object.

www.it-ebooks.info

http://www.it-ebooks.info/

Configuring Arduino pins

Once your Arduino board is synchronized, it is time to configure the digital and analog
pins that are going to be used as part of your program. Arduino board has digital I/O pins
and analog input pins that can be utilized to perform various operations. As we already
know, some of these digital pins are also capable of PWM.

The direct method

Now before we start writing or reading any data to these pins, we have to first assign
modes to these pins. In the Arduino sketch-based approach that we used in the previous
chapter, we used the pinMode function, that is, pinMode (11, INPUT) for this operation.
Similarly, in pyFirmata, this assignment operation is performed using the mode method on
the board object as shown in the following code snippet:

from pyfirmata import Arduino
from pyfirmata import INPUT, OUTPUT, PWM

Setting up Arduino board
port = '/dev/cu.usbmodemfal331'
board = Arduino(port)

Assigning modes to digital pins
board.digital[13].mode = OUTPUT
board.analog[0].mode = INPUT

The pyFirmata library includes classes for the INPUT and OUTPUT modes, which are
required to be imported before you utilized them. The preceding example shows the
delegation of digital pin 13 as an output and the analog pin 0 as an input. The mode
method is performed on the variable assigned to the configured Arduino board using the
digital[] and analog[] array index assignment.

The pyFirmata library also supports additional modes such as PwM and SERVO. The PwM
mode is used to get analog results from digital pins, while the SERvV0 mode helps a digital
pin to set the angle of the shaft between 0 to 180 degrees. The PwM and SERVO modes are
explained with detailed examples later in this chapter. If you are using any of these modes,
import their appropriate classes from the pyFirmata library. Once these classes are
imported from the pyFirmata package, the modes for the appropriate pins can be assigned
using the following lines of code:

board.digital[3].mode = PWM
board.digital[10].mode = SERVO

Note

In electronics, PWM is a signal modulation technique that is greatly used to provide
controlled amount of power to components. While dealing with digital signals, the PWM
technique is used to obtain analog results by utilizing square waves and controlling the
width of the signal.

As we already know, the digital pins of the Arduino board can only have two states, 5V

www.it-ebooks.info

http://www.it-ebooks.info/

(HIGH) and OV (LOW). One can generate square pulses by controlling the switching
pattern between HIGH and LOW and thus generate the pulse. By changing the width of
these pulses, you can simulate any voltage between OV and 5V. As you can see in the
following diagram, we have a square wave with 25 percent width of the duty cycle. It
means that we are simulating 0.25 * 5V = 1.25V for the period of that duty cycle:

Duty Cycle

M

T
=

Sv

Ov

-
25% Duty Cycle

The Arduino language supports PWM using the analogwrite() function, where the
voltage range between OV and 5V is linearly scaled for values between 0 and 255. For
example, 50 percent duty cycle (simulation of 2.5V) translates to a value of 127, which
can be coded in Arduino as analogwWrite(13,127). Here, the number 13 represents the
digital pin that supports PWM on the Arduino Uno board. Similarly, a 20 percent duty
cycle (1V) translates to analogwrite(13,64).

Assigning pin modes

The direct method of configuring pins is mostly used for a single line of execution calls. In
a project containing a large code and complex logic, it is convenient to assign a pin with
its role to a variable object. With an assignment like this, you can later utilize the assigned
variable throughout the program for various actions, instead of calling the direct method
every time you need to use that pin. In pyFirmata, this assignment can be performed using
the get_pin(pin_def) method:

from pyfirmata import Arduino
port = '/dev/cu.usbmodemfal311'
board = Arduino(port)

pin mode assignment
ledPin = board.get_pin('d:13:0"')

The get_pin() method lets you assign pin modes using the pin_def string parameter,
'd:13:0'. The three components of pin_def are pin type, pin number, and pin mode
separated by a colon (:) operator. The pin types (analog and digital) are denoted with a
and d respectively. The get_pin() method supports three modes, i for input, o for output,

www.it-ebooks.info

http://www.it-ebooks.info/

and p for PWM. In the previous code sample, 'd:13:0' specifies the digital pin 13 as an
output. In another example, if you want to set up the analog pin 1 as an input, the
parameter string will be 'a:1:i'.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with pins

Now you have configured your Arduino pins, it’s time to start performing actions using
them. Two different types of methods are supported while working with pins: reporting
methods and I/O operation methods.

Reporting data

When pins get configured in a program as analog input pins, they start sending input
values to the serial port. If the program does not utilize this incoming data, the data starts
getting buffered at the serial port and quickly overflows. The pyFirmata library provides
the reporting and iterator methods to deal with this phenomenon.

The enable_reporting() method is used to set the input pin to start reporting. This
method needs to be utilized before performing a reading operation on the pin:

board.analog[3].enable_reporting()

Once the reading operation is complete, the pin can be set to disable reporting:

board.analog[3].disable_reporting()

In the preceding example, we assumed that you had already set up the Arduino board and
configured the mode of the analog pin 3 as INPUT.

The pyFirmata library also provides the Iterator () class to read and handle data over the
serial port. While working with analog pins, we recommend that you start an iterator
thread in the main loop to update the pin value to the latest one. If the iterator method is
not used, the buffered data might overflow your serial port. This class is defined in the
util module of the pyFirmata package and needs to be imported before it is utilized in
the code:

from pyfirmata import Arduino, util
Setting up the Arduino board

port = 'COM3'

board = Arduino(port)

sleep(5)

Start Iterator to avoid serial overflow
it = util.Iterator(board)
it.start()

Manual operations

As we have configured the Arduino pins to suitable modes and their reporting
characteristic, we can start monitoring them. The pyFirmata library provides the write()
and read () methods for the configured pins.

The write() method

The write() method is used to write a value to the pin. If the pin’s mode is set to OUTPUT,
the value parameter is a Boolean, that is, 0 or 1:

board.digital[pin].mode = OUTPUT

www.it-ebooks.info

http://www.it-ebooks.info/

board.digital[pin].write(1)

If you have used an alternative method of assigning the pin’s mode, you can use the
write() method as follows:

ledPin = board.get_pin('d:13:0"')

ledPin.write(1)

In the case of the PWM signal, the Arduino accepts a value between 0 and 255 that
represents the length of the duty cycle between 0 and 100 percent. The pyFirmata library
provides a simplified method to deal with the PWM values as instead of values between 0
and 255, you can just provide a float value between 0 and 1.0. For example, if you want a
50 percent duty cycle (2.5V analog value), you can specify 0.5 with the write() method.
The pyFirmata library will take care of the translation and send the appropriate value, that
is, 127, to the Arduino board via the Firmata protocol:

board.digital[pin].mode = PWM

board.digital[pin].write(0.5)

Similarly, for the indirect method of assignment, you can use some code similar to the
following snippet:

pwmPin = board.get_pin('d:13:p')

pwmPin.write(0.5)

If you are using the SERV0 mode, you need to provide the value in degrees between 0 and
180. Unfortunately, the SERVO mode is only applicable for direct assignment of the pins
and will be available in future for indirect assignments:

board.digital[pin].mode = SERVO
board.digital[pin].write(90)

The read() method

The read() method provides an output value at the specified Arduino pin. When the
Iterator () class is being used, the value received using this method is the latest updated
value at the serial port. When you read a digital pin, you can get only one of the two
inputs, HIGH or Low, which will translate to 1 or 0 in Python:

board.digital[pin].read()

The analog pins of Arduino linearly translate the input voltages between 0 and +5V to 0
and 1023. However, in pyFirmata, the values between 0 and +5V are linearly translated
into the float values of 0 and 1.0. For example, if the voltage at the analog pin is 1V, an
Arduino program will measure a value somewhere around 204, but you will receive the
float value as 0.2 while using pyFirmata’s read() method in Python.

www.it-ebooks.info

http://www.it-ebooks.info/

Additional functions

Besides the method that has already been described, the pyFirmata library also provides
some utility functions for additional customization, which are as follows:

e servo_config(pin, min_pulse=544,max_pulse=2400, angle=0): This method helps
to set up the SERVO mode with further customization such as the minimum pulse
value, maximum pulse value, and starting angle. One can set the initial angle of the
servomotor using the angle parameter.

e pass_time(seconds): This method provides a functionality similar to that found in
the default Python’s default method sleep() that is provided by the time module.
However, the pass_time function provides a non-blocking timeout in seconds.

e get_firmata_version(): This function returns a tuple that contains the version of
the Firmata protocol from the Arduino board:

board.get_firmata_version()

e exit(): We recommend that you disconnect the Arduino board from pyFirmata once
you have completed running your code. This will free the serial port, which can be
then utilized by other programs:

board.exit()

www.it-ebooks.info

http://www.it-ebooks.info/

Upcoming functions

The pyFirmata library is currently under development and it continuously receives
updates to add and improve various methods. Although most of the native Arduino
methods are available in the pyFirmata library via the Firmata protocol, there are few
functions that are still missing or under development and they are as follows:

e pulseIn/pulseout: These native Arduino functions wait for the Arduino pin to
achieve the specified value. The waiting period is returned in microseconds. This
method is widely used by Ping (ultrasonic distance measurement) sensors.
Implementation of this method using pyFirmata requires major changes to the
standard Firmata protocol.

e shiftIn/shiftout: These functions shift a byte of data in or out, one bit at a time.
The pyFirmata library lacks supports for these functions and can be implemented
using the various Python programming tricks.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Prototyping templates using Firmata

The goal of this section is to provide prototyping templates while also explaining various
Python methods and programming techniques. It tries to cover some of the most popular
sensors with coding examples that are used by DIY Arduino projects. This section is
designed to utilize the Firmata protocol to implement these Python programs. It also
includes various Python programming paradigms such as working with indefinite loops,
creating custom functions, working with random numbers, acquiring manual inputs from
prompt, and so on. These prototyping templates are designed in such a way that they can
be easily included in large projects or they can be blueprints for a larger project that can be
developed around them. You learned about the pyFirmata package comprehensively in the
previous section and we will only utilize those pyFirmata functions in the upcoming
examples. An alternative Python library that supports the Firmata protocol is covered later
in the chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Potentiometer — continuous observation from an
analog input

A potentiometer is a variable resistor that can be controlled using a knob. It has three
terminals out of which two of them are Vref and ground, while the third one provides a
variable output. The output of the potentiometer varies between the supplied voltages,
according to the position of the knob. In Arduino, you can connect the potentiometer with
+5V and the ground pins of the board to provide the supply voltage. When the variable
terminal is interfaced with the Arduino analog input, this voltage values translates between
0 and 1023 respectively. In the case of pyFirmata, the value of the analog observation
translates between 0 and 1.

This coding template containing the potentiometer can be applied to projects in which
external manual control to a system is required. The potentiometer output that translates to
the analog input of Arduino can be used to control an actuator such as a motor or an LED.
In some cases, the input can also be used to control the flow of the program by applying
its values to a variable.

Connections

Connect the output of the potentiometer to analog pin A0 as shown in the following
diagram. Complete the circuit by connecting Vref and the ground terminals of the
potentiometers to +5V and the ground of the Arduino board respectively:

LI I

-« 8 & & @
- e 8 8 8
. % & & @
- 8 & 8 0
. e 0 8 0
- 8 8 8 0
- e 8 8
. & & & 0
- e 8 8
. 8 o & 0
. e e 0
- & & & 8
. e e 8 0
- % & & @
.e e 8 0
.- & & 8 @
- e 8 8 8
- 8 e 8 @
- e 8 8 8
. 8 0 8 0
- 8 & 8 @
. 8 @ 8 @
- 8 & & @

The Python code

www.it-ebooks.info

http://www.it-ebooks.info/

Assuming that you already have the StandardFirmata firmware uploaded to the Arduino
board, you are required to run a Python code on your computer to complete its interfacing
with the potentiometer. A Python code template with the name potentiometer.py to help
you get started with this example is located in the code bundle of this book, which can be
downloaded from https://www.packtpub.com/books/content/support/1961. Let’s open this
file to understand the program. As you can see, we are using the pyFirmata library with
other Python modules such as time and os:

from pyfirmata import Arduino, util
from time import sleep
import os

In the second step of the program, we are initializing the Arduino board and starting the
Iterator () function over it:

port = 'COM3'

board = Arduino(port)
sleep(5)

it = util.Iterator(board)
it.start()

Once the board has been initialized, we need to assign a role to the analog pin, 0, as it is
going to be used as an input pin. We are using the get_pin() method to assign a role to
the analog pin, o:

a0 = board.get_pin('a:0:1'")

Now, as part of the main program, we need to continuously monitor the output of the
potentiometer at the pin, a0, that we just defined. We are using the while statement to
create an indefinite loop for the script that will read and print the analog input. The
problem with this indefinite while loop is that the program will not close properly when it
is interrupted and it will not release the board by executing the board.exit () method. To
avoid this, we will use another control statement from the Python programming paradigm,
called try/except:

try:
while True:
p = a0.read()
print p
except KeyboardInterrupt:
board.exit()
0s._exit()

Using this statement, the program will keep running the while loop until the keyboard
interruption occurs, which is Ctrl + C, and the program will execute the script under the
except statement. This includes releasing the board using board.exit () and existing the
program using the os._exit () method. In summary, the program will keep printing the
output of the potentiometer until someone presses Ctrl + C to interrupt the program.

Note

The try/except statement provides a very efficient way to capture exceptions in Python.

www.it-ebooks.info

https://www.packtpub.com/books/content/support/1961
http://www.it-ebooks.info/

It is advisable to utilize this statement throughout the development process to cleverly
debug your programs. You can learn about Python errors and exceptions from the
following links:

e https://docs.python.org/2/reference/compound_stmts.html#try
e https://docs.python.org/2/tutorial/errors.html

www.it-ebooks.info

https://docs.python.org/2/reference/compound_stmts.html#try
https://docs.python.org/2/tutorial/errors.html
http://www.it-ebooks.info/

Buzzer — generating sound alarm pattern

Digital buzzer sensors are used in various applications that require alarm notifications.
These sensors produce sound when they are supplied with a digital HIGH value (that is,
+5V), which can be provided by using Arduino digital pins. Similar to the LED example
in the previous chapter, they are very easy to interface with Arduino. However, rather than
performing a simple digital output, we are implementing Python programming tricks to
generate different sound patterns and produce various sound effects. The same code
template can be also used to produce different LED blink patterns.

Note

An analog digital buzzer can be found at http://www.amazon.com/Arduino-Compatible-
Speaker-arduino-sensors/dp/B0090X0634.

Connections

As displayed in the following circuit diagram, connect the VCC and the ground of the
sensor board to 5V and the ground pin of the Arduino board respectively. Connect the
signal pin of the sensor to the digital pin 2 via the 220-ohm resistor. You can use any
digital pin to connect the buzzer. Just make sure that you update the Python code to reflect
the pin that you have selected.

fritzing

The Python code

In the code example, two different sound patterns are generated using arrays of time
delays. To perform these actions, we are going to implement a custom Python function
that will take the pin number, the recurrence time, and the pattern number as input. Before
we jump to explain the code, let’s open the program file, buzzerpPattern.py, from the

www.it-ebooks.info

http://www.amazon.com/Arduino-Compatible-Speaker-arduino-sensors/dp/B0090X0634
http://www.it-ebooks.info/

code folder. In the beginning of the code, you can find the Python function,
buzzerPattern() that will be called from the main program with appropriate options. As
this function is the core of the entire program, let’s try to understand it. The function
contains two hardcoded pattern arrays, patterni and pattern2. Each contains the on and
off time for the buzzer for a second, which is the duty cycle of the pattern. For example, in
patterni, 0.8 represents the time the buzzer needs to be on and 0.2 represents the
opposite. The function will repeat this buzzer pattern for recurrence times that is
specified by the function argument. Once the for loop with the value of recurrence is
started, the function will check for the pattern number from the function argument and
execute the pattern. We are using the flag variable to alternatively use elements of the
pattern array to control the buzzer. Once the entire recurrence loop is complete, we will
turn off the buzzer completely again, if it is on, and safely disengage the board using the
exit () method:

def buzzerPattern(pin, recurrence, pattern):
patternl = [0.8, 0.2]
pattern2 = [0.2, 0.8]
flag = True
for 1 in range(recurrence):
if pattern == 1:
p = patternl
elif pattern ==
p = pattern2
else:
print "Please enter valid pattern. 1 or 2."
exit
for delay in p:
if flag is True:
board.digital[pin].write(1)
flag = False
sleep(delay)
else:
board.digital[pin].write(0)
flag = True
sleep(delay)
board.digital[pin].write(0)
board.exit()

Tip
If you want to change the time delays or implement a totally different pattern, you can

play around with the pattern arrays.

The remaining part of the program is relatively simple as it contains code for importing
libraries and initializing the Arduino board. Once the board is initialized, we will execute
the buzzerPattern() function with the input argument, (2, 10, 1). This argument will
ask the function to play patterni 10 times on the pin number 2:

from pyfirmata import Arduino
from time import sleep

port = '/dev/cu.usbmodemfal331'

www.it-ebooks.info

http://www.it-ebooks.info/

board = Arduino(port)
sleep(5)

buzzerPattern(2, 10, 1)

www.it-ebooks.info

http://www.it-ebooks.info/

DC motor — controlling motor speed using PWM

DC motors are widely used in robotics applications. They are available in a wide range of
voltage specifications, depending upon the application. In this example, we are utilizing a
5V DC motor because we want to supply the power using the Arduino board itself. As the
Arduino digital pin can only have two states, that is, HIGH (+5V) or Low (0V), it is
impossible to control the speed of the motor using just the oUTPUT mode. As a solution, we
are going to implement the PWM mode via digital pins that are capable of supporting PWM.
While using pyFirmata, pins configured with the PwM mode take any float input values
between 0 and 1.0, which represent 0V and 5V respectively.

Connections

Depending upon the load, DC motors can sometimes draw large amounts of current and
harm the Arduino board. To avoid any damage to the Arduino board due to any large
accidental current draw, we will use a transistor as a switch, which only uses a small
amount of current to control the large amount of current in the DC motor. To complete the
circuit connection as displayed in the following diagram, you will need an NPN transistor
(TTP120, N2222, or a similar one), one diode (1N4001 or similar one) and a 220-ohm
resistor with your DC motor. Connect the base of the transistor to the digital pin 3 that also
supports the PWM mode. Connect the remaining components as displayed in the diagram:

TR LTI 23 s s s s s s e E e e EEEes FeeswE sewww

L L L L R R B B D L R R L B D B B B R R
- w W 5 8 B S S WSS R WA
L " 5 8§ F S S S W TS S EE S W RS
L LR B BN DS B R R S B I B O T N B N D R B R B B B
LN LA & & & 8 F S F S FE YT
L - . m L B O O B B R B R R R B D B B R R O B R
* " " e s 8 LN DR B D B B B B B B L B B

v il v+ s » LU O O A T I I I
LA B L L L B

" " F & 8 F PSSR FE YT

fritzing

www.it-ebooks.info

http://www.it-ebooks.info/

Note

To find out more about transistor terminals (collector, emitter, and base) and to associate
transistor pins with their respective terminals, you can refer to their datasheets or the
following websites:

e http://en.wikipedia.org/wiki/Transistor

e http://www.onsemi.com/pub/Collateral/TIP120-D.PDF
e http://www.mouser.com/ds/2/68/PN2221-2222 A-11964.pdf

The Python code

The Python recipe with the name dcMotorPwM. py for a DC motor is located in the code
bundle of this book, which can be downloaded from
https://www.packtpub.com/books/content/support/1961. Open the Python file to further
understand the usage of PWM to control the speed of the DC motor. The custom function,
dcMotorControl(), takes motor speed and time duration as input parameters as described
in the following code snippet:

def dcMotorControl(r, deltaT):
pwmPin.write(r/100.00)
sleep(deltaT)
pwmPin.write(0)

Just like the previous examples, we are using a similar code to import the necessary
library and initialize the Arduino board. After initialization, we are assigning the mode of
the digital pin 3 as PwM, which can be seen from the utilization of the get_pin('d:3:p")
method. This code reflects the indirect mode of pin mode assignment that we learned in
the previous section:

Set mode of pin 3 as PWM
pwmPin = board.get_pin('d:3:p"')

As part of collecting manual inputs from the user, we are running a combination of the
try/except statement (to release the board on exit) and the while statement (to obtain
continuous inputs from the user). The code template introduces the input () method to
obtain custom values (motor speed and duration to run the motor) from Python’s
interactive terminal. Once these values are obtained from the user, the program calls the
dcMotorcControl() function to perform the motor action:

try:
while True:
r = input("Enter value to set motor speed: ")
if (r > 100) or (r <= 0):
print "Enter appropriate value."
board.exit()
break
t = input("How long? (seconds)")
dcMotorControl(r, t)
except KeyboardInterrupt:
board.exit()
0S._exit

www.it-ebooks.info

http://en.wikipedia.org/wiki/Transistor
http://www.onsemi.com/pub/Collateral/TIP120-D.PDF
http://www.mouser.com/ds/2/68/PN2221-2222A-11964.pdf
https://www.packtpub.com/books/content/support/1961
http://www.it-ebooks.info/

LED - controlling LED brightness using PWM

In the previous template, we controlled the speed of DC motor using PWM. One can also
control the brightness of the LED using the same method. Instead of asking the user to
input brightness, we are going to use the Python module random in this template. We will
use this module to generate a random number between 1 and 100, which will be later used
to write that value on the pin and randomly change the brightness of the LED. This
randint () function is a really useful feature provided by the random module and it is
widely used in testing prototypes by rapidly sending random signals.

Note

The randint () function takes the randint(startvalue, endValue) syntax and returns
the random integer between the range established by startvalue and endvalue.

Connections

Like we used in the previous chapter’s project, we will need a pull-up resistor to connect
the LED with the Arduino pin. As displayed in the following diagram, simply connect the
anode of the LED (longer leg) to the digital pin 11 via one 220-ohm resistor and connect
the cathode (shorter leg) to the ground:

fritzing

It is important to note that the digital pin 11 on Arduino Uno is also capable of performing
PWM along with digital pins 3, 5, 6, 9, and 10.

The Python code

The Python code with the title 1edBrightnessPwM. py for this exercise is located in the
code bundle of this book, which can be downloaded from
https://www.packtpub.com/books/content/support/1961. Open the file to explore the code.
As you can see in this code template, a float value between 0 and 1.0 is randomly selected
before passing it to the PWM pin. This method generates random LED brightness for a

www.it-ebooks.info

https://www.packtpub.com/books/content/support/1961
http://www.it-ebooks.info/

given amount of time. This practice can be used to generate random input samples for
various other testing projects.

As you can see, the first few lines of the code import the necessary libraries and initialize
the board. Although the board variable, /dev/cu.usbmodemfa1311, is selected for Mac OS
X, you can use your operating system’s specific variable name in the following code
snippet. You can obtain more information about choosing this variable name from the
Setting up the Arduino board section at the beginning of this chapter.

from pyfirmata import Arduino, INPUT, PWM
from time import sleep
import random

port = '/dev/cu.usbmodemfal311'
board = Arduino(port)
sleep(5)

In this example, we are utilizing the direct method of pin mode assignment. As you can
see in the following code snippet, the digital pin 11 is being assigned to the PwM mode:

pin = 11

board.digital[pin].mode = PWM

Once the pin mode is assigned, the program will run a loop using the for statement while
randomly generating an integer number between 0 and 100, and then send the appropriate
PWM value to the pin according to the generated number. With the execution of this, you
will be able to see the LED randomly changing its brightness for approximately 10
seconds:

for 1 in range(0, 99):
r = random.randint(1, 100)
board.digital[pin].write(r / 100.00)
sleep(0.1)

Once you are done with the loop, you need to safely disengage the Arduino board after
turning off the LED one last time. It is a good practice to turn off the LED or any
connected sensor at the end of the program before exiting the board, to prevent any sensor
from running accidentally:

board.digital[pin].write(0)
board.exit()

Note

If you want to homogenously glow the LED instead of randomly changing its brightness,
replace the code in the for loop with the following code snippet. Here, we are changing
the PWM input to the incrementing variable, i, instead of the random variable, r:

for i in range(0, 99):

board.digital[pin].write(i / 100.00)
sleep(0.1)

www.it-ebooks.info

http://www.it-ebooks.info/

Servomotor — moving the motor to a certain angle

Servomotors are widely used electronic components in applications such as pan-tilt
camera control, robotic arms, mobile robot movements, and so on where precise
movement of the motor shaft is required. This precise control of the motor shaft is
possible because of the position sensing decoder, which is an integral part of the
servomotor assembly. A standard servomotor allows the angle of the shaft to be set
between 0 and 180 degrees. The pyFirmata library provides the SERVO mode that can be
implemented on every digital pin. This prototyping exercise provides a template and
guidelines to interface a servomotor with Python.

Connections

Typically, a servomotor has wires that are color-coded red, black, and yellow respectively
to connect with the power, ground, and signal of the Arduino board. Connect the power
and the ground of the servomotor to 5V and the ground of the Arduino board. As
displayed in the following diagram, connect the yellow signal wire to the digital pin 13:

mmmmmmmmmmm
: L LA LA B

..............

fritzing

If you want to use any other digital pin, make sure that you change the pin number in the
Python program in the next section. Once you have made the appropriate connections,
let’s move on to the Python program.

The Python code

The Python file consisting of this code is named servoCustomAngle.py and is located in
the code bundle of this book, which can be downloaded from
https://www.packtpub.com/books/content/support/19610. Open this file in your Python

www.it-ebooks.info

https://www.packtpub.com/books/content/support/19610
http://www.it-ebooks.info/

editor. Like other examples, the starting section of the program contains the code to import
the libraries and set up the Arduino board:

from pyfirmata import Arduino, SERVO
from time import sleep

Setting up the Arduino board

port = 'COM5'

board = Arduino(port)

Need to give some time to pyFirmata and Arduino to synchronize
sleep(5)

Now that you have Python ready to communicate with the Arduino board, let’s configure
the digital pin that is going to be used to connect the servomotor to the Arduino board. We
will complete this task by setting the mode of pin 13 to SERVO:

Set mode of the pin 13 as SERVO

pin = 13

board.digital[pin].mode = SERVO

The setServoAngle(pin, angle) custom function takes the pins on which the servomotor
is connected and the custom angle as input parameters. This function can be used as a part
of various large projects that involve servos:

Custom angle to set Servo motor angle

def setServoAngle(pin, angle):
board.digital[pin].write(angle)
sleep(0.015)

In the main logic of this template, we want to incrementally move the motor shaft in one
direction until it achieves the maximum achievable angle (180 degrees) and then move it
back to the original position with the same incremental speed. In the while loop, we will
ask the user to provide input to continue this routine, which will be captured using the
raw_input () function. The user can enter the character y to continue this routine or enter
any other character to abort the loop:

Testing the function by rotating motor in both direction
while True:
for 1 in range(0, 180):
setServoAngle(pin, 1)
for 1 in range(180, 1, -1):
setServoAngle(pin, 1)

Continue or break the testing process
i = raw_input("Enter 'y' to continue or Enter to quit): ")

if 1 == "y'":
pass

else:
board.exit()
break

While working with all these prototyping examples, we used the direct communication
method by using digital and analog pins to connect the sensors with Arduino. Now, let’s
get familiar with another widely used communication method between Arduino and the

www.it-ebooks.info

http://www.it-ebooks.info/

sensors, which is called I2C communication.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Prototyping with the I12C protocol

In the previous section, sensors or actuators were directly communicating with Arduino
via digital, analog, or PWM pins. These methods are utilized by a large number of basic,
low-level sensors and you will be widely using them in your future Arduino projects.
Beside these methods, there is a wide variety of popular sensors that are based on
integrated circuit (IC), which require different ways of communication. These IC-based
advanced sensors utilize [2C- or SPI bus-based methods to communicate with the
microcontroller. As we are going to use [2C-based sensors in the upcoming projects, the
section will only cover the I2C protocol and practical example to understand the protocol
in a better way. Once you understand the fundamentals of the I2C protocol, you can learn
the SPI protocol very quickly.

Note

You can learn more about SPI protocol and the supported Arduino SPI library from the
following links:

¢ http://arduino.cc/en/Reference/SPI
e http://www.instructables.com/id/Using-an-Arduino-to-Control-or-Test-an-SPI-

electro/

In 1982, the Philips company needed to find out a simple and efficient way to establish
communication between a microcontroller and the peripheral chips on TV sets, which led
to the development of the I2C communication protocol. The I2C protocol connects the
microcontroller or the CPU to a large number of low-speed peripheral devices using just
two wires. Examples of such peripheral devices or sensors include I/0 devices, A/D
converters, D/A converters, EEPROM, and many similar devices. I2C uses the concept of
master-slave devices, where the microcontroller is the master and the peripherals are the
slave devices. The following diagram shows an example of the I2C communication bus:

www.it-ebooks.info

http://arduino.cc/en/Reference/SPI
http://www.instructables.com/id/Using-an-Arduino-to-Control-or-Test-an-SPI-electro/
http://www.it-ebooks.info/

| Voo

AA LAY
Pull up
resistors
idh—

SDA

12c
Master SCL
GND
Microcontroller |
B L <4 o g od o 0O g oo o 0O
$885% $885% $3885%
12C Slave 12C Slave 12C Slave
Peripheral Peripheral Peripheral
Device 1 Device 2 Device 3

As displayed in the preceding diagram, the master device contains two bidirectional lines:
Serial Data Line (SDA) and Serial Clock Line (SCL). In the case of Arduino Uno, the
analog pins 4 and 5 provide interfaces for SDA and SCL. It is important to note that these
pin configurations will change with different variants of the Arduino board. The peripheral
sensors that are working as slaves connect to these lines, which are also supported by the
pull resistors. The master device is responsible for generating the clock signal on the SCL
and initializing communication with the slaves. The slave devices receive the clock and
respond to the commands sent by the master device.

The order of the slave devices is not important as the master device communicates with
the slaves using their part address. To initialize the communication, the master sends one
of the following types of message on the bus with the specific part address:

¢ A single message in which data is written on the slave

e A single message in which data is read from the slave

e Multiple messages in which first data is requested from the slave and then the
received data is read

To support 12C protocol in Arduino programming, the Arduino IDE comes equipped with
a default library called wire. This library can be imported to your Arduino sketch by
adding the following line of code at the beginning of your program:

#include <Wire.h>

To initialize I2C communication, the wire library uses a combination of the following
functions to write data on the slave device:

Wire.beginTransmission(0x48);
Wire.write(0);

www.it-ebooks.info

http://www.it-ebooks.info/

Wire.endTransmission();

These slave devices are differentiated using unique part addresses. As you can see in the
preceding example, 0x48 is the part address of a connected slave device.

The wire library also provides the Wire.read() and Wire.requestFrom() functions to
read and request data from the slave devices. These functions are explained in detail in the
next section.

Note
You can learn more about the 12C protocol and the wire library from the following links:

e http://www.instructables.com/id/I2C-between-Arduinos/
e http://arduino.cc/en/reference/wire

www.it-ebooks.info

http://www.instructables.com/id/I2C-between-Arduinos/
http://arduino.cc/en/reference/wire
http://www.it-ebooks.info/

Arduino examples for 12C interfacing

In order to practice prototyping exercises for the I2C protocol, let’s utilize two popular
[2C sensors that detect temperature and ambient light in the environment. As the first step
towards understanding I2C messaging, we will work with Arduino sketches for I2C
interfacing, and later, we will develop similar functionalities using Python.

Arduino coding for the TMP102 temperature sensor

TMP102 is one of the widely used digital sensors to measure ambient temperature.
TMP102 provides better resolution and accuracy compared to traditional analog
temperature sensors such as LM35 or TMP36. The following is an image of TMP102:

The previous image shows a breakout board with the available pins for the TMP102
sensor. Please keep in mind that the TMP102 sensor that you obtain might have a different
pin layout compared to the one displayed in the image. It is always advisable to check the
datasheet of your sensor breakout board before making any connections. As you can see in
the image, the TMP102 sensor supports the 12C protocol and is equipped with SDA and
SCL pins. Connect analog pins 4 and 5 of your Arduino Uno board to the SDA and SCL
pins of the TMP102 sensor. Also, connect +5V and the ground as displayed in the
following diagram. In this example, we are using the Arduino Uno board as the master and
TMP102 as the slave peripheral, where the part address of TMP102 is 0x48 in hex:

www.it-ebooks.info

http://www.it-ebooks.info/

s,
nnnnnnnnnnnnnnnnnn

TMP102

ANALOG IN.

i m =
< =

Note

You can obtain the TMP102 sensor breakout board from SparkFun Electronics at
https://www.sparkfun.com/products/11931.

The datasheet of this board can be obtained at
https://www.sparkfun.com/datasheets/Sensors/Temperature/tmp102.pdf.

Now, connect your Arduino board to your computer using a USB cable and create a new
sketch in the Arduino IDE using the following code snippet. Once you have selected the
appropriate serial port and type of board in the Arduino IDE, upload and run the code. If
all the steps are performed as described, on execution, you will be able to see the
temperature reading in Celsius and Fahrenheit in the Serial Monitor window:

#include <Wire.h>
int partAddress = 0x48;

void setup(){
Serial.begin(9600);
Wire.begin();

b
void loop(){

Wire.requestFrom(partAddress,2);

www.it-ebooks.info

https://www.sparkfun.com/products/11931
https://www.sparkfun.com/datasheets/Sensors/Temperature/tmp102.pdf
http://www.it-ebooks.info/

byte MSB
byte LSB

Wire.read();
Wire.read();

int TemperatureData = ((MSB << 8) | LSB) >> 4;

float celsius = TemperatureData*0.0625;
Serial.print("Celsius: ");
Serial.println(celsius);

float fahrenheit = (1.8 * celsius) + 32;
Serial.print("Fahrenheit: ");
Serial.println(fahrenheit);

delay(500);
}

In the preceding code snippet, the Wire.requestFrom(partAddress, 2) function requests
two bytes from the slave TMP102. The slave sends data bytes to the master, which get
captured by the wire.read() function and are stored as two different bits: most
significant bit (MSB) and least significant bit (LSB). These bytes are converted into an
integer value, which is then converted into the actual Celsius reading by multiplying the
incremental fraction of the TMP102 sensor that is obtained from the datasheet. TMP102 is
one of the easiest I2C sensors to interface with Arduino as the sensor values can be
obtained via a simple I2C request method.

Arduino coding for the BH1750 light sensor

BH1750 is a digital light sensor that measures the amount of visible light in a given area.
Although various DIY projects utilize simple photocells as a cheap alternative, the
BH1750 sensor is known for higher resolution and accuracy in a wide range of
applications. The ambient light, also called luminous flux or lux, is measured in unit
lumen. The BH1750 sensor supports [2C communication with part address 0x23, with
0x5C as the secondary address if you are using multiple BH1750 sensors. The following is
an image of a typical breakout board consisting of BH1750:

FeE] G

gy ||| e f @

Connect the SDA and SCL pins of the BH1750 breakout board to analog pins 4 and 5 of
the Arduino Uno board, as displayed in the following circuit diagram. Also, complete the
+5V and ground connections as displayed in the following diagram:

www.it-ebooks.info

http://www.it-ebooks.info/

BH1750

ANALOG IN .

O @A mom X
cccccc

In the previous example, we used functions from the wire library to complete the 12C
communication. Although BH1750 is a simple and convenient I2C sensor, in the case of a
sensor with multiple measurement capabilities, it is not convenient to code directly using
the wire library. In this situation, you can use sensor-specific Arduino libraries that are
developed by the manufacturer or the open source community. For BH1750, we will
demonstrate the use of such a library to assist the I2C coding. Before we can use this
library, we will have to import it to the Arduino IDE. It is really important to know the
process of importing libraries to your Arduino IDE as you will be repeating this process to
install other libraries in future. Execute the following steps to import the BH1750 library to
your Arduino IDE:

1.

Download and extract Chapter 7, The Midterm Project — a Portable DIY Thermostat,
code examples in a folder.

Open the Arduino IDE and navigate to Sketch | Import Library... | Add
Library....

When you are asked for a directory, go to the BH1750 folder in the downloaded file
and click on Select.

To check if your library is installed, navigate to Sketch | Import Library... and look
for BH1750 in the drop-down list.

Finally, restart the Arduino IDE.

Tip

If you are using an Arduino IDE with version 1.0.4 or an older version, you might not

www.it-ebooks.info

http://www.it-ebooks.info/

be able to find the Import Library... option from the menu. In this case, you need to
follow the tutorial at http://arduino.cc/en/Guide/Libraries.

The BH1750 library has a method to directly obtain ambient light values. Let’s test this
library using a built-in code example.

After restarting your Arduino IDE, navigate to File | Examples | BH1750 and open the
BH1750test Arduino sketch. This should open the following code snippet in the Arduino
IDE. Set up an appropriate serial port and upload the code to your Arduino board. Once
the code is executed, you will be able to check the luminous flux (1ux) values using the
serial monitor of the Arduino IDE. Make sure that the serial monitor is configured to 9600
baud:

#include <Wire.h>
#include <BH1750.h>

BH1750 lightMeter;

void setup(){
Serial.begin(9600);
lightMeter.begin();
Serial.println("Running..");

}

void loop() {
uintl6_t lux = lightMeter.readLightLevel();
Serial.print("Light: ");
Serial.print(lux);
Serial.println(" 1x");
delay(1000);

}

As you can see from the preceding code snippet, we have imported the BH1750 library by
including BH1750. h file with Wire.h. This library provides the readLightLevel()
function, which will fetch the ambient light value from the sensor and provide it as an
integer. As the Arduino code runs in a loop with a delay of 1000 milliseconds, the 1ux
values will be fetched from the sensor and sent to the serial port every second. You can
observe these values in the Serial Monitor window.

www.it-ebooks.info

http://arduino.cc/en/Guide/Libraries
http://www.it-ebooks.info/

PyMata for quick 12C prototyping

We have been using pyFirmata as our default Python library to interface the Firmata
protocol. The pyFirmata library is a very useful Python library to get started with the
Firmata protocol, as it provides many simple and effective methods to define the Firmata
ports and their roles. Due to these reasons, we extensively used pyFirmata for rapid
prototyping in the previous section. Although pyFirmata supports analog, digital, PWM,
and SERVO modes with easy-to-use methods, it provides limited support to the 12C
protocol.

In this section, we are going to use a different Python Firmata library called PyMata to get
familiar with Python-based prototyping of I2C sensors. The PyMata library supports
regular Firmata methods and also provides full support for the I2C messaging protocol.

PyMata can be easily installed using Setuptools, which we used in the previous chapters to
install other Python libraries. We are assuming that you already have Setuptools and pip
on your computer. Let’s start performing the following steps:

1. To install pyMmata on a Windows computer, execute the following command in the
command prompt:

C:\> easy_install.exe pymata

2. If you are using Linux or Mac OS X, use the following command in the terminal to
install the PymMata library:

$ sudo pip install pymata

3. If everything is set up properly, this process will complete without any error. You can
confirm PyMata by opening Python’s interactive prompt and importing PyMata:

>>> import PyMata

4. 1If the execution of the preceding command fails, you need to check the installation
process for any error. Resolve the error and repeat the installation process.

Interfacing TMP102 using PyMata

In order to utilize PyMata functionalities, you will need your Arduino board to be equipped
with the standard firmata firmware just like the pyFirmata library. Before we proceed to
explain the PyMata functions, let’s first run the following code snippet. Connect your
TMP102 temperature sensor as explained in the previous section. Using the Arduino IDE,
navigate to File | Examples | Firmata and upload the standard Firmata sketch from there
to your Arduino board. Now, create a Python executable file using the following code
snippet. Change the value of port (CoM5), if needed, to an appropriate port name as
required by your operating system. Finally, run the program:

import time
from PyMata.pymata import PyMata

#Initialize Arduino using port name

www.it-ebooks.info

http://www.it-ebooks.info/

port = PyMata("COM5")

#Configure I2C pin
port.i2c_config(®, port.ANALOG, 4, 5)

One shot read asking peripheral to send 2 bytes
port.i2c_read(0x48, 0, 2, port.I2C_READ)

Wait for peripheral to send the data
time.sleep(3)

Read from the peripheral
data = port.i2c_get_read_data(0x48)

Obtain temperature from received data
TemperatureSum = (data[l1l] << 8 | data[2]) >> 4

celsius = TemperatureSum * 0.0625
print celsius

fahrenheit = (1.8 * celsius) + 32
print fahrenheit

firmata.close()

On the execution of the preceding code snippet, you will be able to see the temperature
reading in Fahrenheit and Celsius. As you can see from the inline comments in the code,
the first step to utilize Arduino using PyMata is to initialize the port using the pyMata
constructor. PyMata supports the configuration of 12C pins via the i2c_config() function.
PyMata also supports simultaneous reading and writing operations via the i2c_read() and
i2c_write() functions.

Interfacing BH1750 using PyMata

In the case of BH1750, the previous PyMata code snippet can be utilized with minor
modifications to obtain ambient light sensor data. As the first change, you want to replace
the part address of TMP102 (0x48) with the one of BH1750 (0x23) in the following code
snippet. You will also have to convert the raw values received from the sensor into the 1ux
value using the given formula. After these modifications, run the following program from
the terminal:

import time
from PyMata.pymata import PyMata

port = PyMata("COM5")
port.i2c_config(®, port.ANALOG, 4, 5)

Request BH1750 to send 2 bytes
port.i2c_read(0x23, 0, 2, port.I2C_READ)
Wait for BH1750 to send the data
time.sleep(3)

Read data from BH1750
data = port.i2c_get_read_data(0x23)

www.it-ebooks.info

http://www.it-ebooks.info/

Obtain lux values from received data
LuxSum = (data[1l] << 8 | data[2]) >> 4

Jux = LuxSum/1.2
print str(lux) + ' lux'

firmata.close()

On running the preceding code snippet, you will be able to see the ambient light sensor
reading in lux at the terminal. This process can be used in a large number of 12C devices
to read the registered information. In complex 12C devices, you will have to follow their
datasheet or examples to organize the read and write commands of the I2C.

www.it-ebooks.info

http://www.it-ebooks.info/

Useful pySerial commands

The standard Firmata protocol and Python’s Firmata libraries are very useful for testing or
quick prototyping of the I2C sensors. Although they have many advantages, Firmata-
based projects face the following disadvantages:

¢ Delay in real-time execution: Firmata-based approaches require a series of serial
communication messages to receive and send data, which adds additional delay and
reduces the speed of execution.

¢ Unwanted space: The Firmata protocol contains a large amount of additional code to
support various other Arduino functions. In a well-defined project, you don’t really
need the complete set of functions.

e Limited support: Although a version of Firmata includes I2C support, it is quite
difficult to implement complex I2C functions without adding delay.

In summary, you can always use Firmata-based approaches to quickly prototype your
projects, but when you are working on production-level or advanced projects, you can use
alternative methods. In these scenarios, you can use custom Arduino code that is
supported by Python’s serial library, pySerial, to enable communication for very specific
functionalities. In this section, we are going to cover a few helpful pySerial methods that
you can use if you have to utilize the library directly.

Connecting with the serial port

Once you have connected your Arduino to a USB port of your computer, you can open the
port in your Python code using the Serial class as displayed in the following code
example:

import serial
port = serial.Serial('COM5',69600, timeout=1)

In addition to port name and baud rate, you can also specify a number of serial port
parameters such as timeout, bytesize, parity, stopbits, and so on using Serial(). It is
necessary to initialize the serial port before executing any other command from the
pySerial library.

Reading a line from the port

Once the serial port is opened, you can start reading the port using readline(). The
readline() function requires the timeout to be specified while initializing the port,
otherwise the code can terminate with an exception:

line = port.readline()

The readline() function will process each line from the port that is terminated with the
end line character \n.

Flushing the port to avoid buffer overflow

While working with pyserial, it is necessary to flush the input buffer to avoid buffer
overflow and maintain real-time operations:

www.it-ebooks.info

http://www.it-ebooks.info/

port.flushInput()

If the port’s baud rate is high and the processing of the input data is slow, buffer overflow
may occur, reducing the speed of execution and making the experience sluggish.

Closing the port

It is a good coding practice to close the serial port once the process is complete. This
practice can eliminate the port-blocking problem once the Python code is terminated:

port.close()

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Summary

In this chapter, you learned important methods that are required to successfully interface
the Arduino board with Python. You were also introduced to various prototyping code
templates with practical applications. These prototyping templates helped us to learn new
Python programing paradigms and Firmata methods. Later in the chapter, we dived further
into prototyping by learning more about the different ways of establishing communication
between sensors and the Arduino board. Although we covered a vast amount of
programming concepts with these prototyping examples, the goal of the chapter was to
make you familiar with the interfacing problems and provide quick recipes for your
projects.

We are assuming that by now you are comfortable testing your sensors or project
prototypes using Python and Arduino. It’s time to start working towards creating your
applications that have complex Python features such as user controls, charts, and plots. In
the next chapter, we are going to develop custom graphical user interfaces (GUIs) for your
Python-Arduino projects.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5. Working with the Python GUI

In the first four chapters, we used the Python interactive prompt or Arduino serial monitor
to observe the results. The method of using text-based output on prompt may be useful for
basic and quick prototyping, but when it comes to an advanced level of prototyping and
demonstrating your prototype or final product, you need to have a nice looking and user-
friendly interface. GUI helps users to understand various components of your hardware
project and easily interact with it. It can also help you to validate the results from your
project.

Python has a number of widely used GUI frameworks such as Tkinter, wxPython, PyQt,
PySide, and PyGTK. Each of these frameworks possesses an almost complete set of features
that are required to create professional applications. Due to the complexity involved, these
frameworks have different levels of learning curves for first-time Python programmers.
Now, as this book is dedicated to Python programming for Arduino-based projects, we
can’t spend a large amount of time learning the nitty-gritty of a specific framework.
Instead, we will choose our interface library based on the following criteria:

e Fase to install and get started
e Ease to implement with negligible learning efforts
e Use of minimum computational resources

The framework that satisfies all these requirements is Tkinter
(https://wiki.python.org/moin/TklInter). Tkinter is also the default standard GUI library
deployed with all Python installations.

Note

Although Tkinter is the de-facto GUI package for Python, you can learn more about other
GUI frameworks that were mentioned earlier from their official websites, which are as
follows:

wxPython: http://www.wxpython.org/
PyGTK: http://www.pygtk.org/

PySide: http://qt-project.org/wiki/PySide
PyQt: http://sourceforge.net/projects/pyqt/

www.it-ebooks.info

https://wiki.python.org/moin/TkInter
http://www.wxpython.org/
http://www.pygtk.org/
http://qt-project.org/wiki/PySide
http://sourceforge.net/projects/pyqt/
http://www.it-ebooks.info/

Learning Tkinter for GUI design

Tkinter, short for Tk interface, is a cross-platform Python interface for the Tk GUI toolkit.
Tkinter provides a thin layer on Python while Tk provides the graphical widgets. Tkinter
is a cross-platform library and gets deployed as part of Python installation packages for
major operating systems. For Mac OS X 10.9, Tkinter is installed with the default Python
framework. For Windows, when you install Python from the installation file, Tkinter gets
installed with it.

Tkinter is designed to take minimal programming efforts for developing graphical
applications, while also being powerful enough to provide support for the majority of GUI
application features. If required, Tkinter can also be extended with plugins. Tkinter via
Tk offers an operating system’s natural look and feel after the release of Tk Version 8.0.

To test your current version of the Tk toolkit, use the following commands on the Python
prompt:

>>> import Tkinter
>>> Tkinter._test()

You will be prompted with an image similar to that displayed in the following screenshot
that contains information about your Tk version:

8.0.6 tk

This is Tcl/Tk version 8.5
This should be a cedilla: ¢

Click me!

Quit

If you face any problem in getting this window, check your Python installation and
reinstall it, as you won’t be able to move further ahead in this chapter without the Tkinter
library and the Tk toolkit.

The Tkinter interface supports various widgets to develop GUIs. The following table
describes a few of the important widgets that we will be using in this chapter:

Widget Description |
Tk() This is the root widget that is required by each program
Label() This shows a text or an image

Entry() This is a text field to provide inputs to the program

Scale() This provides a numeric value by dragging the slider

Button() ||This is a simple button that can be used to execute actions |
i [

www.it-ebooks.info

http://www.it-ebooks.info/

Checkbox()

Note

This enables you to toggle between two values by checking the box“

A detailed description of the Tkinter functions and methods to implement the majority of
functionalities provided by the Tk toolkit can be obtained from

https://docs.python.org/2/library/tk.html.

www.it-ebooks.info

https://docs.python.org/2/library/tk.html
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Your first Python GUI program

As we discussed in an earlier chapter, the first program while learning any programming
language includes printing Hello World!. Now, as we are starting Python programming
for GUI, let’s start by printing the same string in a GUI window instead of a prompt.

Just to start with GUI programming, we are going to execute a Python program and then
jump into explaining the structure and the details of the code. Let’s create a Python
executable file using the following lines of code, name it hel1oGUI.py, and then run it.
The execution process should complete without any dependency errors:

import Tkinter

Initialize main windows with title and size
top = Tkinter.Tk()

top.title("Hello GUI")

top.minsize (200, 30)

Label widget
helloLabel = Tkinter.Label(top, text = "Hello World!")
helloLabel.pack()

Start and open the window
top.mainloop()

You should be prompted with the following window on the successful execution of the
preceding code snippet. As you can see, the Hello World! string has been printed inside
the window and has Hello GUI as the title of the window:

8 O 0O Hello GUI
Hello World!

So, what exactly happened? As you can see from the code snippet, we instantiated various
Tkinter widgets one by one to obtain this result. These widgets are the building blocks for
any Python GUI application that is developed using Tkinter. Let’s start with the first and
the most important widget, Tk ().

www.it-ebooks.info

http://www.it-ebooks.info/

The root widget Tk() and the top-level methods

The Tk () widget initializes a main empty window with a title bar. This is a root widget
and it is required by each program only once. The main window gets its decoration and
styles from the operating system’s environment. Therefore, when you run the same
Tkinter code on different operating systems, you will get the same window and title bar
but in a different style.

Once you create a root widget, you can perform some top-level methods to decorate,
describe, or resize this window. In code, we are using the title() method to set the title
of the main window. This title() method takes a string as an input argument:

Top = Tkinter.Tk()
top.title("Hello GUI")

Next, we call the minsize() method on the main window to set the minimum size of the
window with the argument (width, height):

top.minsize (200, 30)

Similarly, you can also use the maxsize () method to specify the maximum size that the
main window should have. In the minsize() and maxsize() methods, the values of width
and height are provided in the number of pixels.

Once the entire program has been instantiated, the mainloop() function is required to start
the event loop:

top.mainloop()

You won’t be able to see any other widgets, including the main window, if the code does
not enter in the main event loop. The event loop will be alive until the window is manually
closed or the quit method is called.

You might have various questions about updating the window, programmatically closing
it, arranging widgets in the grid, and so on. There are definitely a lot more top-level
methods than the ones specified earlier.

www.it-ebooks.info

http://www.it-ebooks.info/

The Label() widget

The other widget used in the code beside Tk() is Label(). The Tkinter widgets are part
of the widget hierarchy, where Label() is the child of the root widget, Tk (). This widget
cannot be called without specifying the root widget or the main window on which the
label needs to be displayed. The major use of this widget is to display text or image in the
main window. In the following line of code, we use it to display the Hello World! string:

helloLabel = Tkinter.Label(top, text = "Hello World!")

Here, we created and initialized a label object called helloLabel, which has two input
parameters: the top variable that specifies the root widget and a text string. The Label()
widget is highly customizable and accepts various configuration parameters for adjusting
the width, border, background, and justification as options. Examples involving these
customizations are covered in the upcoming sections. You can learn more about the

supported input arguments at http://effbot.org/tkinterbook/label.htm.

www.it-ebooks.info

http://effbot.org/tkinterbook/label.htm
http://www.it-ebooks.info/

The Pack geometry manager

The Pack geometry manager organizes widgets in rows and columns. To use this, Tkinter
requires the pack() method to be called for each widget to make the widget visible on the
main window:

helloLabel.pack()

The Pack geometry manager can be used by all Tkinter widgets, except root, to organize
the widget in the root window. In the case of multiple widgets, if the positions for the
widgets are not specified, the Pack manager arranges them in the same root window. The
Pack manager is simple to implement, but it has a limitation in terms of its degree of
customization. An alternative geometry manager that is helpful to create a complex layout
is called Grid, which is explained in the upcoming sections.

We will cover additional widgets and their associated methods in the upcoming coding
exercises. In these exercises, we will explain each individual widget with practical
applications to give you a better understanding of the use cases.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

The Button() widget — interfacing GUI
with Arduino and LEDs

Now that you have had your first hands-on experience in creating a Python graphical
interface, let’s integrate Arduino with it. Python makes it easy to interface various
heterogeneous packages within each other and that is what you are going to do. In the next
coding exercise, we will use Tkinter and pyFirmata to make the GUI work with Arduino.
In this exercise, we are going to use the Button() widget to control the LEDs interfaced
with the Arduino board.

Before we jump to the exercises, let’s build the circuit that we will need for all upcoming
programs. The following is a Fritzing diagram of the circuit where we use two different
colored LEDs with pull up resistors. Connect these LEDs to digital pins 10 and 11 on your
Arduino Uno board, as displayed in the following diagram:

a8 8 5 8 8 & B F BB BB
T YT vYyVYT Y VYYTYVYTYRYTYRYTYY
L S B O B B B B B S R
L L B
L L S B B

T R : 4 s S
rxmm Arduino

rYvTvYyvTyvTywvYwywy
* % % 8 % BV F B

L B B O B BN O O B O R B
L B O T B N O B I O B B A
" F % R R R R R TR
8§ 8 8 B BB PR RN

fritzing

Note

While working with the programs provided in this and upcoming sections, you will have
to replace the Arduino port that is used to define the board variable according to your
operating system. To find out which port your Arduino board is connected to, follow the
detailed instructions provided in Chapter 2, Working with the Firmata Protocol and the
pySerial Library. Also, make sure that you provide the correct pin number in the code if
you are planning to use any pins other than 10 and 11. For some exercises, you will have
to use the PWM pins, so make sure that you have correct pins.

In the previous exercise, we asked you to use the entire code snippet as a Python file and
run it. This might not be possible in the upcoming exercises due to the length of the
program and the complexity involved. Therefore, we have assembled these exercises in
the program files that can be accessed from the code folder of Chapter 4, Diving into

www.it-ebooks.info

http://www.it-ebooks.info/

Python-Arduino Prototyping, which can be downloaded from
https://www.packtpub.com/books/content/support/1961. For the Button() widget
exercise, open the exampleButton.py file from the code folder of Chapter 4, Diving into
Python-Arduino Prototyping. The code contains three main components:

e The pyFirmata library and Arduino configurations
e The Tkinter widget definitions for a button
e The LED blink function that gets executed when you press the button

As you can see in the following code snippet, we have first imported libraries and
initialized the Arduino board using pyFirmata methods. For this exercise, we are only
going to work with one LED and we have initialized only the ledPin variable for it:

import Tkinter

import pyfirmata

from time import sleep

port = '/dev/cu.usbmodemfal331'

board = pyfirmata.Arduino(port)

sleep(5)

ledPin = board.get_pin('d:11:0'")

Note

As we are using the pyFirmata library for all the exercises in this chapter, make sure that
you have uploaded the latest version of the standard Firmata sketch on your Arduino
board.

In the second part of the code, we have initialized the root Tkinter widget as top and
provided a title string. We have also fixed the size of this window using the minsize()
method. In order to get more familiar with the root widget, you can play around with the
minimum and maximum size of the window:

top = Tkinter.Tk()

top.title("Blink LED using button")

top.minsize(300,30)

The Button() widget is a standard Tkinter widget that is mostly used to obtain the
manual, external input stimulus from the user. Like the Label() widget, the Button()
widget can be used to display text or images. Unlike the Label() widget, it can be
associated with actions or methods when it is pressed. When the button is pressed,
Tkinter executes the methods or commands specified by the command option:

startButton = Tkinter.Button(top,
text="Start",
command=onStartButtonPress)
startButton.pack()

In this initialization, the function associated with the button is onStartButtonPress and
the "Start" string is displayed as the title of the button. Similarly, the top object specifies
the parent or the root widget. Once the button is instantiated, you will need to use the
pack () method to make it available in the main window.

In the preceding lines of code, the onStartButonPress() function includes the scripts that

www.it-ebooks.info

https://www.packtpub.com/books/content/support/1961
http://www.it-ebooks.info/

are required to blink the LEDs and change the state of the button. A button state can have
the state as NORMAL, ACTIVE, or DISABLED. If it is not specified, the default state of any
button is NORMAL. The ACTIVE and DISABLED states are useful in applications when
repeated pressing of the button needs to be avoided. After turning the LED on using the
write(1) method, we will add a time delay of 5 seconds using the sleep(5) function
before turning it off with the write(0) method:

def onStartButtonPress():
startButton.config(state=Tkinter .DISABLED)
ledPin.write(1)
LED is on for fix amount of time specified below
sleep(5)
ledPin.write(0)
startButton.config(state=Tkinter.ACTIVE)

At the end of the program, we will execute the mainloop() method to initiate the Tkinter
loop. Until this function is executed, the main window won’t appear.

To run the code, make appropriate changes to the Arduino board variable and execute the
program. The following screenshot with a button and title bar will appear as the output of
the program. Clicking on the Start button will turn on the LED on the Arduino board for
the specified time delay. Meanwhile, when the LED is on, you will not be able to click on
the Start button again. Now, in this particular program, we haven’t provided sufficient

code to safely disengage the Arduino board and it will be covered in upcoming exercises.

8 O O Blink LED using button

Start

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

The Entry() widget — providing manual
user Inputs

In the previous exercise, you used a button to blink the LED on the Arduino board for a
fixed amount of time. Let’s say that you want to change this fixed time delay and specify a
value according to your application’s requirement. To perform this operation, you will
need a widget that accepts custom values that can then be converted into the delay. Just
like any other GUI framework, Tkinter provides the interface for a similar widget called
Entry() and we will utilize this in the next exercise.

Keep the same Arduino and LED configurations that you used for the previous exercise
and open the exampleEntry.py file. In the beginning of the code, you will find the same
configuration for the Arduino board and the LED pin that we used in the previous
exercise. Moving on to the next stage, you will be able to see the following code snippet
that defines the root widget. In this code snippet, we have changed the title of the main
window to reflect the premise of the exercise. The use of unique strings for the title of the
window will help you to differentiate these windows according to their properties, when
you are dealing with multiple windows in one application:

top = Tkinter.Tk()

top.title("Specify time using Entry")

Although the Entry() widget can be easily initialized by specifying the parent widget as
the only parameter, it also supports a large number of parameters to customize the widget.
For example, in our exercise, we are using the bd parameter to specify the width of the
widget border and width to provide the expected width of the widget. You can learn more
about the available options at http://effbot.org/tkinterbook/entry.htm:

timePeriodEntry = Tkinter.Entry(top,
bd=5,
width=25)
timePeriodEntry.pack()
timePeriodEntry.focus_set()
startButton = Tkinter.Button(top,
text="Start",
command=onStartButtonPress)
startButton.pack()

In the preceding lines of code, we have initialized two widget objects in our main window:
timePeriodentry for the Entry() widget and startButton that we used in the previous
exercise for the Button() widget. The Pack geometry manager always sets the graphical
pointer to the last widget that has been added to the main window. We can manually shift
the focus of the graphical pointer to the timePeriodEntry widget using the focus_set ()
method.

Contrary to the onStartButtonPress() function in the previous exercise, this function
doesn’t use the time delay fix. It, instead, obtains the value from the timePeriodEntry
object. You can use the get () method to obtain the entered value from the

www.it-ebooks.info

http://effbot.org/tkinterbook/entry.htm
http://www.it-ebooks.info/

timePeriodEntry object and convert it into a floating value using the float () function.
As you can see in the following code snippet, we use this float value as the time delay
between switching the LED off from the on state:

def onStartButtonPress():
Value for delay is obtained from the Entry widget input
timePeriod timePeriodEntry.get()
timePeriod float(timePeriod)
startButton.config(state=Tkinter .DISABLED)
ledPin.write(1)
sleep(timePeriod)
ledPin.write(0)
startButton.config(state=Tkinter.ACTIVE)

Once you have understood the process of initializing the Entry() widget and the method
to obtain a custom value from it, let’s execute the code.

When you run this exercise, you should be able to see a window similar to the one
displayed in the following screenshot. Enter a time delay value in seconds and click on
Start to see the results on the LED. Basically, when the button is pressed, the program
will call the onStartButtonPress() function and it will utilize this value to produce the
time delay.

@ © @ Specify time using Entry

E

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

The Scale() widget — adjusting the
brightness of an LED

In this section, we will develop some code to change an LED’s brightness using the
Python GUI. Previously, we learned that you can use a digital pin of Arduino to produce
an analog output using PWM. Although you can use the Entry() widget to provide one
time value for the PWM signal, it will be useful to have a widget that can dynamically
provide this value. As brightness can be fluctuated between 0 and 100 percent, it makes
sense to use a slider that varies between 0 and 100. The Tkinter library provides this kind
of sliding interface using the scale() widget.

As we are working to change the brightness of the LED and supply analog input, we will
be using a digital pin with the PWM support. In the previous exercise, we used digital pin
11, which already supports PWM. If you are using a custom version of the circuit different
to the one provided earlier, we recommend that you change it to a pin that supports PWM.
Now it is time to open the program file, exampleScale.py, for this exercise.

The first stage of the program that involves importing the necessary libraries and
initializing the Arduino board using pyFirmata is almost the same as in the previous
exercise. Change the string that is used to specify the appropriate value for the port
variable according to the operating system and the port that you are using. We will also
instantiate the root window with the unique title for this exercise, as we did in the previous
exercises. This part of the program will often reoccur for a large number of exercises and
you can refer to the previous exercise for more information.

In the next stage, we will continue building the code that we developed earlier to provide a
manual time delay for the LED. We will also use the same Entry() widget to obtain the
time interval as an input:

timePeriodEntry = Tkinter.Entry(top,
bd=5,
width=25)

timePeriodEntry.pack()

timePeriodEntry.focus_set()

The scale() widget offers a slider knob that can be moved over a fixed scale to provide a
numeric value as an output. The starting and the ending values for this scale are provided
using the from_ and to options. The orientation of this slider can also be configured using
the orient option, where the acceptable values for the orientation are HORIZONTAL and
VERTICAL. However, you will have to import HORIZONTAL and VERTICAL constants from the
Tkinter library before utilizing them here.

If no options are provided, the default widget uses the scale from 0 to 100 and the vertical
orientation. In our program, we have used the horizontal orientation as a demonstration of
the orient option. Once you have defined the widget object, brightnessScale, you will
have to add it to the Pack geometry manager using pack():

brightnessScale = Tkinter.Scale(top,

www.it-ebooks.info

http://www.it-ebooks.info/

from_=0, to=100,
orient=Tkinter .HORIZONTAL)
brightnessScale.pack()

In order to start the process and reuse the previous code, we have kept the instantiation of
the startButton widget and the onStartButtonPress function as it is. However, the
property of the function is changed to accommodate the Scale() widget:

startButton = Tkinter.Button(top,
text="Start",
command=onStartButtonPress)
startButton.pack()

In this version of the onStartButtonPress() function, we will obtain the ledBrightness
value by using the get () method on the brightnessScale widget object, where the get ()
method will return the value of the current location of the slider. As the PWM input
requires values between 0 and 1, and the obtained slider value is between 0 and 100, we
will convert the slider value into the appropriate PWM input by dividing it with 100. This
new value will then be used with the write() method and this will ultimately turn on the
LED with the applied brightness for the time period that is provided by the
timePeriodEntry value:

def onStartButtonPress():
timePeriod = timePeriodEntry.get()
timePeriod float(timePeriod)
ledBrightness = brightnessScale.get()
ledBrightness = float(ledBrightness)
startButton.config(state=Tkinter .DISABLED)
ledPin.write(ledBrightness/100.0)
sleep(timePeriod)
ledPin.write(0)
startButton.config(state=Tkinter.ACTIVE)

For information about the Scale() widget, you can refer to
http://effbot.org/tkinterbook/scale.htm. Now, run the exampleScale.py file. You will be
able to see the following screenshot with the Entry() and Scale() widgets. Enter the time
delay, drag the slider to the brightness that you want, and then click on the Start button:

® O O Brightness using...

B

32

Start

You will be able to see the LED light up with the brightness set by the Scale() widget.
Once the LED is turned off after the given time delay, you can reset the slider to another

www.it-ebooks.info

http://effbot.org/tkinterbook/scale.htm
http://www.it-ebooks.info/

position to dynamically vary the value for the brightness.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

The Grid geometry manager

In the previous exercise, we added three different widgets to the root window using the
Pack geometry manager and the pack() method. We didn’t actively organize these
widgets but the Pack manager automatically arranged them in the vertical position. While
designing a meaningful interface, you need to arrange these widgets in the appropriate
order. If you look at the previous output window, it is really difficult to identify the
function of each widget or their association with others. In order to design an intuitive
GUI, you also need to describe these widgets using the appropriate labels. As a solution,
Tkinter provides an alternative way to organize your widgets that is called Grid
geometry manager.

The Grid geometry manager provides a two-dimensional (2D) table interface to arrange
widgets. Every cell that results from the row and column of the 2D table can be used as a
place for the widgets. You will learn the various options that are provided by the grid()
class to organize widgets in the next programming exercise. Open the
exampleGridManager .py file from the code folder of this chapter. In terms of
functionalities, this file contains the same program that we built in the previous exercise.
However, we have added more Label() widgets and organized them using the Grid
geometry manager to simplify the GUI and make it more useful.

As you can observe in the code, the timePeriodEntry object (an Entry() widget) now
uses the grid() method instead of the pack() method. The grid() method is initialized
with the column and row options. The values supplied for these options determine the
position of the cell where the timePeriodEntry object will be placed.

On the other hand, we have also created a label object using the Label() widget and
placed it beside the Entry() widget in the same row. The label contains a description
string that is specified using the text option. After placing it in a cell using the grid()
method, widgets are arranged in the center in that cell. To change this alignment, you can
use the sticky option with one or more values from N, E, S, and w, that is, north, east,
south, and west:

timePeriodEntry = Tkinter.Entry(top, bd=5)
timePeriodEntry.grid(column=1, row=1)
timePeriodEntry.focus_set()

Tkinter.Label(top, text="Time (seconds)").grid(column=2, row=1)

We have repeated this practice of placing the widget in a cell and describing it using a
Label() widget for the objects of the Scale() and Button() widgets as well:

brightnessScale = Tkinter.Scale(top, from_=0, to=100,
orient=Tkinter .HORIZONTAL)

brightnessScale.grid(column=1, row=2)

Tkinter.Label(top, text="Brightness (%)").grid(column=2, row=2)

startButton = Tkinter.Button(top, text="Start", command=onStartButtonPress)
startButton.grid(column=1, row=3)

As you can see in the preceding code snippet, we are using different row values for the

www.it-ebooks.info

http://www.it-ebooks.info/

widgets while having similar column values. As a result, our widgets will be organized in
the same column and they will have their description labels in the next column of the same
row. You can skip to the output window if you want to check this organization pattern.

So far, we were relying on the user to manually close the main window. However, you can
create another Button () widget and through that, call the method to close this window. In
this coding exercise, we have an additional button compared to the previous exercise that
is called exitButton. The command parameter associated with this button is quit, which
ends the loop started by the Tkinter method top.mainloop() and closes the GUI:

exitButton = Tkinter.Button(top,
text="Exit",
command=top.quit)
exitButton.grid(column=2, row=3)
In this code sample, the quit method is initialized as a command option and it can be also
be called as a method:

top.quit()

Before we go ahead to the next step, perform the appropriate changes in the code and run
the program. You will be prompted with a window similar to the one displayed in the
following screenshot:

800 Crid example

B ETime (seconds)

The red dotted lines are inserted later to help you identify the grid and they won’t appear
in the window that is opened by running the program. You can now clearly identify the
role of each widget due to the presence of the description label beside them. In the opened
window, play around with the time and brightness values while using the Start and Exit
buttons to perform the associated actions. From the next exercise, we will start using the
grid() method regularly to arrange the widgets.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

The Checkbutton() widget — selecting
LEDs

While developing complex projects, you will encounter scenarios where you have to
depend on the user to select single or multiple options from a given set of values. For
example, when you have multiple numbers of LEDs interfaced with the Arduino board
and you want the user to select an LED or LEDs that need to be turned on. This level of
customization makes your interface more interactive and useful. The Tkinter library
provides an interface for a standard widget called checkbutton() that enables the manual
selection process from the given options.

In this exercise, we are going to work with both the LEDs, green and red, that you
connected to the Arduino board at the beginning. The entire Python program for this
exercise is located in the code folder with the name exampleCheckbutton.py. Open the
file with the same editor that you have been using all along. This program implements the
Checkbutton() widget for users to select the red and/or green LED when the Start button
is clicked.

To understand the entire program logic, let’s start from the initialization and importing of
the libraries. As you can see, now we have two pin assignments for digital pins 10 and 11
as redPin and greenpPin respectively. The code for the initialization of the Arduino board
is unchanged:

port = '/dev/cu.usbmodemfal331'

board = pyfirmata.Arduino(port)

sleep(5)

redPin = board.get_pin('d:10:0")

greenPin = board.get_pin('d:11:0"')

In our utilization of the Checkbutton() widget, we are using a very useful Tkinter
variable class that is called Intvar().The Tkinter variable can tell the system when the
value of the variable is changed. To better understand the Tkinter variable class and its
specific utilization in our exercise, take a look at the following code snippet from the
program:

redvar = Tkinter.IntVar()
redCheckBox = Tkinter.Checkbutton(top,
text="Red LED",
variable=redVvar)
redCheckBox.grid(column=1, row=1)

The checkbutton() widget lets a user select between two different values. These values
are usually 1 (on) or 0 (off), making the Checkbutton() widget a switch. To capture this
selection, the variable option is required in the widget definition. A variable can be
initialized using one of the Tkinter variable class, Intvar ().

As you can see, the redvar variable object that is instantiated using the Intvar () class is
used for the variable option while defining the checkbutton() widget, redCheckButton.

www.it-ebooks.info

http://www.it-ebooks.info/

Therefore, any operation on the redCheckButton object will be translated to the redvar
variable object. As Intvar() is a Tkinter class, it automatically takes care of any changes
in the variable values through the checkbutton() widget. Therefore, it is advisable to use
the Tkinter variable class for the Checkbutton() widget instead of the default Python
variables. After defining the checkbutton() widget for the red LED, we have repeated
this process for the green LED, as shown in the following code snippet:

greenVar = Tkinter.IntVar()
greenCheckBox = Tkinter.Checkbutton(top,
text="Green LED",
variable=greenvar)
greenCheckBox.grid(column=2, row=1)

This program also contains the Start and Exit buttons and their respective association
with the onStartButtonPress and top.quit() functions, similar to how we used them in
the previous exercise. When called, the onStartButtonPress function will obtain the
values of the Intvar () variables, redvar and greenvar, using the get () method. In this
case, the variable value of the Checkbutton() widget will be 1 when it is checked and @
otherwise. This will enable the program to send the value 1 or 0 to the Arduino pin using
the write() method by checking or unchecking the widget and ultimately, turn the LED
on or off:

def onStartButtonPress():
redPin.write(redVar.get())
greenPin.write(greenVar.get())

As you can see, the code also implements an additional Stop button to turn off the LEDs
that were turned on using the Start button:

stopButton = Tkinter.Button(top,

text="Stop",

command=onStopButtonPress)
stopButton.grid(column=2, row=2)
The onStopButtonPrerss() function associated with this button turns off both the LEDs
by using write(0) on both the pins:

def onStopButtonPress():
redPin.write(0)
greenPin.write(0)

Since you have now learned about the Tkinter variables and the Checkbutton() widget,
let’s run the Python program, exampleCheckbutton.py. As you can see in the next
screenshot, the GUI has two Checkbutton() widgets each for the red and green LEDs. As
there is a separate initialization of the Checkbutton() widgets, a user can check both the
red and green LEDs. Tkinter also provides similar widgets such as Radiobutton() and
Listbox() for cases where you want to select only a single value from the given options.

www.it-ebooks.info

http://www.it-ebooks.info/

B O O Checkbox example
Red LED ¥ Green LED

| Start | Stop Exit

Note

You can learn more about the Radiobutton() and Listbox() widgets from the following
web pages:

o http://effbot.org/tkinterbook/radiobutton.htm
o http://effbot.org/tkinterbook/listbox.htm

www.it-ebooks.info

http://effbot.org/tkinterbook/radiobutton.htm
http://effbot.org/tkinterbook/listbox.htm
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

The Label() widget — monitoring 1I/O pins

Arduino projects often deal with real-time systems and are required to continuously
monitor input values from digital and analog pins. Therefore, if these values are being
displayed on a graphical interface, they need to be updated periodically or when the state
of a pin changes.

If you observe the previous GUI exercises, you will notice that we initialized the root
window using mainloop() at the end of the code, which started the Tkinter loop and
initialized all the widgets with the updated values. Once the mainloop() was initialized,
we did not use any other Tkinter class or method to periodically update the widgets with
the latest values.

In this exercise, we will use a potentiometer to provide variable input to the analog pin 0,
which will be reflected by Tkinter’s Label() widget. To update the label and display the
values of the analog input, we are going to implement a few Python and Tkinter tricks.
As we are using a potentiometer to provide input, you will need to change the circuit as
displayed in the following diagram, before jumping to the Python program:

The Python file for this exercise is located in the code folder as the
workingwithLabels.py file. For this exercise, let’s run the code first to understand the
premise of the exercise. Make sure that you have the appropriate string for the Arduino
board when you define the port variable. On successful execution, the program will
display the following screenshot and you can click on the Start button to initiate the

www.it-ebooks.info

http://www.it-ebooks.info/

continuous update of the potentiometer’s input value:

® O O Reading Analog...
Potentiometer input:- 0.7429

Start Exit

So, how did we do this? This code contains complex logic and a different program flow
compared to what we have done so far. As you can see from the code, we are using a
variable called flag to track the state of the Exit button while continuously running the
while loop that monitors and updates the value. To understand the program properly, let’s
first get familiar with the following new Tkinter classes and methods:

e Booleanvar(): Just like the Intvar () variable class that we used to track the integer
values, Booleanvar () is a Tkinter variable class that tracks changes in Boolean:

flag = Tkinter.BooleanVar(top)
flag.set(True)

In the preceding code snippet, we have created a variable object, flag, using the
BooleanVvar () class and set the value of the object as True. Being a Boolean object,

flag can only have two values, True or False. Tkinter also provides classes for
string and double type with the Stringvar () and DoubleVvar () classes respectively.

Due to this, when the Start button is clicked, the system starts updating the analog
read value. The Exit button sets the flag variable to false, breaks the while loop,
and stops the monitoring process.

e update_idletasks: While using the Tkinter library in Python, you can link a
Python code to any changes that happen in a Tk() widget. This linked Python code is
called a callback. The update_idletasks method calls all idle tasks without
processing any callbacks. This method also redraws the geometry widgets, if
required:

AnalogReadlLabel.update_idletasks()

In our exercise, this method can be used to continuously update the label with the
latest potentiometer value.

e update: This top-level method processes all the pending events and callbacks and
also redraws any widget, if it is necessary:

top.update()

We are using this method with the root window so that it can perform the callback for
the Start button.

Now let’s go back to the opened Python program. As you can see, besides assigning an
analog pin through the get_pin() method and initializing the Iterator () class over the
Arduino board, the code contains similar programming patterns that we used in the
exercises for the other Tkinter widgets. In this code, we are performing the read operation

www.it-ebooks.info

http://www.it-ebooks.info/

for the analog pin inside the onstartButtonPress() function This function checks the
status of the flag variable while performing the read() operation on the pin and
subsequently updates the value of the analogReadLabel () widget if the value of the flag
variable is True. If the value of the flag variable is found to be False, the function will
exit after disengaging the Arduino board and closing the root window. Due to the use of
the while statement, this process will continuously check the flag value until it is broken
by the onExitButtonPress() function by changing the flag value to False:

def onStartButtonPress():
while True:
if flag.get():
analogReadLabel.config(text=str(a0.read()))
analogReadLabel.update_idletasks()
top.update()
else:
break
board.exit()
top.destroy()

The onExitButtonPress() function is called from the Exit button and it simply resets the
flag variable to False using the set () method:

def onExitButtonPress():
flag.set(False)

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Remaking your first Python-Arduino
project with a GUI

Just to refresh your memory, I would like to remind you that we created a motion
detection system that generated alerts by blinking the red LED when a motion was
detected. While working with the project, we were printing the state of the proximity
sensor onto the Python prompt. In this exercise, we are going to use the concepts that you
learned in the previous exercises and we will create an interface for our project.

As part of this exercise, you have to connect the same circuit that we used in Chapter 3,
The First Project — Motion-triggered LEDs. Make sure you have the exact same circuit
with the PIR sensor and the LEDs before you move ahead. Once you are ready with your
hardware, open the firstProjectwithGUI.py file from the code folder of this chapter. In
the code, change the appropriate port values and run the GUI for the project.

As you can see in the pin assignments, we now have three digital pins—two of them as
outputs and one as an input. The output pins are assigned to the red and green LEDs while
the input pin is assigned to the PIR motion sensor. If the PIR sensor is in idle mode, we
will perform a onetime read() operation to wake up the sensor:

pirPin = board.get_pin('d:8:1"')
redPin = board.get_pin('d:10:0"')
greenPin = board.get_pin('d:11:0"')
pirPin.read()

One of the important functions that is implemented by the code is b1inkLED(). This
function updates the Label() widget that is assigned to describe the status of the motion
sensor. It also blinks the physical LEDs using the write() method and the inserted time
delay. As input parameters, the b1inkLED() function accepts the pin object and a message
string from the function call, where the pin objects, that is, redPin or greenPin, should be
one of the pin assignment for the LEDs:

def blinkLED(pin, message):
MotionLabel.config(text=message)
MotionLabel.update_idletasks()
top.update()
pin.write(1)
sleep(1)
pin.write(0)
sleep(1)

The other two Tkinter related functions, onStartButtonPress() and
onExitButtonPress(), are basically derived from the previous exercise. In this version of

onStartButtonPress(), we call the blinkLED() function if the flag variable is True and
the motion is detected using pinPir.read():

def onStartButtonPress():
while True:
if flag.get():

www.it-ebooks.info

http://www.it-ebooks.info/

if pirPin.read() is True:
blinkLED(redPin, "Motion Detected")
else:
blinkLED(greenPin, "No motion Detected")
else:
break
board.exit()
top.destroy()

The program also instantiates two buttons, Start and Exit, and one label using the
methods similar to those we used in the previous exercises.

As you can observe from the code, the logic behind the motion detection system is still the
same. We are only adding a layer of graphical interface to display the state of the detected
motion continuously using a Label() widget. We have also added the Start and Exit
buttons to control the project execution cycle. Once you run the code, you will be able to
see a window similar to the one displayed in the following screenshot. Click on the Start
button and wave in front of the motion sensor. If the sensor detects the motion, the label
will change from No motion detected to Motion detected.

® O O First Project

No motion Detected

Start Exit

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Summary

Now you have hands-on experience of building a basic GUI to handle Arduino projects.
With minor modifications to the included exercises, you can use them to create a GUI for
a large variety of Arduino prototyping projects. In the previous two exercises, we
displayed the sensor outputs as strings in label widgets. It will be more meaningful if these
numerical values are plotted as a graph and stored for further analysis. This is what you
are going to perform in the next chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6. Storing and Plotting Arduino
Data

Sensors that are connected to Arduino produce lots of analog and digital data. Analog
sensors produce data points as numerical information while digital sensors produce
Boolean values, that is, 1 (on) or 0 (off). Until now, we printed this data as a string on the
command prompt or displayed it in a GUI. The data was being printed in real time and it
was not being saved for any further analysis. Instead of using the string format, if the data
is printed as a plot or graph, it will provide useful information for us to rapidly understand
it and derive conclusions. Plots are even more useful for real-time applications as they can
provide information regarding the system’s behavior for better understanding of the data.

This chapter is organized around two major sections: storing the Arduino sensor data and
plotting this data. We will start by creating and manipulating files using Python. After that,
we will work with methods for storing Arduino data in the CSV file format. In the second
section, you will be introduced to the Python plotting library, matplotlib. Then, we will
work with examples that deal with plotting data from a saved file and also from real-time
sensor readings. In the end, we will try to integrate the matplotlib plots with the Tkinter
window that we created in the previous chapter.

In terms of hardware components, we will be working with familiar sensors such as a
potentiometer and the PIR motion sensor, which we used in the previous chapters, so, you
will not have to learn or buy any additional sensors for this chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with files in Python

Python provides built-in methods to create and modify files. File-related Python
operations are useful in a large number of programming exercises. These methods are
provided by standard Python modules and do not require installation of additional
packages.

www.it-ebooks.info

http://www.it-ebooks.info/

The open() method

The open() method is a default method that is available in Python and it is one of the most
widely used functions to manipulate files. Now, the first step of dealing with a file is to
open it:

>>> f = open('test.txt', 'w')

This command will create a test . txt file in the same folder in which you started the
Python interpreter or the location from where the code is being executed. The preceding
command uses the w mode that opens a file for writing or creates a new one if it doesn’t
exist. The other modes that can be used with the open() function are displayed in the
following table:

Mode||Description

his opens or creates a file for writing only. It overwrites an existing file.

This opens or creates a file for writing and reading. It overwrites an existing file.

This opens a file for reading only.

"
- |
a
F‘“Thls opens a file for reading and writing.
-
|

This opens a file for appending. It starts appending from the end of the document.

This opens a file for appending and reading. It starts appending from the end of the document.

Make sure that you have the proper read and write permissions for the files if you are
utilizing these modes in a Unix or Linux environment.

www.it-ebooks.info

http://www.it-ebooks.info/

The write() method

Once the file is open in one of the writing or appending modes, you can start writing to the
file object using this method. The write() method only takes a string as an input
argument. Any other data format needs to be converted into a string before it is written:

>>> f.write("Hello World!\n")

In this example, we are writing the Hello world! string that ends with a new line
character, \n. This new line character has been explained in the previous chapter and you
can obtain more information about it at http://en.wikipedia.org/wiki/Newline.

You can also use the writelines() method if you want to write a sequence of strings to
the file:

>>> sq = ["Python programming for Arduino\n", "Bye\n"]
>>> f.writelines(sq)

www.it-ebooks.info

http://en.wikipedia.org/wiki/Newline
http://www.it-ebooks.info/

The close() method

The close () method closes the file and free system resources that are occupied by the file.
Once they are closed, you can’t use the file object as it has been flushed already. It is a
good practice to close the file once you are done working with a file:

>>> f.close()

www.it-ebooks.info

http://www.it-ebooks.info/

The read() method

This read() method reads the content of an opened file from the beginning to the end. To
use this method, you need to open the file with one of the reading compatible modes such
as w+, I, r+, Or a+:

>>> f = open('test.txt', 'r')

>>> f.read()

'Hello World!\nPython programming for Arduino\nBye\n'
>>> f.close()

As the read() method grabs the entire contents of the file into memory, you can use it
with the optional size parameter to avoid any memory congestion while working with
large files. As an alternative method, you can use the readlines() method to read the
content of an opened file line by line:

>>> f = open('test.txt', 'r')

>>> 1 = f.readlines()

>>> print 1

['Hello World!\n', 'Python programming for Arduino\n', 'Bye\n']
>>> f.close()

As you can see in the preceding example, each string is printed as an element of a list that
you can access individually. You can play around with these methods to get familiar with
creating and modifying files. These exercises will be handy for the upcoming coding
exercises.

www.it-ebooks.info

http://www.it-ebooks.info/

The with statement — Python context manager

Although the with statement can be used to cover the execution of a code block that is
defined by a context manager, it is widely used in Python to deal with files. Execute the
following command on the Python interactive prompt, assuming that you have already
executed the previous commands and have the test. txt file with some data:

>>> with open('test.txt', 'r') as f:

lines = f.readlines()

for 1 in lines:

print 1

On execution, you will be able to see each line of the file printed on the command prompt.
The with statement while used with the open() method creates a context manager, which
executes the wrapped code while automatically taking care of closing the file. This is the
recommended method to work with files in Python and we will be utilizing it in all of our
exercises. You can learn more about the Python context manager on the following
websites:

e https://docs.python.org/2/reference/compound_stmts.html#with
e http://preshing.com/20110920/the-python-with-statement-by-example/

www.it-ebooks.info

https://docs.python.org/2/reference/compound_stmts.html#with
http://preshing.com/20110920/the-python-with-statement-by-example/
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Using CSV files to store data

Now you know methods to open, manipulate, and close files using Python. In the previous
examples, we used the Python interpreter and string data to get familiar with these
methods. But when it comes to saving a large number of numerical values from sensor
data, the comma separated values (CSV) file format is one of the most widely used file
formats other than text. As the name states, values are separated and stored using commas
or other delimiters such as a space or tab. Python has a built-in module to deal with CSV
files.

To begin with, use the following code snippet to create a Python file and run your first
CSV program:

import csv
data = [[1, 2, 3], ['a', 'b', 'c'], ['Python', 'Arduino', 'Programming']]

with open('example.csv', 'w') as f:
w = csv.writer(f)
for row in data:
w.writerow(row)

You can also open the csvwriter.py file from this chapter’s code folder, which contains
the same code. After executing the code, you will be able to find a file named
example.csv in the same location as this file, which will contain the data separated with
commas.

As you can see in the code, the CSV module offers the writer () function on the opened
file that initializes a writer object. The writer object takes a sequence or array of data
(integer, float, string, and so on) as input and joins the values of this array using the
delimiter character:

W = csv.writer(f)

In the preceding example, since we are not using a delimiter option, the program will take
the default character comma as the delimiter. If you want to use space as the delimiter
character, you can use the following writer () option:

w = csv.writer(f, delimiter=' ")

To write each element of a list to a new line of this writer object, we use the writerow()
method.

Similarly, Python CSV module also provides the reader () function to read a CSV file.
Check out the following example to learn more about this function, or you can open the
csvReader . py file from the next chapter’s code folder:

import csv
with open('example.csv', 'r') as file:
r = csv.reader(file)
for row in r:
print row

www.it-ebooks.info

http://www.it-ebooks.info/

The reader () function creates a reader object to iterate over lines in the opened CSV file.
The reader object retrieves each element of a row by splitting it using the delimiter. You
can access each line of the file by iterating over the object using the for loop as displayed
in the preceding code snippet, or use the next () method every time you want to access the
next line. On execution of the previous code, you will be able to see three separate array
lists that are printed with three individual elements.

Tip
To open the CSV files externally, you can use a spreadsheet program such as Microsoft
Excel, OpenOffice Calc, or Apple Numbers.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Storing Arduino data in a CSV file

In the previous two sections, you learned methods to store values in a CSV file. Although
the data required for the file was already initialized in the code, the same code could be
modified to store Arduino input data.

To begin with storing Arduino data, let’s create a circuit that produces these values for us.
We used a motion sensor in the project of Chapter 3, The First Project — Motion-triggered
LEDs, and a potentiometer in the exercise of Chapter 4, Diving into Python-Arduino
Prototyping. We will be using these two sensors to provide us with digital and analog
input values respectively. To develop the circuit required for this exercise, connect the
potentiometer to the analog pin 0 and the PIR motion sensor to digital pin 11, as displayed
in the following diagram:

www.it-ebooks.info

http://www.it-ebooks.info/

M @ n T Mmoo
L I | i

DIGITAL (PlUH=~)

® & & @ & & & & & 9 O ® S O P O P O S S " S S S O O F B D
® 0 ® @ 0 & 0 0 0 O O 0 0 0O W 0 S P R O O Y R
® @ 0 0 9 ¢ 0 9 0 9 P 9 R PO PR ORI YYD
* @& @ @ ¢ ° 8 O F O O 9 O S O SO " e " eSS NP
® 9 @ 9 9 9 8 " 0 P 0 R PR P EEYEEE Y Y YYD
. " e " 8 0 "0 ¢ 8 o ° 0 * * @ » L S B

L S T ° 9 9 0 " 0 9 v 0 * e e 0 0 *T 0 0 000

Connect other Arduino pins such as 5V and the ground, as shown in the preceding Fritzing
diagram. As we are going to use pyFirmata to interface Python with the Arduino board,
you will have to upload the StandardFirmata sketch to the Arduino board using the
method described in Chapter 3, The First Project — Motion-triggered LEDs.

Note

When you are working with prototyping, you really don’t need large, powerful, and
computation-intensive databases to deal with information. The easiest and quickest way to
work with sensor data in this phase is by using CSV files.

Once you have your Arduino board ready with the appropriate connections, use the
following code snippet to create a Python file and run it. You can also open the

www.it-ebooks.info

http://www.it-ebooks.info/

csvArduinoStore. py file from this chapter’s code folder:

import csv
import pyfirmata
from time import sleep

port = '/dev/cu.usbmodemfal331'
board = pyfirmata.Arduino(port)

it = pyfirmata.util.Iterator(board)
it.start()

pirPin = board.get_pin('d:11:i"')
a0 = board.get_pin('a:0:1")

with open('SensorDataStore.csv', 'w') as f:
w = csv.writer(f)
w.writerow(["Number", "Potentiometer", "Motion sensor"])

i1=0
pirData = pirPin.read()
potData = a0.read()
while i < 25:
sleep(1)
if pirData is not None:
i+=1

row = [1, potData, pirData]
w.writerow(row)
print "Done. CSV file is ready!"

board.exit()

While the code is running, rotate the knob of the potentiometer and wave your hand in
front of the motion sensors. This action will help you to generate and measure distinct
values from these sensors. Meanwhile, the program will log this data in the
SensorDataStore.csv file. When complete, open the SensorDataStore.csv file using
any text viewer or spreadsheet program and you will be able to see these sensor values
stored in the file. Now, let’s try to understand the program.

As you can observe from the code, we are not utilizing a new module to interface the
Arduino board or store sensor values to the file. Instead, we have utilized the same
methods that we used in the previous exercises. The code has two distinct components:

Python-Arduino interfacing and storing data to a CSV file. By skipping the explanation of

pyFirmata methods to interface the Arduino board, let’s focus on the code that is
associated with storing the sensor data. The first line that we will write to the CSV file
using writerow() is the header line that explains the content of the columns:

w.writerow(["Number", "Potentiometer", "Motion sensor"])

Later, we will obtain the readings from the sensors and write them to the CSV file, as
shown in the following code snippet. We will repeat this process 25 times as defined by
the variable, i. You can change the value of i according to your requirements.

while i < 25:

www.it-ebooks.info

http://www.it-ebooks.info/

sleep(1)

if pirData is not None:
i+=1
row = [1, potData, pirData]
w.writerow(row)

The next question is how can you utilize this coding exercise in your custom projects? The
program has three main sections that can be customized to accomplish your project
requirements, which are as follows:

¢ Arduino pins: You can change the Arduino pin numbers and the number of pins to
be utilized. You can do this by adding additional sensor values to the row object.

e The CSV file: The name of the file and its location can be changed from
SensorDataStore.csv to the one that is specific to your application.

e The number of data points: We have collected 25 different pairs of data points
while running the while loop for 25 iterations. You can change this value. You can
also change the time delay between each successive point from one second, as used
in the program, to the value that you need.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Getting started with matplotlib

The matplotlib library is one of the most popular and widely supported Python plotting
libraries. Although matplotlib is inspired by MATLAB, it is independent of MATLAB.
Similar to other Python libraries that we have been using, it is an open source Python
library. The matplotlib library assists in creating 2D plots from simple lines of code from
easy to use built-in functions and methods. The matplotlib library is extensively used in
Python-based applications for data visualization and analysis. It utilizes NumPy (the short
form of numerical Python) and SsciPy (short form of scientific Python) packages for
mathematical calculations for the analysis. These packages are major dependencies for
matplotlib including freetype and pyparsing. Make sure that you have these packages
preinstalled on your system if you are using any other installation methods besides the
ones mentioned in the next section. You can obtain more information about the
matplotlib library from its official website (http://matplotlib.org/).

www.it-ebooks.info

http://matplotlib.org/
http://www.it-ebooks.info/

Configuring matplotlib on Windows

Before we install matplotlib on Windows, make sure that you have your Windows
operating system with the latest version of Python 2.x distribution. In Chapter 1, Getting
Started with Python and Arduino, we installed Setuptools to download and install
additional Python packages. Make sure that you have Setuptools installed and configured
properly. Before we advance further, we will have to install dependencies for matplotlib.
Open the command prompt and use the following command to install the dateutil and
pyparsing packages:

> easy_install.exe python_dateutil
> easy_install.exe pyparsing

Once you have successfully installed these packages, download and install the
precompiled NumPy package from http://sourceforge.net/projects/numpy/. Make sure that
you choose the appropriate installation files for Python 2.7 and the type of your Windows
operating system.

Now, your computer should have satisfied all the prerequisites for matplot1lib. Download
and install the precompiled matplotlib package from

http://matplotlib.org/downloads.html.

In this installation process, we have avoided the usage of Setuptools for NumPy and
matplotlib because of some known issues related to matplotlib in the Windows
operating system. If you can figure out ways to install these packages using Setuptools,
then you can skip the preceding manual steps.

www.it-ebooks.info

http://sourceforge.net/projects/numpy/
http://matplotlib.org/downloads.html
http://www.it-ebooks.info/

Configuring matplotlib on Mac OS X

Installation of matplotlib on Mac OS X can be difficult depending upon the version of
Mac OS X and the availability of dependencies. Make sure that you have Setuptools
installed as described in Chapter 1, Getting Started with Python and Arduino. Assuming
that you already have Setuptools and pip, run the following command on the terminal:

$ sudo pip install matplotlib
Executing this command will lead to one of the following three possibilities:

e Successful installation of the latest matplotlib version

¢ Notification that the requirements are already satisfied but the installed version is
older than the current version, which is 1.3 at the moment

e Error while installing the matplotlib package

If you encounter the first possibility, then you can advance to the next section; otherwise
follow the troubleshooting instructions. You can check your matplotlib version using the
following commands on the Python interactive prompt:

>>> import matplotlib
>>> matplotlib._ version__

Upgrading matplotlib

If you encounter the second possibility, which states that the existing version of the
matplotlib is older than the current version, use the following command to upgrade the
matplotlib package:

$ sudo pip install --upgrade matplotlib

Go through the next section in case you end up with errors during this upgrade.

Troubleshooting installation errors

If you encounter any errors during the matplotlib installation via pip, it is most likely
that you are missing some dependency packages. Follow these steps one by one to
troubleshoot the errors.

Tip
After every step, use one of the following commands to check whether the error is
resolved:

$ sudo pip install matplotlib
$ sudo pip install --upgrade matplotlib

1. Install Xcode from Apple’s App Store. Open Xcode and navigate to the Download
tab in Preferences.... Download and install Command Line Tools from
Preferences.... This step should solve any compilation-related errors.

2. Install homebrew using the following command in the terminal:

$ ruby -e "$("$(curl -fsSL

www.it-ebooks.info

http://www.it-ebooks.info/

https://raw.github.com/Homebrew/homebrew/go/install)")"

. Install the following packages using homebrew:

$ brew install freetype
$ brew install pkg-config

If you still receive an error with the freetype package, try to create a link for
freetype using the following command:

$ brew link freetype
$ 1In -s /usr/local/opt/freetype/include/freetype2
/usr/local/include/freetype

If you receive any further errors after performing the preceding steps, go to the
matplotlib forums at http://matplotlib.1069221.n5.nabble.com/ for those specific
errors.

Note

If you use matplotlib in Mac OS X, you need to set up the appropriate drawing
backend as shown in the following code snippet:

import matplotlib
matplotlib.use('TkAgg''")

You can learn more about drawing backends for matplotlib at
http://matplotlib.org/fag/usage_faq.html#what-is-a-backend.

www.it-ebooks.info

http://matplotlib.1069221.n5.nabble.com/
http://matplotlib.org/faq/usage_faq.html#what-is-a-backend
http://www.it-ebooks.info/

Setting up matplotlib on Ubuntu

The installation of matplotlib and the required dependencies is a very straightforward
process on Ubuntu. We can perform this operation without using Setuptools and with the
help of the Ubuntu package manager. The following simple command should do the trick

for you:

$ sudo apt-get install python-matplotlib

When prompted to select dependencies, click on Yes to install them all. You should be
able to find the matplotlib package in other popular Linux distributions too.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Plotting random numbers using
matplotlib

The matplotlib library provides a collection of basic plotting-related functions and
methods via the pyplot framework. The pyplot framework contains functions for creating
figures, drawing plots, setting up titles, setting up axes, and many additional plotting
methods. One of the import functions provided by pyplot is figure(). This initializes an
empty figure canvas that can be selected for your plot or a set of plots:

figl = pyplot.figure(1)

You can similarly create multiple figures by specifying a number as the parameter, that is,
figure(2). If a figure with this number already exists, the method activates the existing
figure that can then be further used for plotting.

The matplotlib library provides the plot () method to create line charts. The plot()
method takes a list or an array data structure that is made up of integer or floating point
numbers as input. If two arrays are used as inputs, plot () utilizes them as values for the x
axis and the y axis. If only one list or array is provided, plot () assumes it to be the
sequence values for the y axis and uses auto-generated incremental values for the x axis:

pyplot.plot(x, y)

The third optional parameter that is supported by the plot () method is for the format
string. These parameters help users to change the style of line and markers with different
colors. In our example, we are using the solid line style. So, the plot() function for our
plot looks like this:

pyplot.plot(x, y, '-')

The plot () function provides a selection from a large collection of styles and colors. To
find more information about these parameters, use Python’s help() function on the
plot() function of matplotlib:

>>> import matplotlib
>>> help(matplotlib.pyplot.plot)

This help() function will provide the necessary information to create plotting styles with
different markers, line styles, and colors. You can exit this help menu by typing q at the
prompt.

Now, as we have explored plotting sufficiently, let’s create your first Python plot using the
following code snippet. The program containing this code is also located in this chapter’s
code folder with the name plotBasic.py:

from matplotlib import pyplot
import random

X
y

range(0, 25)
[random.randint(0,100) for r in range(0,25)]

www.it-ebooks.info

http://www.it-ebooks.info/

figl = pyplot.figure()

pyplot.plot(x, y, '-")

pyplot.title('First Plot - Random integers')
pyplot.xlabel('X Axis')

pyplot.ylabel('Y Axis')

pyplot.show()

In the previous exercise, we randomly generated a dataset for the y axis using the
randint () method. You can see a plot depicting this data with the solid line style in an
opened window after running the program. As you can see in the code snippet, we used
the additional pyplot methods such as title(), xlabel(), ylabel(), and plot(). These
methods are self-explanatory and they are largely used to make your plots more
informative and meaningful.

At end of the example, we used one of the most important pyplot methods called show().
The show() method displays the generated plots in a figure. This method is not mandatory
to display figures when running from Python’s interactive prompt. The following
screenshot illustrates the plot of randomly generated values using matplotlib:

800 Figure 1
o First Plot - Random integers
I', III| ’|
I\ || I|| f
| | | | \
80 / I | |
[| | {1] I|
f H fh ﬂ ﬁa f hf u ! \
BO-\ Illll" |II || | || ', || IIIII |||| Ilhll ||| II|'.'|||I III II
o\ /| REl A
. III'._,HH \II || || I|| \II ||| | |I I,/ll \ |II IIII|
\ I \ | L | |
- ||' "'.I ||| ||| |
\‘ |||'I
ﬂﬂ 5 10 15 20 25
X Axis
00+ - BH

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Plotting data from a CSV file

At the beginning of the chapter, we created a CSV file from Arduino data. We will be
using that SensorDataStore.csv file for this section. If you recall, we used two different
sensors to log the data. Hence, we have two arrays of values, one from a digital sensor and
another from the analog one. Now, in the previous example, we just plotted one set of
values for the y axis. So, how are we going to plot two arrays separately and in a
meaningful way?

Let’s start by creating a new Python program using the following lines of code or by
opening the plotcsv.py file from this chapter’s code folder:

import csv
from matplotlib import pyplot

i=[]
mValues
pvalues

[]
[]

with open('SensorDataStore.csv', 'r') as f:
reader = csv.reader(f)
header next(reader, None)
for row in reader:
i.append(int(row[0]))
pValues.append(float(row[1]))
if row[2] == 'True':
mValues.append(1)
else:
mValues.append(0)

pyplot.subplot(2, 1, 1)

pyplot.plot(i, pvalues, '-')
pyplot.title('Line plot - ' + header[1])
pyplot.x1lim([1, 25])

pyplot.xlabel('X Axis')

pyplot.ylabel('Y Axis')

pyplot.subplot(2, 1, 2)

pyplot.bar(i, mValues)

pyplot.title('Bar chart - ' + header[2])
pyplot.xlim([1, 25])

pyplot.xlabel('X Axis')

pyplot.ylabel('Y Axis')

pyplot.tight_layout()

pyplot.show()

In this program, we have created two arrays of sensor values—pvalues and mvalues—by
reading the SensorDataStore.csv file row by row. Here, pvalues and mvalues represent
the sensor data for the potentiometer and the motion sensor respectively. Once we had
these two lists, we plotted them using the matplotlib methods.

www.it-ebooks.info

http://www.it-ebooks.info/

The matplotlib library provides various ways to plot different arrays of values. You can
individually plot them in two different figures using figure(), that is, figure(1) and
figure(2), or plot both in a single plot in which they overlay each other. The pyplot
method also offers a third meaningful alternative by allowing multiple plots in a single
figure via the subplot () method:

pyplot.subplot(2,1,1)

This method is structured as subplot(nrows, ncols, plot_number), which creates grids
on the figure canvas using row and column numbers, that is, nrows and ncols
respectively. This method places the plot on the specific cell that is provided by the
plot_number parameter. For example, through subplot(2, 1, 1), we created a table of
two rows and one column and placed the first subplot in the first cell of the table.
Similarly, the next set of values was used for the second subplot and was placed in the
second cell, that is, row 2 and column 1:

pyplot.subplot(2, 1, 2)

In the first subplot, we have used the plot () method to create a plot using the analog
value from the potentiometer, that is, pvalues. While in the second subplot, we created a
bar chart instead of a line chart to display the digital values from the motion sensor. The
bar chart functionality was provided by the bar () method.

As you can see in the code snippet, we have utilized an additional pyplot () method called
x1im(). The x1lim([x_minimum, x_maximum]) or ylim([y_minimum, y_maximum])
methods are used to confine the plot between the given maximum and minimum values of
the particular axes.

Before we displayed these subplots in the figure using the show() method, we used the
tight_layout () function to organize the title and label texts in the figure. The
tight_layout () function is a very important matplotlib module that nicely fit the
subplot parameters in one figure. You can check the effects of this module by commenting
that line and running the code again. The following screenshot shows these subplots with
labels and a title in one figure object:

www.it-ebooks.info

http://www.it-ebooks.info/

] & Figure 1

i Line plot - Potentiometer

0.9 ’

0.8
mn
207
3

06

0.5

i 5 10 15 20

X Axig
Bar chart - Motion sensor

1.0

08
g 06
> 04

0.2

0.0

10 15
X Axis

20O+ 8@

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Plotting real-time Arduino data

In the previous chapter, while dealing with GUI and Arduino data, you must have noticed
that the code was updating the interface with every new value that was obtained from the
Arduino sensors. Similarly, in this exercise, we will be redrawing the plot every time we
receive new values from Arduino. Basically, we will be plotting and updating a real-time
chart instead of plotting the entire set of sensor values as we did in the previous exercise.

We will be using the same Arduino circuit that you built in the previous exercises. Here,
we will utilize only the potentiometer section of the circuit to obtain the analog sensor
values. Now, before we explain the new methods used in this exercise, let’s first open the
program file for this exercise. You can find the program file from this chapter’s folder; it is
named plotLive.py. In the code, change the appropriate parameters for the Arduino
board and execute the code. While the code is running, rotate the knob of the
potentiometer to observe the real-time changes in the plot.
On running the program, you will get a screen similar to the following screenshot that

shows a plot from real-time Arduino data.

Real-time Potentiometer reading

1.0 Fi
/ Y
g 'H._‘
/ \
F
0.8 _,r': \-.
t b
r; _
III
0.6 f
|
\ /_\ I||'
0.4 ,I" % ,II
{ |
I'_ __JII \‘i
0.2 ."I
f
) ' 5 i0 15 20 25

OO+« B

One can make various conclusions about the potentiometer’s knob rotation or some other
sensor behavior by just looking at the plot. These types of plots are widely used in the
graphical dashboard for real-time monitoring applications. Now, let’s try to understand the

methods that are used in the following code snippet to make this possible.

www.it-ebooks.info

http://www.it-ebooks.info/

import sys, csv

from matplotlib import pyplot
import pyfirmata

from time import sleep

import numpy as np

Associate port and board with pyFirmata
port = '/dev/cu.usbmodemfal321'"'
board = pyfirmata.Arduino(port)

Using iterator thread to avoid buffer overflow
it = pyfirmata.util.Iterator(board)
it.start()

Assign a role and variable to analog pin 0
a0 = board.get_pin(''a:0:1'")

Initialize interactive mode
pyplot.ion()

pbata = [0] * 25

fig = pyplot.figure()

pyplot.title(''Real-time Potentiometer reading'')
axl = pyplot.axes()

11, = pyplot.plot(pData)

pyplot.ylim([0,1])

real-time plotting loop
while True:
try:
sleep(1)
pData.append(float(a0.read()))

pyplot.ylim([0, 1])

del pData[0]

1l1.set_xdata([i for i in xrange(25)])

11.set_ydata(pbData) # update the data

pyplot.draw() # update the plot
except KeyboardInterrupt:

board.exit()

break

The real-time plotting in this exercise is achieved by using a combination of the pyplot
functions ion(), draw(), set_xdata(), and set_data(). The ion() method initializes the
interactive mode of pyplot. The interactive mode helps to dynamically change the x and y
values of the plots in the figure:

pyplot.ion()

Once the interactive mode is set to True, the plot will only be drawn when the draw()
method is called.

Just like the previous Arduino interfacing exercises, at the beginning of the code, we
initialized the Arduino board using pyFirmata and the setup pins to obtain the sensor
values. As you can see in the following line of code, after setting up the Arduino board
and pyplot interactive mode, we initialized the plot with a set of blank data, 0 in our case:

www.it-ebooks.info

http://www.it-ebooks.info/

pbata = [0] * 25

This array for y values, pData, is then used to append values from the sensor in the while
loop. The while loop keeps appending the newest values to this data array and redraws the
plot with these updated arrays for the x and y values. In this example, we are appending
new sensor values at the end of the array while simultaneously removing the first element
of the array to limit the size of the array:

pData.append(float(a®.read()))
del pData[0]

The set_xdata() and set_ydata() methods are used to update the x and y axes data from
these arrays. These updated values are plotted using the draw() method on each iteration
of the while loop:

11.set_xdata([i for i in xrange(25)])
11.set_ydata(pData) # update the data
pyplot.draw() # update the plot

You will also notice that we are utilizing an xrange () function to generate a range of
values according to the provided length, which is 25 in our case. The code snippet, [i for
i in xrange(25)], will generate a list of 25 integer numbers that start incrementally at O
and end at 24.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Integrating plots in the Tkinter window

Due to the powerful integration capabilities of Python, it is very convenient to interface
the plots generated by the matplotlib library with the Tkinter graphical interface. In the
last exercise of the previous chapter, we integrated Tkinter with pyFirmata to implement
the project of Chapter 3, The First Project — Motion-triggered LEDs, with the GUI. In this
exercise, we will extend this integration further by utilizing matplotlib. We will perform
this action by utilizing the same Arduino circuit that we have been using in this chapter
and expand the code that we used in the previous exercise. Meanwhile, we are not
introducing any new methods in this exercise; instead we will be utilizing what you
learned until now. Open the plotTkinter.py file from this chapter’s code folder.

As mentioned earlier, the program utilizes three major Python libraries and interfaces them
with each other to develop an excellent Python-Arduino application. The first interfacing
point is between Tkinter and matplotlib. As you can see in the following lines of code,
we have initialized three button objects, startButton, pauseButton, and exitButton, for
the Start, Pause, and Exit buttons respectively:

startButton = Tkinter.Button(top,
text="Start",
command=onStartButtonPress)
startButton.grid(column=1, row=2)
pauseButton = Tkinter.Button(top,
text="Pause",
command=onPauseButtonPress)
pauseButton.grid(column=2, row=2)
exitButton = Tkinter.Button(top,
text="Exit",
command=onExitButtonPress)
exitButton.grid(column=3, row=2)

The Start and Exit buttons provide control points for matplotlib operations such as
updating the plot and closing the plot through their respective onStartButtonPress() and
onExitButtonPress() functions. The onStartButtonPress() function also consists of
the interfacing point between the matplotlib and pyFirmata libraries. As you can observe
from the following code snippet, we will start updating the plot using the draw() method
and the Tkinter window using the update () method for each observation from the analog
pin a0, which is obtained using the read() method:

def onStartButtonPress():
while True:

if flag.get():
sleep(1)
pData.append(float(a®.read()))
pyplot.ylim([0, 1])
del pData[0]
1l1.set_xdata([i for i in xrange(25)])
11.set_ydata(pData) # update the data
pyplot.draw() # update the plot
top.update()

else:

www.it-ebooks.info

http://www.it-ebooks.info/

flag.set(True)

break
The onExitButtonPress() function implements the exit function as described by the
name itself. It closes the pyplot figure and the Tkinter window before disengaging the
Arduino board from the serial port.

Now, execute the program after making the appropriate changes to the Arduino port
parameter. You should be able to see a window on your screen that is similar to the one
displayed in the following screenshot. With this code, you can now control your real-time
plots using the Start and Pause buttons. Click on the Start button and start rotating the
potentiometer knob. When you click on the Pause button, you can observe that the
program has stopped plotting new values. While Pause is pressed, even rotating the knob
will not result in any updates to the plot.

As soon as you click on the Start button again, you will again see the plot get updated
with real-time values, discarding the values generated while paused. Click on the Exit
button to safely close the program:

® O 0O Tkinter + ma..

Start Pause Exit

T
Figure 1
Potentiometer
1.0
0.8 .-"\I
/\
— % AN
| \ f "\
| IIII ,-'l 1\""‘\».\.-"f_],
06 | 1 \

0.4 || k

02 |

0.0

200+ B8E

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Summary

In this chapter, we introduced two major Python programming paradigms: creating,
reading, and writing files using Python while also storing data into these files and plotting
sensor values and updating plots in real time. We also explored methods to store and plot
real-time Arduino sensor data. Besides helping you in your Arduino projects, these
methods can also be used in your everyday Python projects. Throughout the chapter, using
simple exercises, we interfaced the newly learned CSV and matplotlib modules with the
Tkinter and pyFirmata modules that we learned in the previous chapters. In the next
chapter, you will be introduced to your second project—a portable unit that measures and
displays environmental data such as temperature, humidity, and ambient light. We will be
utilizing the concepts that we have learned so far to build this project.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7. The Midterm Project — a
Portable DIY Thermostat

After the first Python-Arduino project, you learned the process of prototyping various
sensors, developing user interfaces, and plotting sensor data. The concepts that you
learned in the previous chapters can be utilized to create a wide variety of Arduino-based
hardware projects. The inception of a good application concept always begins with a real-
world necessity and ends up as a practical project if it is executed properly. In this chapter,
we will demonstrate this project-building process with an example of a portable sensor
unit. As you can estimate from the chapter title, we will be building a simple and portable
DIY thermostat that can be deployed without a desktop computer or a laptop.

To begin with, we will describe the proposed thermostat with specific goals and processes
to achieve them. Once the strategy to achieve these goals has been laid down, you will be
introduced to the two successive programming stages to develop the deployable and
portable unit. In the first stage, we will utilize a traditional computer to successfully
develop the program to interface Arduino with Python. In the second stage, we will
replace this computer with a Raspberry Pi to make it portable and deployable.

www.it-ebooks.info

http://www.it-ebooks.info/

Thermostat — the project description

From the multiple projects that we can build using the things that you learned, a project
that helps you to monitor your surrounding environment really stands out as an important
real-world application. From the various environment-monitoring projects such as weather
station, thermostat, and plant monitoring system, we will be developing the thermostat as
it focuses on indoor environment and can be part of your daily routine.

The thermostat is one of the most important components of any remote home monitoring
system and home automation system. A popular commercial example of a connected
thermostat is the Nest Thermostat (https://www.nest.com), which provides intelligent
remote monitoring and scheduling features for your existing home’s heating and cooling
system. Before we think about a full-stack product such as Nest, we need first need to
build a DIY thermostat with the basic set of features. Later, we can build upon this project
by adding features to improve the DIY thermostat experience. Let’s first outline the
features that we are planning to implement in this version of the thermostat project.

www.it-ebooks.info

https://www.nest.com
http://www.it-ebooks.info/

Project background

Temperature, humidity, and ambient light are the three main physical characteristics that
we want to monitor using the thermostat. In terms of user experience, we want to have an
elegant user interface to display the measured sensor data. The user experience can be
more resourceful if any of this sensor data is plotted as a line graph. In the case of a
thermostat, the visual representation of the sensor data provides a more meaningful
comprehension of the environment than just displaying plain numerical values.

One of the major objectives of the project is to make the thermostat portable and
deployable so that it can be used in your day-to-day life. To satisfy this requirement, the
thermostat display needs to be changed from a regular monitor to something small and
more portable. To ensure its real-world and meaningful application, the thermostat should
demonstrate real-time operation.

It is important to note that the thermostat will not be interfacing with any actuators such as
home cooling and heating systems. As the interfacing of these systems with the thermostat
project requires high-level understanding and experience of working with heating and
cooling systems, it will deviate the flow of the chapter from its original goal of teaching
you Arduino and Python programming.

www.it-ebooks.info

http://www.it-ebooks.info/

Project goals and stages

In order to describe the features that we want to have in the thermostat, let’s first identify
the goals and milestones to achieve these objectives. The major goals for the project can
be determined as follows:

¢ Identify the necessary sensors and hardware components for the project

e Design and assemble the circuit for the thermostat using these sensors and the
Arduino board

e Design an effective user experience and develop software to accommodate the user
experience

e Develop and implement code to interface the designed hardware with the software
components

The code development process of the thermostat project is divided into two major stages.
The objectives of the first stage include sensor interfacing, the development of the
Arduino sketch, and the development of the Python code on your regular computer that
you have been using all along. The coding milestone for the first stage can be further
distributed as follows:

e Develop the Arduino sketch to interface sensors and buttons while providing output
of the sensor data to the Python program via the serial port

e Develop the Python code to obtain sensor data from the serial port using the
pySerial library and display the data using GUI that is designed in Tkinter

e (Create a plot to demonstrate the real-time humidity readings using the matplotlib
library

In the second stage, we will attach the Arduino hardware to a single-board computer and a
miniature display to make it mobile and deployable. The milestone to achieve objective of
the second stage are as follows:

¢ Install and configure a single-board computer, Raspberry Pi, to run the Python code
from the first stage

¢ Interface and configure the miniature screen with the Raspberry Pi

e Optimize the GUI and plot window to adjust to this small screen’s resolution

In the following subsection of this section, you will be notified about the list of required
components for both the stages, followed by the hardware circuit design and the software
flow design. The programming exercises for these stages are explained in the next two
sections of the chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

The list of required components

Instead of going through the process of identifying the required components, we have
already selected the components for this project based on their utilization in the previous
exercises, ease of use, and availability. You can replace these components according to
their availability at the time you are building this project or your familiarity with other
sensors. Just make sure that you take care of modifications in the circuit connections and
code, if these new components are not compatible with the ones that we are using.

In the first stage of prototyping, we will need components to develop the electronic circuit
for the thermostat unit. As we mentioned earlier, we are going to measure temperature,
humidity, and ambient light through our unit. We already learned about the temperature
sensor TMP102 and the ambient light sensor BH1750 in Chapter 4, Diving into Python-
Arduino Prototyping. We will be using these sensors for this project with the humidity
sensor HIH-4030. The project will utilize the same Arduino Uno board that you have been
using throughout the previous chapters with the necessary cables. We will also need two
push buttons to provide manual inputs to the unit. The summary of the required
components for the first stage is provided in the following table:

Component (first stage) Quantity [[Website
Arduino Uno 1 https://www.sparkfun.com/products/11021
https://www.sparkfun.com/products/512

Breadboard

[y

USB cable for Arduino ||1

TMP102 temperature sensor |[|1

||https://www.sparkfun.com/products/9567
||https://www.sparkfun.com/products/ 11931

HIH-4030 humidity sensor |[[1

BH1750 ambient light sensor]|1 http://www.robotshop.com/en/dfrobot-light-sensor-bh1750.html

Push button switch ||2 https://www.sparkfun.com/products/97
1 kilo-ohm resistor ||2 ||
10 kilo-ohm resistor ||2 ||

https://www.sparkfun.com/products/9569 |

Connection wires As required

Although the table provides links for few specific website, you can obtain these
components from your preferred providers. The two major components HIH-4030
humidity sensor and push button switch that we haven’t used previously are described as
follows:

e HIH-4030 humidity sensor: This measures and provides relative humidity results as
an analog output. The output of the sensor can be directly connected to any analog
pin of Arduino. The following image shows the breakout board with the HIH-4030

www.it-ebooks.info

https://www.sparkfun.com/products/11021
https://www.sparkfun.com/products/512
https://www.sparkfun.com/products/9567
https://www.sparkfun.com/products/11931
https://www.sparkfun.com/products/9569
http://www.robotshop.com/en/dfrobot-light-sensor-bh1750.html
https://www.sparkfun.com/products/97
http://www.it-ebooks.info/

sensor that is sold by SparkFun Electronics. You can learn more about the HTH-4030
sensor from its datasheet, which can be obtained from
https://www.sparkfun.com/datasheets/Sensors/Weather/SEN-09569-HIH-4030-

datasheet.pdf:

e Push button switch: Push button switches are small switches that can be used on a
breadboard. When pressed, the switch output changes its status to HIGH, which is
LOW otherwise.

www.it-ebooks.info

https://www.sparkfun.com/datasheets/Sensors/Weather/SEN-09569-HIH-4030-datasheet.pdf
http://www.it-ebooks.info/

In the second stage, we are going to make the sensor unit mobile by replacing your
computer with a Raspberry Pi. For that, you will need the following components to get
started:

Component (second stage) Quantity||Image

Raspberry Pi ||1 https://www.sparkfun.com/products/11546

Micro USB cable with a power 1 http://www.amazon.com/CanaKit-Raspberry-Supply-Adapter-
adapter Charger/dp/BO0GF9T310/

8 GB SD card ||1 https://www.sparkfun.com/products/12998

TFT LCD screen ||1 ||http://www.amazon.com/gp/product/BOOGASHVDU/

A USB hub ||Optional

Further explanations of these components are provided later in the chapter.

www.it-ebooks.info

https://www.sparkfun.com/products/11546
http://www.amazon.com/CanaKit-Raspberry-Supply-Adapter-Charger/dp/B00GF9T3I0/
https://www.sparkfun.com/products/12998
http://www.amazon.com/gp/product/B00GASHVDU/
http://www.it-ebooks.info/

Hardware design

The entire hardware architecture of the thermostat can be divided into two units, a
physical world interfacing unit and a computation unit. The physical world interfacing
unit, as its name indicates, monitors phenomenon of the physical world such as
temperature, humidity, and ambient light using sensors connected to the Arduino board.
The physical world interfacing unit is interchangeably mentioned as the thermostat sensor
unit throughout the chapter. The computational unit is responsible for displaying the
sensor information via the GUI and plots.

The following diagram shows the hardware components for the first stage where the
thermostat sensor unit is connected to a computer using the USB port. In the thermostat
sensor unit, various sensor components are connected to the Arduino board using I12C,
analog, and digital pins:

' Y [)
S
Temperature +
Light 12
] » ”
—y
o |_Anal : Lo
Humidity ;_[g_::) Arduino < &
serial
N
—_— %j . J Computer
Button
—
Y A LN &
Thermostat Sensor Unit Thermostat Computation Unit

In the second programming stage where we are going make our thermostat into a mobile
and deployable unit, you will be using a single-board computer, Raspberry Pi, as the
computational device. In this stage, we will use a miniature thin-film transistor liquid-
crystal display (TFT LCD) screen that is connected to a Raspberry Pi via general-
purpose input/output (GPIO) pins and is used as a display unit to replace the traditional
monitor or laptop screen. The following diagram shows this new thermostat computational
unit, which truly reduces the overall size of the thermostat and makes it portable and
mobile. Circuit connections for the Arduino board are unchanged for this stage and we
will use the same hardware without any major modifications.

www.it-ebooks.info

http://www.it-ebooks.info/

TFT LCD
Screen
Y
 —
Temperature +
Light 20 GPIO
~ ™
o oy
- Analo \ usSB ;
Humidity E0eod Arduino < Raspberry Pi
serial

Button

vy p "y

Thermostat Sensor Unit Thermostat Computation Unit

As

the common unit for both stages of the project, the Arduino-centric thermostat sensor

unit requires slightly more complex circuit connections compared to other exercises that
you have been through. In this section, we are going to interface the necessary sensors and
push buttons to their respective pins on the Arduino board and you will need a breadboard
to make these connections. If you are familiar with PCB prototyping, you can create your
own PCB board by soldering these components and avoid the breadboard. PCB boards are
more robust compared to breadboards and less prone to loose connections. Use the
following instructions and the Fritzing diagram to complete the circuit connections:

1.

As you can see in the following diagram, connect the SDA and SCL pins of TMP102
and BH1750 to analog pins 4 and 5 of the Arduino board and create an 12C bus. To
make these connections, you can use multiple color-coded wires to simplify the
debugging process.

Use two 10 kilo-ohm pull-up resistors with the SDA and SCL lines.

Contrary to these 12C sensors, the HIH-4030 humidity sensor is a simple analog
sensor and can be directly connected to the analog pin. Connect the HIH-4030 to the
analog pin AO0.

Connect VCC and the ground of TMP102, BH1750, and HIH-4030 to +5V and the
ground of the Arduino board using power strips of the breadboard, as displayed in the
diagram. We recommend that you use red and black wires to represent the +5V and
ground lines respectively.

The push button provides the output as HIGH or LOW state and interfaced using
digital pins. As displayed in the circuit, connect these push buttons to digital pins 2
and 3 using two 1 kilo-ohm resistors.

Complete the remaining connections as displayed in the following diagram. Make

www.it-ebooks.info

http://www.it-ebooks.info/

sure that you have firmly connected all the wires before powering up the Arduino

board:

HIH 4030

L] A MU Aa DT S g m
. " = A A A A s A

w
I
e 3
=

e oK

rxmm Arduing”

8 88 8 8 e 0
LN RS ST S O O O 2

— BH1750

fritzing

Note

Make sure that you always disconnect your Arduino board from the power source or a
USB port before making any connections. This will prevent any damage to the board due

to short circuiting.

Complete all the connections for the thermostat sensor unit before heading to the next

section. As this unit is being used in both the programming stages, you won’t be
performing any further changes to the thermostat sensor unit.

www.it-ebooks.info

http://www.it-ebooks.info/

Software flow for user experience design

One of the critical components of any project is its usability or accessibility. When you are
working on making your project prototype into a product, it is necessary to have an
intuitive and resourceful user interface so that the user can easily interact with your
product. Hence, it is necessary to define the user experience and software flow of a project
before you start coding. The software flow includes the flow chart and the logical
components of the program that are derived from the project requirements. According to
the goals that we have defined for the thermostat project, the software flow can be
demonstrated in the following diagram:

)
v

gel lemperature,
humidity, ambient
light via Arduino

v

receive data using "
senal port

Y

is new data
available?

Fahrenheit

sl
is temperature temperature
flag high? unit to

Yes

set /
temparature
unit to Celsius / l

Display GUI using
Tkinter

,

is plot flag
high?

display humidity close any plot
plot window if open

In the implementation, the software flow of the project begins by measuring the
temperature, humidity, and ambient light from Arduino and printing them on a serial port

www.it-ebooks.info

http://www.it-ebooks.info/

line by line. The Python program obtains the sensor data from Arduino via the serial port
before presenting the data on the screen. Meanwhile, the Python program keeps looking
for a new line of data.

A user can interact with the thermostat using a push button, which will let the user change
the unit for the temperature data. Once the button is pressed, the flag gets changed to
HIGH and the temperature unit is changed to Celsius from its default unit, Fahrenheit. If
the button is pressed again, the opposite process will happen and the unit will be changed
back to its default value. Similarly, another user interaction point is the second push button
that allows a user to open a plot for real-time humidity values. The second push button
also utilizes a similar method of using flags to capture the input and opens a new plot
window. If the same button is pushed sequentially, the program will close the plot window.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Stage 1 — prototyping the thermostat

In this prototyping stage, we will develop the Arduino and Python code for our thermostat,
which will be later used in the second stage with minor changes. Before you start the
coding exercise, make sure that you have the thermostat sensor unit ready with the
Arduino board and the connected sensors, as described in the previous section. For this
stage, you will be using your regular computer which is equipped with the Arduino IDE
and the Python programming environment. The prototyping stage requires two levels of
programming, the Arduino sketch for the thermostat sensor unit and the Python code for
the computational unit. Let’s get started with coding for our thermostat.

www.it-ebooks.info

http://www.it-ebooks.info/

The Arduino sketch for the thermostat

The goal of this Arduino program is to interface sensors, get measurements from the
sensors, and print them on the serial port. As we discussed earlier, rather than using the
standard Firmata sketch that we used in the previous project, we are going to develop a
custom Arduino sketch in this project. To get started, open the Thermostat_Arduino.ino

sketch from this chapter’s code folder, which is part of the source code that you received
for the book.

Connect the USB port of the Arduino board, which is now part of the thermostat sensor
unit, to your computer. Select the appropriate board and port names in the Arduino IDE
and verify the code. Upload the code to your Arduino board and open the Serial Monitor
window once the code is successfully uploaded. You should be able to see text similar to
that displayed in the following screenshot:

COMS “ ' o] o S
| | Send
Hum;i.:iity{%:l :15.42 -
Flag:0

Light {1x) =30
Temperature (F) :78
Humidity (%) :16.89
Flag:0

Light {1x):30
Temperature (F) :78.01
Humidity (%) :=17.37
Flag:0

Light {1x):30
Temperature (F) :78
IHumidity{%;:lE.TS
Flag:0

Light {1x):30

-0

-1

m

[¥] Autoscroll Molineending « | 96800baud

The Arduino code structure and basic declarations are already explained in various
sections throughout the book. Instead of explaining the entire code line by line, we will
focus here on the main components of the software flow that we described earlier.

Interfacing the temperature sensor

In the Arduino sketch, the temperature data is obtained from the TMP102 sensor using the
getTemperature() function. The function implements the wire library on the I12C address
of TMP102 to read the sensor data. This is then converted into proper temperature values:

float getTemperature(){
Wire.requestFrom(tmpl02Address, 2);

byte MSB = Wire.read();

www.it-ebooks.info

http://www.it-ebooks.info/

byte LSB = Wire.read();

//it's a 12bit int, using two's compliment for negative
int TemperatureSum = ((MSB << 8) | LSB) >> 4,

float celsius = TemperatureSum*0.0625;
return celsius;

}

The getTemperature() function returns the temperature values in Celsius, which is then
sent to the serial port.

Interfacing the humidity sensor

Although the humidity sensor provides the analog output, it is not straightforward to
obtain relative humidity since it also depends upon the temperature. The getHumidity()
function calculates the relative humidity from the analog output provided by the HIH-
4030 sensor. The formulas to calculate the relative humidity are obtained from the
datasheet and reference examples of the sensor. If you are using a different humidity
sensor, please make sure that you change the formulas accordingly, as they may change
the results significantly:

float getHumidity(float degreesCelsius){
//caculate relative humidity
float supplyVolt = 5.0;

// Get the sensor value:

int HIH4030_Value = analogRead(HIH4030_Pin);

// convert to voltage value

float voltage = HIH4030_Value/1023. * supplyVolt;

// convert the voltage to a relative humidity
float sensorRH = 161.0 * voltage / supplyVolt - 25.8;
float trueRH = sensorRH / (1.0546 - 0.0026 * degreesCelsius);

return trueRH;

}

As we are calculating relative humidity, the returned humidity values are sent to the serial
port with percentage as the unit.

Interfacing the light sensor

To interface the BH1750 light sensor, we will use the BH1750 Arduino library, which we
used earlier. Using this library, the ambient light value can be directly obtained using the
following line of code:

uintl6_t lux = lightMeter.readLightLevel();

This line provides the luminance values in the unit of 1ux. These values are also sent to
the serial port so the Python program can utilize it further.

Using Arduino interrupts

Until now you used the Arduino program to read the physical state of an I/O pin using the

www.it-ebooks.info

http://www.it-ebooks.info/

DigitalRead() or AnalogRead() functions. How would you automatically obtain the state
change instead of periodically reading the pins and waiting for the state to change?
Arduino interrupts provide a very convenient way of capturing signals for the Arduino
board. Interrupts are a very powerful way of automatically controlling various things in
Arduino. Arduino supports interrupts using the attachInterrupt() method. In terms of
the physical pins, Arduino Uno provides two interrupts: interrupt 0 (on digital pin 2) and
interrupt 1 (on digital pin 3). Various Arduino boards have different specifications for
interrupt pins. If you are using any board other than Uno, please refer to Arduino’s website
to find out about the interrupt pin for your board.

The attachInterrupt() function takes three input arguments (pin, ISR, and mode). In
these input arguments, pin refers to the number of the interrupt pin, ISR (which stands for
Interrupt Service Routine) refers to the function that gets called when the interrupt occurs,
and mode defines the condition when the interrupt should be triggered. We have utilized
this function in our Arduino program, as described in the following code snippet:

attachInterrupt(0, buttonlPress, RISING);
attachInterrupt(1, button2Press, RISING);

The supported mode for attachInterrupt() are LOW, CHANGE, RISING, and FALLING. In our
case, the interrupts are triggered when the mode is RISING, that is, the pin goes from low
to high. For interrupts declared at 0 and 1, we call the buttoniPress and button2Press
functions that will change flagTemperature and flagPlot respectively. When
flagTemperature is set to HIGH, Arduino sends the temperature in Celsius, otherwise it
sends the temperature in Fahrenheit. When flagPlot is HIGH, Arduino will print the flag
on the serial port, which will be used by the Python program later to open the plot
window. You can learn more about Arduino interrupts from the tutorial at
http://arduino.cc/en/Reference/attachInterrupt.

www.it-ebooks.info

http://arduino.cc/en/Reference/attachInterrupt
http://www.it-ebooks.info/

Designing the GUI and plot in Python

Once your thermostat sensor unit starts sending sensor data to the serial port, it is time to
execute the second part of this stage, the Python code for the GUI and the plot. From this
chapter’s code folder, open the Python file called Thermostat_Stagel.py. In the file, go
to the line that contains the serial() function where the serial port is declared. Change
the serial port name from coM5 to the appropriate one. You can find this information from
the Arduino IDE. Save the change and exit the editor. From the same folder, run the
following command on the terminal:

$ python Thermostat_Stageil.py

This will execute the Python code and you will be able to see the GUI window on the
screen.

Using pySerial to stream sensor data in your Python program

As described in the software flow, the program receives the sensor data from the Arduino
using the pySerial library. The code that declares the serial port in the Python code is as
follows:

Import serial
port = serial.Serial('COM5',9600, timeout=1)

It is very important to specify the timeout parameter while using the pySerial library, as
the code may have an error if timeout is not specified.

Designing the GUI using Tkinter

The GUI for this project is designed using the Tkinter library that we used earlier. As a
GUI-building exercise, three columns of labels (labels to display the sensor type, the
observation values, and observation units) are programmed as shown in the following
code snippet:

Labels for sensor name
Tkinter.Label(top, text
Tkinter.Label(top, text
Tkinter.Label(top, text

"Temperature").grid(column = 1, row = 1)
"Humidity").grid(column = 1, row = 2)
"Light").grid(column = 1, row = 3)

Labels for observation values

TempLabel = Tkinter.Label(top, text =" ")
TempLabel.grid(column = 2, row = 1)
HumdLabel = Tkinter.Label(top, text =" ")
HumdLabel.grid(column = 2, row = 2)
LighLabel = Tkinter.Label(top, text =" ")

LighLabel.grid(column = 2, row = 3)

Labels for observation unit
TempUnitLabel = Tkinter.Label(top, text =" ")
TempUnitLabel.grid(column = 3, row = 1)

HumdUnitLabel = Tkinter.Label(top, text = "%")
HumdUnitLabel.grid(column = 3, row = 2)
LighUnitLabel = Tkinter.Label(top, text = "1x")

www.it-ebooks.info

http://www.it-ebooks.info/

LighUnitLabel.grid(column = 3, row = 3)

Once you initialize the code and before you click on the Start button, you will be able to
see the following window. The observation labels are populated without any values at this
stage:

PEETT)

Temperature
Hurnidity %
Light lx
Start | Exit |

Once the Start button is clicked, the program will engage the thermostat sensor unit and
start reading the sensor values from the serial port. Using the lines that are obtained from
the serial port, the program will populate the observation labels with the obtained values.
The following code snippet updates the temperature values in the observation label and
also updates the temperature unit:

TempLabel.config(text = cleanText(reading[1]))
TempUnitLabel.config(text = "C")
TempUnitLabel.update_idletasks()

In the program, we are using similar methods for humidity and ambient light to update
their labels respectively. As you can see in the following screenshot, the GUI now has the
values for the temperature, humidity, and ambient light readings:

r'?él':'lﬁﬂhw

Temperature 27.06 C

Hurmidity 1472 %

Light 5 Ix
Start | Exit |

The Start and Exit buttons are programmed to call the onStartButtonPress() and
onExitButtonPress() functions when they are clicked by the user. The
onStartButtonPress() function executes the code necessary to create the user interface,
while the onExitButtonPress() function closes all the opened windows, disconnects the
thermostat sensor unit, and exits the code:

StartButton = Tkinter.Button(top,
text="Start",

command=onStartButtonPress)
StartButton.grid(column=1, row=4)
ExitButton = Tkinter.Button(top,

text="Exit",

command=onExitButtonPress)
ExitButton.grid(column=2, row=4)

www.it-ebooks.info

http://www.it-ebooks.info/

You can play with the Start and Exit buttons to explore the Python code. To observe the
changes in the sensor readings, try to blow air or place an obstacle over the thermostat
sensor unit. If the program doesn’t behave appropriately, check the terminal for error
messages.

Plotting percentage humidity using matplotlib

We will use the matplotlib library to plot the relative humidity values in real time. We
will plot the relative humidity values in this project, as the range of the data is fixed
between 0 and 100 percent. Using a similar method, you can also plot temperature and
ambient light sensor values. While developing the code to plot temperature and ambient
light sensor data, make sure that you are using appropriate ranges to cover the sensor data
in the same plot. Now, as we have specified in the onStartButtonPress() function, a
window similar to the following screenshot will pop up once you press the push button for
the plot:

- =l
6,70 Lo . —— —
Humidi
100 ty -
I
| 80t
[
60
|
40
|
1 20
| e S
|
I 0
| 0 5 10 15 25

The following code snippet is responsible for plotting the line chart using the humidity
sensor values. The values are limited between 0 and 100 on the y axis, where the y axis
represents the relative humidity range. The plot is updated every time the program
receives a new humidity value:

pyplot.figure()
pyplot.title('Humidity')
axl = pyplot.axes()

11, = pyplot.plot(pData)
pyplot.ylim([0,100])

www.it-ebooks.info

http://www.it-ebooks.info/

Using button interrupts to control the parameters

The push button interrupts are a critical part of the user experience, as the user can control
the temperature unit and the plot using these interrupts. The Python features implemented
using the push button interrupts are as follows.

Changing the temperature unit by pressing a button

The Arduino sketch contains the logic to handle interrupts from push buttons and use them
to change the temperature unit. When an interrupt occurs, instead of printing the
temperature in Fahrenheit, it sends the temperature in Celsius to the serial port. As you can
see in the following screenshot, the Python code just prints the obtained numeric value of
the temperature observation and the associated unit of measurement with it:

PEET—)

Temperature 80,71 F

Hurmidity 1488 %

Light 29 Ix
Start | Exit |

As you can see in the following code snippet, if the Python code receives the
Temperature(C) string, it prints the temperature in Celsius, and if it receives the
Temperature(F) string, it prints the temperature in Fahrenheit:

if (reading[0@] == "Temperature(C)"):
TempLabel.config(text=cleanText(reading[1]))
TempUnitLabel.config(text="C")
TempUnitLabel.update_idletasks()

if (reading[@] == "Temperature(F)"):
TempLabel.config(text=cleanText(reading[1]))
TempUnitLabel.config(text="F")
TempUnitLabel.update_idletasks()

Swapping between the GUI and the plot by pressing a button

If the Python code receives the value of the flag from the serial port as 1 (HIGH), it
creates a new plot and draws the humidity values as a line chart. However, it closes any
open plots if it receives @ (LOW) as the value of the flag. As you can see in the following
code snippet, the program will always try to update the plot with the latest values for
humidity readings. If the program can’t find an opened plot to draw this value from, it will
create a new plot:

if (reading[0] == "Flag"):
print reading[1]
if (int(reading[1]) == 1):
try:

11.set_xdata(np.arange(len(pData)))
11.set_ydata(pData) # update the data
pyplot.ylim([0, 100])
pyplot.draw() # update the plot

www.it-ebooks.info

http://www.it-ebooks.info/

except:
pyplot.figure()
pyplot.title('Humidity')
axl = pyplot.axes()
11, = pyplot.plot(pData)
pyplot.ylim([0, 100])
if (int(reading[1]) == 0):

try:
pyplot.close('all')
11 = None

except:

By now, you should have a complete idea about the programs that are required by the
thermostat sensor unit and the computation unit. Due to the complexity involved, you may
face a few known problems during the execution of these programs. You can refer to the
Troubleshooting section in case you run into any trouble.

www.it-ebooks.info

http://www.it-ebooks.info/

Troubleshooting

Here are some of the errors that you may find, and their fixes:
e [2C sensor returns the error string:

o Check the connections to the SDA and SCL pins.
o Confirm that you are providing enough delay between the reading cycles of the
sensor. Check the datasheet for the delay and message sequence.

e The plot window flickers instead of staying on when the button is pressed:

o Don’t try to press it multiple times. Hold and let go quickly. Make sure that your
button is connected properly.
o Adjust the delay in the Arduino sketch.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Stage 2 — using a Raspberry Pi for the
deployable thermostat

We have now created a thermostat that exists as an Arduino prototype while the Python
program runs from your computer. This prototype is still nowhere near a deployable or
mobile state due to the connected computer, and the display monitor if you are using a
desktop computer. A real-world thermostat device should have a small footprint, portable
size, and miniature display to show limited information. The popular and practical way to
achieve this goal is to use a small single-board computer that is capable of hosting an
operating system and hence providing the essential Python programming interface. For
this stage of the project, we will be utilizing a single-board computer—a Raspberry Pi—
with a small LCD display.

Note

Note that this stage of the project is optional unless you want to extend the previous stage
of the project to a device that can be used on a regular basis. If you are referring to the
project to just learn Python programming, you can skip this entire section.

The following is an image of the Raspberry Pi Model B:

- PR

g I _l- - ACT

C

If you haven’t worked with a single-board computer before, you may have a lot of
unanswered questions, such as “What exactly does a Raspberry Pi consists of?”, “What
are the benefits of using a Raspberry Pi in our project?”, and “Can’t we just use Arduino
for that?”. These are legitimate questions and we will try to answer them in the following

www.it-ebooks.info

http://www.it-ebooks.info/

section.

www.it-ebooks.info

http://www.it-ebooks.info/

What is a Raspberry Pi?

The Raspberry Pi is a small (almost the size of a credit card) single-board computer that
was developed with the initial aim of helping students learn the basics of computer
science. Today, the Raspberry Pi movement, guided by the Raspberry Pi Foundation, has
turned into a DIY phenomenon and captured the attention of enthusiasts and developers
around the world. The capabilities and features shipped with a Raspberry Pi at a nominal
cost ($35) have boosted the popularity of the device.

The term single-board computer is used for devices that have all the necessary
components to run an operating system on one board, such as a processor, RAM, graphics
processor, storage device, and basic adaptors for expansion. This makes a single-board
computer an appropriate candidate for portable applications, as they can be part of the
portable hardware device that we are trying to create. Although there were a number of
single-board computers in the market before the introduction of the Raspberry Pi, the open
source nature of the hardware and the economical price are the main reasons behind the
popularity and rapid adoption of the Raspberry Pi. The following figure shows the
Raspberry Pi Model B with its major components:

RCAVIDEO AUDID LEDS -~ USB

' Epm 51208 RAN “\/(C'
CPURGPD HOMI

SD CARD POWER

The computational capabilities of the Raspberry Pi are adequate for running a trimmed
down version of Linux OS. Although people had tried to use many types of operating
systems on a Raspberry Pi, we will be using the default and recommended operating
system called Raspbian. Raspbian is a Debian distribution-based open source Linux OS,
which is optimized for the Raspberry Pi. The Raspberry Pi uses an SD card as the storage
device, which will be used to store your OS and program files. In Raspbian, you can avoid
running the unnecessary OS components that are shipped with traditional OSes. These
include the Internet browser, communication application, and in some cases even the

www.it-ebooks.info

http://www.it-ebooks.info/

graphical interface.

After its introduction, the Raspberry Pi has gone through a few major upgrades. The
earlier version, called Model A, did not include the Ethernet port and only had a memory
of 256 MB. In our project, we are using the Raspberry Pi’s Model B that has a dedicated
Ethernet port, 512 MB memory, and dual USB ports. The latest versions of Raspberry Pi,
Model B+, can be also used as it is also equipped with an Ethernet port.

www.it-ebooks.info

http://www.it-ebooks.info/

Installing the operating system and configuring the
Raspberry Pi

Although the Raspberry Pi is a computer, it is different than traditional desktop computers
when it comes to interfacing peripheral devices. Instead of supporting traditional VGA or
DVI display ports, the Raspberry Pi provides a RCA video port for TVs and an HDMI port
for the latest generation of monitors and TVs. In addition, the Raspberry Pi has only two
USB ports that need to be utilized for connecting various peripheral devices such as the
mouse, the keyboard, the USB wireless adapter, and the USB memory stick. Let’s get
started by collecting components and cables to start working with a Raspberry Pi.

What do you need to begin using the Raspberry Pi?
The hardware components required to get started with a Raspberry Pi are as follows:

e A Raspberry Pi: For this stage of the project, you will need a Raspberry Pi version
Model B or latest. You can buy the Raspberry Pi from
http://www.raspberrypi.org/buy.

e A power cable: The Raspberry Pi runs on 5V DC and requires at least 750 mA
current. The power is applied through the micro USB port that is located on the
board. In this project, you will need a micro USB power supply. Optionally, you can
use a micro USB-based phone charger to supply power to the Raspberry Pi.

e A display cable: If you have an HDMI monitor or a TV, you can use an HDMI cable
to connect it to your Raspberry Pi. If you want to use your VGA or DVI-based
monitor, you will need a VGA to HDMI or DVI to HDMI adapter converter. You can
buy these adapter converters from Amazon or Best Buy.

e An SD card: You are required to have at least an 8 GB SD card to get started. It is
preferable to use an SD card that has a quality of class 4 or better. You can also buy
an SD card with the preinstalled OS at
http://swag.raspberrypi.org/collections/frontpage/products/noobs-8gb-sd-card.

Note
The Raspberry Pi Model B+ requires a microSD card instead of a regular SD card.

¢ A mouse and keyboard: You will need a standard USB keyboard and a USB mouse
to work with the Raspberry Pi.

e A USB hub (optional): Since the Model B has just two USB ports, you will have to
remove existing devices from the USB ports to make space for another device if you
want to connect a Wi-Fi adapter or memory stick to it. A USB hub can be handy to
attach multiple peripheral components to your Raspberry Pi. We recommend that you
use a USB hub with external power supply, as the Raspberry Pi can drive a limited
number of peripheral devices through the USB ports due to power limitations.

Preparing an SD card

To install and configure software components such as Python and the required libraries,
first we need an operating system for the Raspberry Pi. A Raspberry Pi officially supports

www.it-ebooks.info

http://www.raspberrypi.org/buy
http://swag.raspberrypi.org/collections/frontpage/products/noobs-8gb-sd-card
http://www.it-ebooks.info/

Linux-based open source operating systems that are preconfigured for custom Raspberry
Pi hardware components. Various versions of these operating systems are available on

Raspberry Pi’s website (http://www.raspberrypi.org/downloads).

Raspberry Pi’s website provides a variety of OSes for users who range from newbies to
experts. It is difficult for a first-time user to identify the appropriate OS and its installation
process. If this is your first attempt with a Raspberry Pi, we recommend that you use the
New Out Of Box Software (NOOBS) package. Download the latest version of NOOBS
from the previous link. The NooBS package includes few different operating systems such
as Raspbian, Pidora, Archlinux, and RaspBMC. N00BS streamlines the entire installation
process and helps you to install and configure your preferred version of the OS easily. It is
important to note that NOOBS is just an installation package and you will be left with only
the Raspbian OS once you complete the given installation steps.

Raspberry Pi uses the SD card to host the operating system and you need to prepare the
SD card from your computer before placing it into the SD card slot of the Raspberry Pi.
Insert your SD card into your computer and make sure that you have a backup of any
important information that is on the SD card. During the installation process, you will lose
all the data stored on the SD card. Let’s start by preparing your SD card.

Follow these steps to prepare an SD card from Windows:

1. You will require a software tool to format and prepare the SD card for Windows. You
can download the freely available formatting tool from
https://www.sdcard.org/downloads/formatter_4/eula_windows/.

2. Download and install the formatting tool on your Windows computer.

3. Insert your SD card and start the formatting tool.

4. In the formatting tool, open the Options menu and set FORMAT SIZE
ADJUSTMENT to ON.

5. Select the appropriate SD card and click on Format.

6. Then, wait for the formatting tool to finish formatting the SD card. Once this is done,
extract the downloaded NooBs ZIP file to the SD card. Make sure that you extract the
content of the ZIP folder to the root location of the SD card.

Follow these directions to prepare SD card from Mac OS X:

1. You will require a software tool to format and prepare the SD card for Mac OS X.
You can download the freely available formatting tool from
https://www.sdcard.org/downloads/formatter_4/eula_mac/.

Download and install the formatting tool on your machine.

Insert your SD card and run the formatting tool.

In the formatting tool, select Overwrite Format.

Select the appropriate SD card and click on Format.

Then, wait for the formatting tool to finish formatting the SD card. Once this is done,
extract the downloaded NooBs ZIP file to the SD card. Make sure that you extract the
content of the ZIP folder to the root location of the SD card.

ok

www.it-ebooks.info

http://www.raspberrypi.org/downloads
https://www.sdcard.org/downloads/formatter_4/eula_windows/
https://www.sdcard.org/downloads/formatter_4/eula_mac/
http://www.it-ebooks.info/

Follow these steps to prepare the SD card from Ubuntu Linux:

1. To format the SD card on Ubuntu, you can use a formatting tool called gparted.
Install gparted using the following command on the terminal:

$ sudo apt-get install gparted

2. Insert your SD card and run gparted.

In the gparted window, select the entire SD card and format it using FAT32.

4. Once the format process is complete, extract the downloaded N0o0oBs ZIP file to the
SD card. Make sure that you extract the content of the ZIP folder to the root location
of the SD card.

w

Tip
If you have any trouble following these steps, you can refer to the official

documentation for preparing the SD card for a Raspberry Pi at
http://www.raspberrypi.org/documentation/installation/installing-images/.

The Raspberry Pi setup process

Once you have prepared your SD card with NOOBS, insert it into the SD card slot of the
Raspberry Pi. Connect your monitor, mouse, and keyboard before connecting the micro
USB cable for the power adapter. Once you connect the power adapter, the Raspberry Pi
will turn on automatically and you will be able to see the installation process on the
monitor. If you are not able to see any progress on the monitor after connecting the power
adapter, refer to the troubleshooting section that is available later in this chapter.

Once the Raspberry Pi boots up, it will repartition the SD card and show you the following
installation screen so that you can get started:

NOOBS v1.2,1 - Bullt:|Jun 26 2013

_Install 0s Edit config H Online help (h) o Exit il

Archlinux

o>

I) opencLec

Pidora
RISC O5
RaspBMC

SORO:

www.it-ebooks.info

http://www.raspberrypi.org/documentation/installation/installing-images/
http://www.it-ebooks.info/

Note

The preceding screenshot is taken from raspberry pi_F01_02 5a.jpg by Simon Monk
and is licensed under Attribution Creative Commons license

(https://learn.adafruit.com/assets/11384).

1. As a first-time user, select Raspbian [RECOMMENDED] as the recommended
operating system and click on the Install OS button. Raspbian is a Debian-based OS
that is optimized for the Raspberry Pi and it supports useful Linux commands that we
have already learned in the previous chapters. The process will take about 10 to 20
minutes to complete.

2. On successful completion, you will be able to see a screen similar to the one
displayed in the following screenshot. The screenshot displays the raspi-config tool
that will let you set up the initial parameters. We will skip this process to complete
the installation. Select <Finish> and press Enter:

{ Raspberry Pl Software Configuration Tool (raspil-config) |

| Setup Options

|

| 1 Expand Filesystem Ensures that all of the SD card storage is available to the 05
| 2 Change User Password Change password for the default user {pi)

| 3 Enable Boot to Desktop Choose whether to boot into a desktop environment or the command-line
I 4 Internationalisation Options Set up language and regional settings to match your location

I 5 Enable Camera Enable this Pi to work with the Raspberry Pi Camera

| & Add to Rastrack Add this Pi to the online Raspberry Pi Map (Rastrack)

| 7 Overclock Configure overclocking for your P

| Advanced Dptions Configure advanced settings

| 9 About raspi-config Information about this configuration tool

I

I

| <Selects <Finish>

I

3. You can go back to this screen again, in case you want to change any parameter, by
typing the following command in the terminal:

$ sudo raspi-config

4. Raspberry Pi will now reboot and you will be prompted to the default login screen.
Log in using the default username pi and password raspberry.

5. You can start the graphical desktop of the Raspberry Pi by typing the following
command in the terminal:

$ startx

6. To run the Python code that we developed in the first stage, you will need to set up
required Python libraries on the Raspberry Pi. You will have to connect your
Raspberry Pi to the Internet using the Ethernet cable to install the packages. Install
the required Python packages on the Raspberry Pi terminal using the following
command:

$ sudo apt-get install python-setuptools, python-matplotlib, python-

www.it-ebooks.info

https://learn.adafruit.com/assets/11384
http://www.it-ebooks.info/

numpy

7. Install pySerial using Setuptools:

$ sudo easy_install pyserial

Now, your Raspberry Pi is ready with an operating system and the necessary components
to support Python-Arduino programming.

www.it-ebooks.info

http://www.it-ebooks.info/

Using a portable TFT LCD display with the
Raspberry Pi

TFT LCD is a great way to expand the Raspberry Pi’s functionalities and avoid the use of
large display devices. These TFT LCD displays can be interfaced directly with GPIO pins.
TFT LCD screens are available in various shapes and size, but for the Raspberry Pi we
recommend that you use a screen with a size smaller than or equal to 3.2 inches due to
interfacing convenience. Most of these small screens do not require additional power
supply and can be directly powered using the GPIO pins. In a few cases, touch screen
versions are also available to extend the functionality of the Raspberry Pi.

In this project, we are using a Tontec 2.4 inch TFT LCD screen that can be directly
interfaced with the Raspberry Pi via GPIO. Although you can use any available TFT LCD
screen, this book only cover the setup and configuration process for this particular screen.
In most cases, manufacturers of these screens provide detailed configuration tutorials on
their websites. Raspberry Pi forums and blogs are another good places to look for help if
you are using a different type of the TFT LCD screen. The following image shows the
back of the Tontec 2.4 inch TFT LCD screen with the location of the GPIO pins. Let’s get
started and use this screen with your Raspberry Pi:

ST
= 1 'l-.'-'l
e 3 Els

Connecting the TFT LCD using GPIO

Before we can use the screen, we will have to connect it to the Raspberry Pi. Let’s
disconnect the micro USB power adapter from the Raspberry Pi and locate the GPIO male
pins near the RCA video port on the Raspberry Pi. Get your TFT screen and connect the
GPIO pins as such you can see Raspberry Pi and the screen as displayed in the following
image. In handful cases, the notations on the screen will be misleading, and therefore we
suggest that you follow the guidelines from the manufacturer to make the connections:

www.it-ebooks.info

http://www.it-ebooks.info/

Once your screen is connected to the Raspberry Pi, power it up using the micro USB
cable. Do not disconnect your HDMI cable yet, as your screen is still not ready. Before we
go ahead with any of the configuration steps, let’s first connect the Raspberry Pi to the
Internet. Connect the Ethernet port of the Raspberry Pi to your home or office network
using an Ethernet cable. Now, let’s configure the TFT LCD screen in the Raspbian OS to
make it work properly.

Configuring the TFT LCD with the Raspberry Pi OS

Once your Raspberry Pi is powered up, log in using your username and password.
Complete the following steps to configure the screen with your Raspberry Pi:

1. Download the supporting files and manual using the following command on the
terminal:

$ wget https://s3.amazonaws.com/tontec/24usingmanual.zip

2. Unzip the file. The following command will extract the files into the same directory:

$ unzip 24usingmanual.zip

3. Navigate to the src directory:

$ cd cd mztx-ext-2.4/src/

4. Enter following command to compile the source files:

www.it-ebooks.info

http://www.it-ebooks.info/

~

10.

$ make
Open the boot configuration files:
$ sudo pico /boot/config.txt

In the config. txt file, locate and uncomment the following lines of code:

framebuffer_width=320
framebuffer_height=240

Save and exit the file.
Now, every time the Raspberry Pi restarts we need to execute a command to start the
TFT LCD screen. To do this, open the rc.local file using the following command:

$ sudo pico /etc/rc.local

Add the following line of code to the file that starts the screen:

sudo /home/pi/mztx-ext-2.4/src/mztx06a &

Save and exit the file. Then, reboot the Raspberry Pi using the following command:

$ sudo reboot

You can remove your HDMI monitor now and start working with your TFT LCD screen.
One thing that you will have to keep in mind is that the screen resolution is very small and
it is not optimized for coding. We prefer to use the HDMI monitor to perform the major
code modifications that are required in the next section. The utilization of the TFT LCD
screen in this project is to accommodate the mobility and portability requirements of the
thermostat.

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing the GUI for the TFT LCD screen

The resolution of the TFT LCD screen that we configured in the previous section is only
320 x 240 pixels, but the windows that we created in first programming stage are quite
large. Therefore, before we copy and run our Python code on the Raspberry Pi, we need to
adjust a few parameters in the code.

In your regular computer where you have this chapter’s folder from the book’s source
code, open the Thermostat_Stage2.py file. This file contains the details of the
modification required to obtain the optimum size with minor cosmetic changes. You will
be using this file, instead of the one that we used in the previous stage, on your Raspberry
Pi. These adjustments in the code are explained in the following lines of code.

The first major alteration is in the port name. For the Raspberry Pi, you need to change the
name of the Arduino port from that you were using in the first stage to /dev/ttyAcCMo,
which is the address assigned to Arduino in the majority of the cases:

port = serial.Serial('/dev/ttyACMO',6 9600, timeout=1)

In this program file, the size of the Tkinter main window and the matplotlib figure are
also adjusted to fit the screen size. If you are using a different-sized screen, change the
following lines of code appropriately:

top.minsize(320,160)

pyplot.figure(figsize=(4,3))

Now, with the preceding changes, the GUI window should be able to fit within Raspberry
Pi’s screen. As the Raspberry Pi’s screen will be used as the dedicated screen for the
thermostat application, we need to adjust the text size on the screen to fit the window
properly. Add the font=("Helvetica", 20) text in the declaration of the labels to
increase the font size. The following line of code shows changes that are performed on the
labels to contain the sensor names:

Tkinter.Label(top,
text="Humidity",
font=("Helvetica", 20)).grid(column=1, row=2)

Similarly, the font option is added to the observation labels:

HumdUnitLabel = Tkinter.Label(top,
text="%",
font=("Helvetica", 20))

The labels for the observation unit also carry similar modifications:

HumdLabel.config(text=cleanText(reading[1]),
font=("Helvetica", 20))

The Thermostat_ Stage2.py file already includes the preceding modifications and is
ready to run on your Raspberry Pi. Before you run the file, first we need to copy the file to
the Raspberry Pi. At this stage, the USB hub will be very handy to copy the files. If you
don’t have a USB hub, you can utilize two available USB ports simultaneously to attach

www.it-ebooks.info

http://www.it-ebooks.info/

the USB pen drive, mouse, and keyboard. With the use of the USB hub, connect the USB
pen drive containing the Python files and copy them to the home folder. Attach the USB
port of the Arduino board to one of the ends of the USB hub. From the start menu of the
Raspberry Pi, open the LXTerminal program by navigating to Accessories | LXterminal.
Run the Python code from the home folder and you will be able to see the optimized user
interface window that opens on the Raspberry Pi’s screen. If every step mentioned in the
chapter is performed correctly, you will be able to see the sensor observation being printed
when you click on the Start button:

& Tkinter + matplotlib l": (S |’ S
Temperature |
Humidity %
Light IX
| Start‘ Exit‘ |

| — |

At the end of the chapter, you must be wondering what a mobile unit with sensors,
Arduino, Raspberry Pi, and TFT screen might look like. The following image shows a
sample thermostat that was developed using the instructions given in this chapter. We used
an acrylic sheet to hold the Raspberry Pi and the Arduino board together and created a
compact form factor:

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Troubleshooting

There are a few known problems that you may face in this stage of the project. The
following section describes these problems and their quick fixes:

e The Raspberry Pi is not booting up:

o Make sure that the SD card is formatted properly with the specified tools. The
Raspberry Pi won’t boot if the SD card is not prepared properly.

o Check the HDMI cable and the monitor to see whether they are working fine.

o Make sure that the power adapter is compatible with the Raspberry Pi.

e The TFT LCD screen doesn’t turn on:

o Make sure that the screen is properly connected to the GPIO pins of the
Raspberry Pi.

o If you are using any other TFT LCD screen, make sure from its datasheet that
your screen doesn’t require additional power.

o Check whether the screen is properly configured using the steps described in the
Optimizing the GUI for the TFT LCD screen section.

e There is a slow refresh rate of the sensor data on the Raspberry Pi:

o Try decreasing the delay between each serial message that is sent by Arduino.
o Terminate any other application that is running in the background.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Summary

With this project, we successfully created a portable and deployable thermostat using
Arduino, which monitors temperature, humidity, and ambient light. During this process,
we assembled the thermostat sensor unit using the necessary components and developed
custom Arduino program to support them. We also utilized Python programming methods
including GUI development and plots using Tkinter and matplotlib libraries
respectively. Later in the chapter, we utilized the Raspberry Pi to convert a mere project
prototype into a practical application. Henceforth, you should be able to develop similar
projects that require you to observe and visualize real-time sensor information.

Going forward, we will be expanding this project to accommodate upcoming topics such
as Arduino networking, cloud communication, and remote monitoring. In the next level of
the thermostat project, we will integrate these advanced features and make it a really
resourceful DIY project that can be used in everyday life. In the next chapter, we are going
to start the next stage of our journey from making simple Python-Arduino projects to
Internet-connected and remotely accessible IoT projects.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8. Introduction to Arduino
Networking

So far, we used a hardwired serial connection to interact with Arduino, a serial monitor to
observe the Arduino serial data, and a Python serial library (pySerial) to transfer data
between the Arduino and Python applications. During this entire exchange, the range of
communication was limited due to the hardwired serial connection. As a solution, you can
use a wireless protocol such as ZigBee, Bluetooth, or other RF channels to establish a
communication channel for a remote serial interface. These wireless protocols are
extensively used in remote hardware applications, and they use the serial interface to
transfer data. Due to their use of serial communication, these protocols require very little
to no additional programming changes on the Arduino or Python side. You may require
additional hardware to enable these protocols, however. The major benefit of these
protocols is that they are really easy to implement. However, they are restricted with only
a small geographical coverage area and limited data bandwidth.

Besides serial communication methods, the other way to remotely access your Arduino
device is to use a computer network. Today, computer networks are the most prolific way
of communicating between computing units. In the next two chapters, we will explore
various networking techniques using Arduino and Python, which range from establishing
very basic Ethernet connectivity to developing complex, cloud-based web applications.

In this chapter, we will cover the following topics:

e The fundamentals of networking and hardware extensions that enable networking for
Arduino

e Python frameworks used to develop Hypertext Transfer Protocol (HTTP) web
servers on your computer

¢ Interfacing Arduino-based HTTP clients with the Python web server

e JoT messaging protocol MQTT (we will install a middleware tool called Mosquitto
to enable MQTT on our computer)

e Utilizing the publisher/subscriber paradigm, used by MQTT, to develop Arduino-
Python web applications

www.it-ebooks.info

http://www.it-ebooks.info/

Arduino and the computer networking

Computer networking is a huge domain, and covering every aspect of networking is not
the main objective of this book. We will, however, try to explain a few fundamentals of
computer networking wherever this knowledge will need to be applied. Unlike the serial
interface approach, where a point-to-point connection is required between devices, the
network-based approach provides distributed access to resources. Specifically in hardware
applications where a single hardware unit is required to be accessed by multiple endpoints
(for example, in a personal computer, mobile phone, or remote server), the computer
network stands superior.

In this section, we will cover the basics of networking and hardware components that
enable networking in Arduino. Later in this chapter, we will use the Arduino library and a
built-in example to demonstrate how remote access to Arduino using your local network
works.

www.it-ebooks.info

http://www.it-ebooks.info/

Networking fundamentals

Whenever you see a computer or mobile device, you are also looking at some type of
computer network being used to connect those devices with other devices. In simple
terms, a computer network is a group of interconnected computational devices (also called
network nodes) that allow the exchange of data between these devices. These network
nodes include various devices such as your personal computers, mobile phones, servers,
tablets, routers, and other pieces of networking hardware.

A computer network can be classified into numerous types according to parameters such
as geographical location, network topology, and organizational scope. In terms of
geographical scale, a network can be categorized into local area network (LAN), home
area network (HAN), wide area network (WAN), and so on. When you are utilizing
your home router to connect to the Internet, you are using the LAN created by your router.
With regards to the organization that handles the network, LAN can be configured as
Intranet, Extranet, and Internet. The Internet is the largest example of any computer
network, as it interconnects all types of networks deployed globally. In your
implementation of various projects throughout this book, you will mostly be using your
LAN and the Internet for the exchange of data between an Arduino, your computer, the
Raspberry Pi, and the cloud services.

To standardize communication between network nodes, various governing bodies and
organizations have created a set of rules called protocols. In the large list of standard
protocols, there are a few protocols that your computer uses on a daily basis. The
examples of those protocols associated with the local area network include Ethernet and
Wi-Fi. In the IEEE 802 family of standards, the IEEE 802.3 standard describes different
types of wired connectivity between nodes in a local area network, also called Ethernet.
Similarly, Wireless LAN (also referred to as Wi-Fi), is part of the IEEE 802.11 standard,
where a communication channel uses wireless frequency bands to exchange data.

Most network nodes deployed with IEEE 802 standards (that is, Ethernet, Wi-Fi, and so
on) have a unique identifier assigned to the network interface hardware, called a media
access control (MAC) address. This address is assigned by the manufacturer and is
mostly fixed for each network interface. While using Arduino for network connectivity,
we will need the MAC address to enable networking. A MAC address is a 48-bit address,
and in human-friendly form it contains six groups of two hexadecimal digits. For example,
01:23:45:67:89:ab is the human-readable form of a 48-bit MAC address.

While the MAC address is associated with the hardware-level (that is, “physical”)
protocols, the Internet Protocol (IP) is a communication protocol that is widely used at
the Internet level to enable internetworking between networked nodes. In the
implementation of version 4 of the IP protocol suite (IPv4), each network node is assigned
a 32-bit number called the IP address (for example, 192.168.0.1). When you connect a
computer, phone, or any other device to your local home network, an IP address is
assigned to that device by your router. One of the most popular IP addresses is 127.0.0.1,
which is also called the localhost IP address. Apart from the IP address assigned to a

www.it-ebooks.info

http://www.it-ebooks.info/

computer by the network, each computer also has the localhost IP address associated with
it. The localhost IP address is very useful when you want to internally access or call your
computer from the same device. In the case of a remote-access application, you need to
know the IP address assigned by the network.

www.it-ebooks.info

http://www.it-ebooks.info/

Obtaining the IP address of your computer

Arduino is a resource-constrained device, and therefore it can only demonstrate a limited
amount of network capability. While working with Arduino-based projects that include the
utilization of a computer network, you will require a server or Gateway interface. These
interfaces include, but are not limited to, a desktop computer, a laptop, the Raspberry Pi,
and other remote computing instances. If you are using these interfaces as part of your
hardware project, you will need their IP addresses. Ensure that they are under the same
network as your Arduino. The following are the techniques to obtain IP addresses in major
operating systems.

Windows

In most versions of the Windows OS, you can obtain the IP address from the Network
Connection utility in Control Panel. Navigate to Control Panel | Network and Internet
| Network Connections and open the Local Area Connection Status window. Click on
the Details button to see the details of the Network Connection Details window. As you
can see in this screenshot, the IP address of the network interface is listed as IPv4
Address in the opened window:

+ Local Area Connection Status &3
General Metwork Connection Details (w3
: MNetwork Connection Details:
Connection
IPv4 Con Propesty Value
IPvE Con Connection-specfic DN home networl:
MediaStd | Description Intei(R) PRO/1000 MT Desktop Adap
Physical Address Da-00-27-E5-1FL1
Duration: -
i DHCFP Enabled Yes
5 || IPv4 Address 10.0.0.23
| -y | IPv4 Subnet Mask 255.255.255.0
i = | Lease Obtained Monday, September 28, 2014 12:33:3
Lease Expires Monday, October 06, 2014 12:33:40 / 1
IPw4 Default Gateway 10.0.0.1
Ay IPvd DHCP Server 10001
IPwd DNS Servers 2.75.78.75
75.75.76.76

IPwd WINS Server

Bytes: MetBIOS over Tepip En... Yes

Linkdocal IPvE Address feB0::15ed cdda: 389 bebd’ 12
- IPw& Default Gateway

¥y Propert - o miow

‘ m v

You can also obtain the IP address of your computer using the built-in ipconfig utility.
Open the Command Prompt and enter the following command:

> ipconfig
As you can see in the following screenshot, the IP address of your computer is listed under

the Ethernet adapter. If you are using a wireless connection to connect to your network,

www.it-ebooks.info

http://www.it-ebooks.info/

the Ethernet adapter will be replaced by the wireless Ethernet adapter.

BEX C:\Windows\system32\cmd.exe = | G]
C:slUzepsslestripeconf ig ™

Windows I[P Configuration

ithernet adapter Local Area Connection:

Connection—specific I afFfFixw . home .network
Link-local [Pu6 Add: .

& : frAA::15ad:c44a:389 heh4:12
IPv4 Address. . e CH . 18.8.8.23
Subnet Mask 255.255.255.8

Default Gateway . . . : 18.8.8.1

Tunnel adapter isatap.home.network:

Media State .

aTh W dieTEs g Hedia disconnected
Connection—specific DHNE Suffix

: home .network

Tunnel adapter Local Area Connection* 9:

Connection—specific DNE Suffix

IPvh Rddress. o & = = = = 2001 :9:9d38:6abd:2438:1cfe:fS5Fff:ffeB
Link—local IPvb Addr c . fe8B::2438:1cfe:foff:ffeBx11
Default Gateway . A . . -

Mac OS X

If you are using Mac OS X, you can obtain the IP address from the network settings. Open
System Preferences and click on the Network icon. You will see a window similar to
what is shown in the next screenshot. In the left sidebar, click on the interface you are
looking to obtain the IP address of.

8 O Metwork

- Show Al Q

Location: | Automatic

Status: Connected
Ethernet is curréntly active and has the IP

g °8 Maodem g address 192.168.110.130.

g DBrei.. Pt A1) Configure IPv4: | Using DHCP -
=

@ Built-i...Port (2) (3 IP Address: |192.168.110.130
—t

Subnet Mask: 255.255.255.0

Bluetooth PAMN
. % Router: 192.168.110.2

DMS Server:

Search Domains:

Advanced 7

Assist me...

www.it-ebooks.info

http://www.it-ebooks.info/

If you want to get the IP address using the terminal, you can use the following command.
This command will require you to enter the system name of the interface, eno:

$ ipconfig getifaddr eno

If you are connected to multiple networks and are not aware of the network name, you can
find the list of IP addresses associated with your computer, using the command shown
here:

$ ifconfig | grep inet

As you can see in this screenshot, you will get all the network addresses associated with
your Mac computer and other network parameters:

800 N test — bash — 76x8 "

Tests—Mac:~ test$ ifconfig | grep inet
inetb ::1 prefixlen 12B
inet 127.8.8.1 netmask @xffoeBeae
inett feBR::1%1lol prefixlen 64 scopeid Bx1
inett feBR::20c:209ff:feld:2dc3%end prefixlen 64 scopeid Bx4
inet|192.158.113.13B|netmask BxffffffO® broadcast 192.16B.118.255
Tests—Mac:~ tests l

Linux

On the Ubuntu OS, you can obtain the IP address of your computer from the Network
Settings utility. To open it, navigate to System Settings | Network and click on the
adapter through which the computer is connected to your home network. You can select an
appropriate adapter to obtain the IP address, as displayed in the following screenshot:

e Metwork
All settings Metwork Airplane Mode
y it . Connected
g Wired - e
” Hardware Address €3 _e

EF Metwork proxy Security WPA, WPAZ
Strength Good
Link speed 26 Mb/s

IP Address

Default Route 10.0.0.1
DM5 75.75.75.75 75.75.76.7T6

an o Forget Network Settings..

www.it-ebooks.info

http://www.it-ebooks.info/

In a Linux-based system, there are multiple ways of obtaining the IP address from the
command line. You can use the same command (ifconfig) that we used in Mac OS X in
the Linux environment to obtain the IP address of your computer:

$ ifconfig

You can obtain the IP address from the inet addr field of the appropriate adapter, as
displayed in this screenshot:

chheplo@gchheplo-PPAF:~$ ifconfig

ethe Link encap:Ethernet HWaddr 68:00:27:fb:83:f6
inet addr:10.0.06.15| Bcast:16.06.08.255 Mask:255.255.255.8
ineté addr: feBB::a@@:27ff:fefb:B3f6/64 Scope:Link

UP BROADCAST RUNNING MULTICAST MTU:1508 Metric:1

RX packets:1549 errors:® dropped:® overruns:® frame:0
:B802 errors:8 dropped:® overruns:® carrier:e

collisions:® txqueuelen:1008

RX bytes:2262119 (2.2 MB) TX bytes:61188 (61.1 KB)

If supported by your operating system, another command that can be utilized to obtain the
IP address is hostname:

$ hostname -I

Be careful when using this utility to obtain the IP address, as you may end up getting the
IP address of a different adapter if you are not familiar with the supported command
options of the utility.

Note

If you are going to connect your Arduino to the same local area network as your computer,
make sure you are choosing the proper IP address that is covered by the same domain as
that of your computer. Also ensure that no other network device is using the same IP
address that you have selected for your Arduino. This practice will help you avoid IP
address conflicts within the network.

www.it-ebooks.info

http://www.it-ebooks.info/

Networking extensions for Arduino

There are various hardware devices available in the Arduino community that enable
networking for the Arduino platform. Among these devices, a few can be used as
extensions for your existing Arduino board, while others exist as standalone Arduino
modules with networking capabilities. The most popular extensions used to enable
networking are the Arduino Ethernet Shield and Arduino WiFi Shield. Similarly, Arduino
Yun is an example of a standalone Arduino platform that includes built-in networking
capabilities. In this book, we are going to develop various networking applications around
the Arduino Ethernet Shield. There are also a few other extensions (Arduino GSM Shield)
and standalone Arduino platforms (Arduino Ethernet, Arduino Tre, and so on), but we are
not going to cover them in detail. Let’s get familiar with the following Arduino extensions
and board.

Arduino Ethernet Shield

The Arduino Ethernet Shield is an officially supported and open source network extension
designed to work with Arduino Uno. The Ethernet Shield is equipped with an RJ45
connector to enable Ethernet networking. The Ethernet Shield is designed to mount on top
of Arduino Uno and it extends the layout of the pins from your Arduino Uno to the top of
the board. The Ethernet Shield is also equipped with a microSD card slot to store
important files over the network. Just like most of these shield extensions, the Ethernet
Shield is powered by the Arduino board it is attached to.

-, s = M M el Ew W = W
Ji scLsoa & i R]

e .u_n:cnnnnm SP1*)

ETHERNET

o '.“

=
E =i anhs |

£
.
P
B
-
=

Fﬂ'lEH AMA

LOG
[B
L

Source: http://arduino.cc/en/uploads/Main/ArduinoEthernetShield R3_Front.jpg

Every Ethernet Shield board is equipped with a unique hardware (MAC) address. You can
see it on the back of the board. You may want to note down this hardware address, as it
will be required frequently in the upcoming exercises. Also make sure that you get
familiar with mounting the Arduino Ethernet Shield for those exercises. Buy an Arduino

www.it-ebooks.info

http://arduino.cc/en/uploads/Main/ArduinoEthernetShield_R3_Front.jpg
http://www.it-ebooks.info/

Ethernet Shield module from SparkFun or Amazon before your start working on any
exercises. You can obtain additional information about this Shield at

http://arduino.cc/en/Main/ArduinoEthernetShield.
Arduino WiFi Shield

The Arduino WiFi Shield has a layout similar to that of the Arduino Ethernet Shield as far
as mounting on top of the Arduino board is concerned. Instead of the Ethernet RJ45
connector, the WiFi Shield contains components to enable wireless networking. Using the
WiFi Shield, you can connect to the IEEE 802.11 (Wi-Fi) wireless networks, which is one
of the most popular ways of connecting computers to the home network nowadays.

Source: http://arduino.cc/en/uploads/Main/A000058_front.jpg

The Arduino WiFi Shield requires additional power through a USB connector. It also
contains a microSD slot to save files. Just like the Ethernet Shield, you can view the MAC
address on the back of the board. More information about the Arduino WiFi Shield can be
found at http://arduino.cc/en/Main/ArduinoWi-FiShield.

Arduino Yuan

Unlike the Ethernet Shield and the WiFi Shield, the Arduino Yun is a standalone variant
of the Arduino board. It includes both Ethernet- and Wi-Fi-based network connectivity, in
addition to the basic Arduino component—the microcontroller. Yun is equipped with the
latest and more powerful processing units compared to Uno. Instead of the traditional way
of using Arduino code, Yun supports a lightweight version of the Linux operating system,
providing functionality similar to a single-board computer such as the Raspberry Pi. You
can use your Arduino IDE to program Yun even while running Unix shell scripts.

www.it-ebooks.info

http://arduino.cc/en/Main/ArduinoEthernetShield
http://arduino.cc/en/uploads/Main/A000058_front.jpg
http://arduino.cc/en/Main/ArduinoWi-FiShield
http://www.it-ebooks.info/

ARDUINO

Tl

—
—
—_—
f—
—
—
p—

—_—

AT

|“-__'z= R

SBH E

Source: http://arduino.cc/en/uploads/Main/ArduinoYunFront_2.jpg

You can find more information about Yun at the Arduino official website, at
http://arduino.cc/en/Main/ArduinoBoard Yun.

www.it-ebooks.info

http://arduino.cc/en/uploads/Main/ArduinoYunFront_2.jpg
http://arduino.cc/en/Main/ArduinoBoardYun
http://www.it-ebooks.info/

Arduino Ethernet library

The Arduino Ethernet library provides support for the Ethernet protocol, and hence
provides support for Ethernet extensions of Arduino, such as the Ethernet Shield. This is a
standard Arduino library and it gets deployed with the Arduino IDE.

The library is designed to accept incoming connection requests when deployed as a server
and while making outgoing connections to other servers when being utilized as a client.
The library concurrently supports up to four connections due to the limited computation
capability of the Arduino board. To use the Ethernet library in your Arduino program, the
first step you have to take is to import it in to your Arduino sketch:

#include <Ethernet.h>

The Ethernet library implements various functionalities through specific classes, which are
described as follows.

Tip
We are going to describe only the important methods provided by these classes. You can
obtain more information regarding this library and its classes from

http://arduino.cc/en/Reference/Ethernet.
The Ethernet class

The Ethernet class is a core class of the Ethernet library, and it provides methods to
initialize this library and the network settings. This is an essential class for any program
that wants to use the Ethernet library to establish connections through the Ethernet Shield.
The primary information required to establish this connection is the MAC address of the
device. You’ll need to create a variable that has the MAC address as an array of 6 bytes, as
described here:

byte mac[] = { OxXDE, OxAD, OxBE, OXEF, OXFE, OXED };

The Ethernet library supports the Dynamic Host Control Protocol (DHCP), which is
responsible for dynamically assigning IP addresses to new network nodes. If your home
network is configured to support DHCP, you can establish the Ethernet connection using
the begin(mac) method from the Ethernet class:

Ethernet.begin(mac);

Keep in mind that when you are initializing an Ethernet connection using this class, you
are only initializing the Ethernet connection and setting up the IP address. This means that
you still need to configure Arduino as a server or a client in order to enable further
communication.

The IPAddress class

In applications where you have to manually assign the IP address to your Arduino device,
you will have to use the IPAddress class of the Ethernet library. This class provides
methods to specify the IP address, which can be either local or remote depending upon the

www.it-ebooks.info

http://arduino.cc/en/Reference/Ethernet
http://www.it-ebooks.info/

application:
IPAddress ip(192,168,1,177);

The IP address created using this method can be used in the initialization of the network
connection that we performed in the previous section. If you want to assign a manual IP
address to your Arduino, you can use the begin(mac, ip) method with the MAC and IP
addresses:

Ethernet.begin(mac, ip);
The Server class

The server class is designed to create a server using the Ethernet library on Arduino,
which listens to incoming connection requests for a specific port. The EthernetServer ()
method, when specified with in integer value of the port number, initializes the server on
Arduino:

EthernetServer server = EthernetServer(80);

By specifying port 80 in the previous line of code (which represents the HTTP protocol on
the TCP/IP suite), we have specifically created a web server using the Ethernet library. To
start listening to the incoming connection requests, you have to use the begin() method
on the server object:

server.begin();

Once the connection is established, you can respond to a request using various methods
supported by the server class, such as write(), print(), and println().

The Client class

The client class provides methods to create an Ethernet client to connect and
communicate with servers. The EthernetClient () method initializes a client that can be
connected to a specific server using its IP address and port number. The connect (ip,
port) method on the client object will establish a connection with the server on the
mentioned IP address:

EthernetClient client;
client.connect(server, 80);

The client class also has the connected() method, which provides the status of the
current connection in binary. This status can be true (connected) or false (disconnected).
This method is useful for the periodic monitoring of the connection status:

client.connected()

Other important client methods include read() and write(). These methods help the
Ethernet client to read the request from the server and to send messages to the server
respectively.

www.it-ebooks.info

http://www.it-ebooks.info/

Exercise 1 — a web server, your first Arduino
network program

The best way to test the Arduino Ethernet library and the Ethernet Shield is by using the
built-in examples that are deployed with the Arduino IDE. If you are using version 1.x of
the Arduino IDE, you can find a bunch of Ethernet examples by navigating to File |
Examples | Ethernet. By utilizing one of these examples, we are going to build a web
server that delivers the sensor values when requested by a web browser. As Arduino will
be connected to your home network through the Ethernet, you will be able to access it
from any other computer connected to your network. The major goals for this exercise are
listed here:

e Use the Arduino Ethernet library with the Arduino Ethernet Shield extension to
create a web server

e Remotely access Arduino using your home computer network

e Utilize a default Arduino example to provide humidity and motion sensor values
using a web server

To achieve these goals, the exercise is divided into the following stages:

e Design and build hardware for the exercise using your Arduino and the Ethernet
Shield

¢ Run a default example from the Arduino IDE as the starting point of the exercise

e Modify the example to accommodate your hardware design and redeploy the code

The following is a Fritzing diagram of the circuit required for this exercise. The first thing
you should do is mount the Ethernet Shield on top of your Arduino Uno. Ensure that all
the pins of the Ethernet Shield are aligned with the corresponding pins of the Arduino
Uno. Then you need to connect the previously used humidity sensor, HIH-4030, and the
PIR motion sensor.

PIR motion sensor

www.it-ebooks.info

http://www.it-ebooks.info/

Note

While deploying the Arduino hardware for remote connectivity without USB, you will
have to provide external power for the board, as you no longer have a USB connection to
power the board.

Now connect your Arduino Uno to a computer using a USB cable. You will also need to
connect Arduino to your local home network using an Ethernet cable. To do that, use a
straight CAT5 or CAT6 cable and connect one end of the cable to your home router. This
router should be the same device that provides network access to the computer you are
using. Connect the other end of the Ethernet cable to the Ethernet port of the Arduino
Ethernet Shield board. If the physical-level connection has been established correctly, you
should see a green light on the port.

USB
(Development)

WiFi / Ethernet

Now it’s time to start coding your first Ethernet example. Open the WebServer example
by navigating to File | Examples | Ethernet | WebServer in your Arduino IDE. As you
can see, the Ethernet library is included with the other required libraries and the supported
code. In the code, you will need to change the MAC and IP addresses to make it work for
your configuration. While you can obtain the MAC address of the Ethernet Shield from
the back of the board, you will have to select an IP address according to your home
network configuration. As you have already obtained the IP address of the computer you
are working with, select another address in the range. Ensure that no other network node is
using this IP address. Use these MAC and IP addresses to update the following values in

www.it-ebooks.info

http://www.it-ebooks.info/

your code. You will need to repeat these steps for every exercise when you are dealing
with Arduino Ethernet:

byte mac[] = {0x90, OxA2, OxDA, 0OxOD, Ox3F, 0x62};
IPAddress ip(10,0,0,75);

Tip
In the IP network, the visible range of IP addresses for your network is a function of
another address called subnetwork or subnet. The subnet of your LAN IP network can

help you select the appropriate IP address for the Ethernet Shield in the range of the IP
address of your computer. You can learn about the basics of the subnet at

http://en.wikipedia.org/wiki/Subnetwork.

Before venturing further into the code, compile the code with these modifications and
upload it to your Arduino. Once the uploading process is completed successfully, open a
web browser and enter the IP address that you had specified in the Arduino sketch. If
everything goes fine, you should see text displaying the values of the analog pins.

To better understand what happened here, let’s go back to the code. As you can see, at the
beginning of the code we initialize the Ethernet server library on port 80 using the
EthernetServer method from the Ethernet library:

EthernetServer server(80);

During the execution of setup(), the program initializes the Ethernet connection through
the Ethernet Shield using the Ethernet.being() method with the mac and ip variables
that you defined earlier. The server.begin() method will start the server from here. Both
of these steps are mandatory to start a server if you are using the Ethernet library for
server code:

Ethernet.begin(mac, ip);
server.begin();

In the loop() function, we initialize a client object to listen to incoming client requests
using the EthernetClient method. This object will respond to any request coming from
connected clients that try to access the Ethernet server through port 86:

EthernetClient client = server.available();

On receiving the request, the program will wait for the request payload to end. Then it will
reply to the client with formatted HTML data using the client.print() method:

while (client.connected()) {
if (client.available()) {
char ¢ = client.read();
Serial.write(c);
Response code

}

If you try to access the Arduino server from the browser, you will see that the web server
replies to the clients with the analog pin readings. Now, to obtain the proper values of the
humidity and PIR sensors that we connected in the hardware design, you will have to

www.it-ebooks.info

http://en.wikipedia.org/wiki/Subnetwork
http://www.it-ebooks.info/

perform the following modification to the code. You will notice here that we are replying
to the clients with the calculated values of relative humidity, instead of raw readings from
all the analog pins. We have also modified the text that will be printed in the web browser
to match the proper sensor title:

if (¢ == '\n' && currentLineIsBlank) {
// send a standard http response header
client.println("HTTP/1.1 200 OK");
client.println("Content-Type: text/html");
client.println("Connection: close");
client.println("Refresh: 5");
client.println();
client.println("<!DOCTYPE HTML>");
client.println("<html>");
float sensorReading = getHumidity(analogChannel, temperature);
client.print("Relative Humidity from HIH4030 is ");
client.print(sensorReading);
client.println(" %
");
client.println("</html>");
break;

}

In this process, we also added an Arduino function, getHumidity(), that will calculate the
relative humidity from the values observed from the analog pins. We have already used a
similar function to calculate relative humidity in one of the previous projects:

float getHumidity(int analogChannel, float temperature){
float supplyVolt = 5.0;
int HIH4030_Value = analogRead(analogChannel);
float analogReading HIH4030_Value/1023.0 * supplyVolt;
float sensorReading = 161.0 * analogReading / supplyVolt - 25.8;
float humidityReading = sensorReading / (1.0546 - 0.0026 * temperature);
return humidityReading;

}

You can implement these changes to the WebServer Arduino example for the testing
phase, or just open the webServer_Custom.ino sketch from the Exercise 1 - Web
Server folder of your code directory. As you can see in the opened sketch file, we have
already modified the code to reflect the changes, but you will still have to change the
MAC and IP addresses to the appropriate addresses. Once you are done with these minor
changes, compile and upload the sketch to Arduino.

If everything goes as planned, you should be able to access the web server using your web
browser. Open the IP address of your recently prepared Arduino in the web browser. You
should be able to receive a similar response as displayed in the following screenshot.
Although we are only displaying humidity values through this sketch, you can easily
attach motion sensor values using additional client.print () methods.

www.it-ebooks.info

http://www.it-ebooks.info/

~ i'-) 7 e
e : 10.0.0.75 A 2 -

&« C [§ 10.0.0.75 e

Relative Humidity observation from HIH4030 is 4629 %

Just like the mechanism we implemented in this exercise, a web server responds to the
request made by a web browser and delivers the web pages you are looking for. Although
this method is very popular and universally used to deliver web pages, the payload
contains a lot of additional metadata compared to the actual size of the sensor information.
Also, the server implementation using the Ethernet server library occupies a lot of the
Arduino’s resources. Arduino, being a resource-constrained device, is not suitable for
running a server application, as the Arduino’s resources should be prioritized to handle the
sensors rather than communication. Moreover, the web server created using the Ethernet
library supports a very limited amount of connections at a time, making it unusable for
large-scale applications and multiuser systems.

The best approach to overcome this problem is by using Arduino as a client device, or by
using lightweight communication protocols that are designed to work with resource-
constrained hardware devices. In the next few sections, you are going to learn and
implement these approaches for Arduino communication on the Ethernet.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Developing web applications using Python

By implementing the previous program, you have enabled networking on Arduino. In the
preceding example, we created an HTTP web server using methods available from the
Ethernet library. By creating an Arduino web server, we made the Arduino resources
available on the network. Similarly, Python also provides extensibility by way of various
libraries to create web server interfaces. By running the Python-based web server on your
computer or other devices such as the Raspberry Pi, you can avoid using Arduino to host
the web server. Web applications created using high-level languages such as Python can
also provide additional capabilities and extensibility compared to Arduino.

In this section, we will use the Python library, web. py, to create a Python web server. We
will also use this library to create interactive web applications that will enable the transfer
of data between an Arduino client and a web browser. After you have learned the basics of
web . py, we will interface Arduino with web . py using serial ports to make Arduino
accessible through the Python web server. Then we will upgrade the Arduino
communication method from the serial interface to HTTP-based messaging.

www.it-ebooks.info

http://www.it-ebooks.info/

Python web framework — web.py

A web server can be developed in Python using various web frameworks such as Django,
bottle, Pylon, and web.py. We have selected web . py as the preferred web framework due
to its simple yet powerful functionalities.

The web. py library was initially developed by the late Aaron Swartz with the goal of
developing an easy and straightforward approach to create web applications using Python.
This library provides two main methods, GET and POST, to support the HTTP
Representation State Transfer (REST) architecture. This architecture is designed to
support the HTTP protocol by sending and receiving data between clients and the server.
Today, the REST architecture is implemented by a huge number of websites to transfer
data over HTTP.

Installing web.py

To get started with web. py, you need to install the web . py library using Setuptools. We
installed Setuptools for various operating systems in Chapter 1, Getting Started with
Python and Arduino. On Linux and Mac OS X, execute either of these commands on the
terminal to install web. py:

$ sudo easy_install web.py
$ sudo pip install web.py

On Windows, open the Command Prompt and execute the following command:

> easy_install.exe web.py

If Setuptools is set up correctly, you should be able to install the library without any
difficulty. To verify the installation of the library, open the Python interactive prompt and
run this command to see whether you have imported the library without any errors:

>>> import web

Your first Python web application

Implementing a web server using web . py is a very simple and straightforward process.
The web . py library requires the declaration of a mandatory method, GET, to successfully
start the web server. When a client tries to access the server using a web browser or
another client, web . py receives a GET request and returns data as specified by the method.
To create a simple web application using the web. py library, create a Python file using the
following lines of code and execute the file using Python. You can also run the
webPyBasicExample.py file from the code folder of this chapter:

import web
urls = (

'/', 'index'
)

class index:
def GET(self):
return "Hello, world!"
if __name__ == "__main__":

www.it-ebooks.info

http://www.it-ebooks.info/

app = web.application(urls, globals())
app.run()

On execution, you will see that the server is now running and accessible through the
http://0.0.0.0:8080 address. As the server program is running on the 0.0.0.0 IP
address, you can access it using the same computer, localhost, or any other computer from
the same network.

To check out the server, open a web browser and go to http://0.0.0.0:8080. When you
are trying to access the server from the same computer, you can also use
http://127.0.0.1:8080 or http://localhost:8080. The 127.0.0.1 IP address actually
stands for localhost, that is, the network address of the same computer on which the
program is running. You will be able to see the response of the server displayed in the
browser, as shown in the following screenshot:

~ LA
® 00 localhost:8080 SRR

« C [} localhost:8080

Hello, world!

To understand how this simple code works, check out the GET method in the previous code
snippet. As you can see, when the web browser requests the URL, the GET method returns
the Hello, world! string to the browser. Meanwhile, you can also observe two other
mandatory web . py components in your code: the urls and web.application() methods.
The web . py library requires initialization of the response location in the declaration of the
urls variable. Every web.py-based web application requires the application(urls,
global()) method to be called to initialize the web server. By default, the web. py
applications run on port number 8080, which can be changed to another port number by
specifying it during execution. For example, if you want to run your web . py application on
port 8888, execute the following command:

$ python webPyBasicExample.py 8888

Although this only returns simple text, you have now successfully created your first web
application using Python. We will take it forward from here and create more complex web
applications in the upcoming chapters using the web. py library. To develop these complex
applications, we will require more than just the GET method. Let’s start exploring advance
concepts to further enhance your familiarity with the web. py library.

www.it-ebooks.info

http://www.it-ebooks.info/

Essential web.py concepts for developing complex
web applications

The web . py library has been designed to provide convenient and simple methods to
develop dynamic websites and web applications using Python. Using web . py, it is really
easy to build complex websites by utilizing just a few additional Python concepts along
with what you already know. Due to this limited learning curve and easy-to-implement
methods, web . py is one of the quickest ways to create web applications in any
programming language. Let’s begin with understanding these web . py concepts in detail.

Handling URLs

You might have noticed that in our first web.py program, we defined a variable called
urls that points to the root location (/) of the Index class:

urls = (
'/', 'index'
)

In the preceding declaration, the first part, ' /', is a regular expression used to match the
actual URL requests. You can use regular expressions to handle complex queries coming
to your web. py server and point them to the appropriate class. In web. py, you can
associate different landing page locations with appropriate classes. For example, if you
want to redirect the /data location to the data class in addition to the Index class, you can
change the urls variable as follows:

urls = (

'/', 'index',

'/data', 'data',
)
With this provision, when a client sends a request to access the http://<ip-
address>:8080/data address, the request will be directed towards the data class and then
the GET or POST method of that class.

The GET and POST methods

In exercise 1, where we created an Arduino-based web server running on port 80, we used
a web browser to access the web server. Web browsers are one of the most popular types
of web clients used to access a web server; cURL, Wget, and web crawlers are the other
types. A web browser uses HTTP to communicate with any web servers, including the
Arduino web server that we used. GET and POST are two fundamental methods supported
by the HTTP protocol to address server requests coming from a web browser.

Whenever you are trying to open a website in your browser or any other HTTP client, you
are actually requesting the GET function from the web server; for example, when you open
a website URL, http://www.example.com/, you are requesting that the web server that
hosts this website serves you the GET request for the '/' location. In the Handling URLs
section, you learned how to associate the web . py classes with URL landing locations.

www.it-ebooks.info

http://www.it-ebooks.info/

Using the GET method provided by the web . py library, you can associate the GET request
with individual classes. Once you have captured the GET request, you need to return
appropriate values as the response to the client. The following code snippet shows how the
GET() function will be called when anyone makes a GET request to the ' /' location:

def GET(self):

f = self.submit_form()

f.validates()

t =75

return render.test(f,t);
The PoST function of the HTTP protocol is mainly used to submit a form or any other data
to the web server. In most cases, POST is embedded in a web page, and a request to the
server is generated when a user submits the component carrying the PoST function. The
web . py library also provides the PoST() function, which is called when a web client tries
to contact the web . py server using the POST method. In most implementations of the
POST() function, the request includes some kind of data submitted through forms. You can
retrieve individual form elements using f['Celsius'].value which will give you a value
associated with the form element called celsius. Once the POST() function has performed
the provided actions, you can return appropriate information to the client in response to
the POST request:

def POST(self):
f = self.submit_form()
f.validates()
c = f['Celsius'].value
t = ¢*(9.0/5.0) + 32
return render.test(f,t)

Templates

Now you know how to redirect an HTTP request to an appropriate URL, and also how to
implement methods to respond to these HTTP requests (that is, GET and POST). But what
about the web page that needs to be rendered once the request is received? To understand
the rendering process, let’s start with creating a folder called templates in the same
directory where our web . py program is going to be placed. This folder will store the
templates that will be used to render the web pages when requested. You have to specify
the location of this template folder in the program using the template.render() function,
as displayed in the following line of code:

render = web.template.render('templates')

Once you have instantiated the rendering folder, it is time to create template files for your
program. According to the requirements of your program, you can create as many
template files as you want. A language called Templetor is used to create these template
files in web . py. You can learn more about it at http://webpy.org/templetor. Each template
file created using Templetor needs to be stored in the HTML format with the .html
extension.

Let’s create a file called test.html in the templates folder using a text editor and paste

www.it-ebooks.info

http://webpy.org/templetor
http://www.it-ebooks.info/

the following code snippet in to the file:

$def with(form, 1)
<form method="POST">

$:form.render ()
</form>
<p>Value is: $:i </p>
As you can see in the preceding code snippet, the template file begins with the $def
with() expression, where you need to specify the input arguments as variables within the
brackets. Once the template is rendered, these will be the only variables you can utilize for
the web page; for example, in the previous code snippet, we passed two variables (form
and i) as input variables. We utilized the form object using $:form.render () to render it
inside the web page. When you need to render the form object, you can directly pass the
other variable by simply declaring it (that is, $:i). Templetor will render the HTML code
of the template file as it is, while utilizing the variables in the instances where they are
being used.

Now you have a template file, test.html, ready to be used in your web.py program.
Whenever a GET() or POST() function is executed, you are required to return a value to the
requesting client. Although you can return any variable for these requests, including None,
you will have to render a template file where the response is associated with loading a web
page. You can return the template file using the render () function, followed by the
filename of the template file and input arguments:

return render.test(f, 1);

As you can see in the preceding line of code, we are returning the rendered test.html
page by specifying the render.test() function, where test() is just the filename without
the .html extension. The function also includes a form object, f, and variable, i, that will
be passed as input arguments.

Forms

The web . py library provides simple ways of creating form elements using the Form
module. This module includes the capability to create HTML form elements, obtain inputs
from users, and validate these inputs before utilizing them in the Python program. In the
following code snippet, we are creating two form elements, Textbox and Button, using the
Form library:

submit_form = form.Form(
form.Textbox('Celsius', description = 'Celsius'),
form.Button('submit', type="submit", description='submit"')

)

Besides Textbox (which obtains text input from users) and Button (which submits the
form), the Form module also provides a few other form elements, such as Password to
obtain hidden text input, Dropbox to obtain a mutually exclusive input from a drop-down
list, Radio to obtain mutually exclusive inputs from multiple options, and Checkbox to
select a binary input from the given options. While all of these elements are very easy to
implement, you should select form elements only according to your program

www.it-ebooks.info

http://www.it-ebooks.info/

requirements.

In the web . py implementation of Form, the web page needs to execute the POST method
every time the form is submitted. As you can in see in the following implementation of the
form in the template file, we are explicitly declaring the form submission method as POST:

$def with(form, 1)
<form method="POST">

$:form.render ()
</form>

www.it-ebooks.info

http://www.it-ebooks.info/

Exercise 2 — playing with web.py concepts using the
Arduino serial interface

Now you have a general idea of the basic web . py concepts used to build a web application.
In this exercise, we will utilize the concepts you learned to create an application to provide
the Arduino with sensor information. As the goal of this exercise is to demonstrate the

web . py server for Arduino data, we are not going to utilize the Ethernet Shield for
communication. Instead, we will capture the Arduino data using the serial interface, while
using the web . py server to respond to the requests coming from different clients.

As you can see in the following diagram, we are using the same hardware that you
designed for exercise 1, but without utilizing the Ethernet connection to our home router.
Your computer running the web . py server, which is also a part of your home network, will
serve the client requests.

In the first step, we are going to code Arduino to periodically send the humidity sensor
value to the serial interface. For the Arduino code, open the
WebPySerialExample_Arduino.ino sketch from the Exercise 2 folder of your code
directory. As you can see in the following code snippet of the Arduino sketch, we are
sending raw values from the analog port to the serial interface. Now compile and upload
the sketch to your Arduino board. Open the Serial Monitor window from the Arduino
IDE to confirm that you are receiving the raw humidity observations. Once you have
confirmed it, close the Serial Monitor window. You won’t be able to run the Python code

www.it-ebooks.info

http://www.it-ebooks.info/

if the Serial Monitor window is using the port:

void loop() {

int analogChannel = 0;

int HIH4030_Value analogRead(analogChannel);
Serial.println(HIH4030_Value);

delay(200);

}

Once the Arduino code is running properly, it is time to execute the Python program,
which contains the web. py server. The Python program for this exercise is located in the
webPySerialExample_Python directory. Open the webPySerialExample.py file in your
code editor. The Python program is organized in two sections: capturing sensor data from
the serial interface using the pySerial library, and using the web. py server-based server to
respond to the requests from the clients.

In the first stage of the code, we are interfacing the serial port using the serial() method
from the pySerial library. Don’t forget to change the serial port name as it may be
different for your computer, depending on the operating system and physical port that you
are using:

import serial
port = serial.Serial('/dev/tty.usbmodemfal331', 9600, timeout=1)

Once the port object for the serial port is created, the program starts reading the text
coming from the physical port, using the readline() method. Using the
relativeHumidity() function, we convert the raw humidity data to appropriate relative
humidity observations:

line = port.readline()
if line:

data = float(line)

humidity = relativeHumidity(line, 25)
On the web server side, we will be using all the major web.py components you learned in
the previous section to complete this goal. As part of it, we are implementing an input
form for the temperature value. We will capture this user input and utilize it with the raw
sensor data to calculate relative humidity. Therefore, we need to define the render object
to use the template directory. In this exercise, we are only using the default landing page
location (' /") for the web server, which is directed towards the Index class:

render = web.template.render('templates')

As you can see in the WwebPySerialExample_Python folder, we have a directory called
templates. This directory contains a template with the base.html filename. As this is an
HTML file, it is likely that if you just click on the file, it opens in a web browser. Make
sure that you open the file in a text editor. In the opened file, you’ll see that we are
initializing the template file with $def with(form, humidity). In this initialization, form
and humidity are input variables that are required by the template during the rendering
process. The template declares the actual <form> element with the $:form.render ()
method, while displaying the humidity value using the $humidity variable:

www.it-ebooks.info

http://www.it-ebooks.info/

<form method="POST">

$:form.render ()
</form>
<h3>Relative Humidity is:</h3>
<p name="temp">$humidity </p>
Although the template file renders the form variable, we have to define this variable in the
Python program first. As you can see in the following code snippet, we have declared a
variable called submit_form using the form.Form() method of the web.py library. The
submit_form variable includes a Textbox element to capture the temperature value and a
Button element to enable the submit action:

submit_form = form.Form(
form.Textbox('Temperature', description = 'Temperature'),
form.Button('submit', type="submit", description='submit"')

)

When you want to access the current submitted values of the submit_form variable, you
will have to validate the form using the validates() method:

f = self.submit_form()
f.validates()

Now we have the user-facing web page and input components designed for the exercise. It
is time to define the two main methods, GET and POST, to respond to the request coming
from the web page. When you launch or refresh the web page, the web . py server generates
the GET request, which is then handled by the GET function of the Index class. So during
the execution of the GET method, the program obtains the latest raw humidity value from
the serial port and calculates the relative humidity using the relativeHumidity() method.

Note

In the process of dealing with the GET request, we are not submitting any form with the
user input. For this reason, in the GET method, we will use the default value of temperature
(25) for the relativeHumidity() method.

Once the humidity value is derived, the program will render the base template using the
render .base() function, as displayed in the following code snippet, where base() refers
to the base template:

def GET(self):

f = self.submit_form()

f.validates()

line = port.readline()

if line:
data = float(line)
humidity = relativeHumidity(line, 25)
return render.base(f, humidity);

else:
return render.base(f, "Not valid data");

Contrary to the GET method, the POST method is invoked when the form is submitted to the
web page. The submitted form includes the temperature value provided by the user, which

www.it-ebooks.info

http://www.it-ebooks.info/

will be used to obtain the value of the relative humidity. Like the GET() function, the
POST() function also renders the base template with the recent humidity value once the
humidity is calculated:

def POST(self):

f = self.submit_form()

f.validates()

temperature = f['Temperature'].value

line = port.readline()

if line:
data = float(line)
humidity = relativeHumidity(line, float(temperature))
return render.base(f, humidity);

else:
return render.base(f, "Not valid data");

Now it is time to run the web. py-based web server. In the Python program, make the
necessary changes to accommodate the serial port name and any other appropriate values.
If everything is configured correctly, you will be able to execute the program from the
terminal without any errors. You can access the web server, which is running on port 8080,
from a web browser on the same computer, that is, http://localhost:8080. Now the
goal of the exercise is to demonstrate the remote accessibility of the web server from your
home network, and you can do this by opening the website from another computer in your
network, that is, http://<ip-address>:8080, where <ip-address> refers to the IP
address of the computer that is running the web . py service.

e s .
e 10.0.0.20:B080 e

m A

“~ C |4 10.0.0.20:8080 O %

Arduino serial interfacing with Web.py

Use following form to manually enter temperature value to
obtain relative humidity. Default temperature is 25 C.

Temperature 40

submit

Relative Humidity is:

228237839917 %

The preceding screenshot shows how the web application will look when opened in a web
browser. When you load the website, you will be able to see a relative humidity value
obtained using the GET method. Now you can enter an appropriate temperature value and
press the submit button to invoke the POST method. On successful execution, you will be
able to see the latest relative humidity value, which is calculated based on the temperature
value that you submitted.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

REST1ul web applications with Arduino
and Python

In the previous exercise, we implemented the GET and POST requests using the web. py
library. These requests are actually part of the most popular communication architecture of
the World Wide Web (WWW) called REST. The REST architecture implements a client-
server paradigm using the HTTP protocol for operations such as POST, READ, and DELETE.
The GET() and POST() functions, implemented using web . py, are functional subsets of
these standard HTTP REST operations, that is, GET, POST, UPDATE, and DELETE. The REST
architecture is designed for network applications, websites, and web services to establish
communication through HTTP-based calls. Rather than being just a set of standard rules,
the REST architecture utilizes existing web technologies and protocols, making it a core
component of the majority of the websites we use today. Due to this reason, the WWW
can be considered to be the largest implementation of REST-based architecture.

www.it-ebooks.info

http://www.it-ebooks.info/

Designing REST-based Arduino applications

The REST architecture uses a client-server model, where the server acts as a centralized
node in the network. It responds to the requests made by the distributed network nodes
(called clients) that query it. In this paradigm, the client initiates a request for the state
directed towards the server, while the server responds to the state request without storing
the client context. This communication is always one-directional and always initiated from
the client side.

[Client j (Server)
Request >
HTTP GET
Response
-
Request -
HTTP POST
Response
-
REST architecture

To further explain the state transfer for the GET and POST requests, check out the previous
diagram. When a client sends a GET request to a server using a URL, the server responds
with raw data as the HTTP response. Similarly, in the POST request, the client sends data as
payload to the server, while the server responds with simply a “received confirmation”
message.

REST methods are relatively simple to implement and develop using simple HTTP calls.
We are going to start developing Arduino networking applications using REST-based
requests, as they are easy to implement and understand and are directly available through
examples. We will begin by individually implementing REST-based Arduino clients for
HTTP-based GET and PoST methods. Later in this chapter, we will go through an exercise
to combine the GET and POST methods through the same Arduino REST client, while
developing the HTTP server using web. py.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with the GET request from Arduino

In this exercise, we will implement the HTTP GET client on Arduino, while using an HTTP
server that was developed using web . py. The premise of this programming exercise is to
use the Ethernet Shield extension and the Ethernet library to develop a physical Arduino
HTTP client that supports the GET request.

The Arduino code to generate the GET request

The Arduino IDE ships with a few basic examples that utilize the Ethernet library. One of
these examples is WebClient, which can be found by navigating to File | Examples |
Ethernet | WebClient. It is designed to demonstrate the GET request by implementing the
HTTP client on Arduino. Open this sketch in the Arduino IDE, as we are going to use this
sketch and modify it to accommodate the Arduino hardware we created.

The first thing you need to change in the opened sketch is the IP address and the MAC
address of your Arduino Ethernet Shield. Replace the following variables with the
variables appropriate for your system. The following code snippet shows the IP address
and the MAC address for our hardware, and you need to change it to accommodate yours:

byte mac[] = { O0x90, 0OxA2, OxDA, 0x00, 0x47, 0x28 };
IPAddress ip(10,0,0,75);

As you can see, the example uses Google as a server to get a response. You need to change
this address to reflect the IP address of your computer, which will host the web . py server:

char server[] = "10.0.0.20";

In the setup() function, you will have to change the server IP address again. Also change
the default HTTP port (80) to the port used by web . py (8080):

if (client.connect(server, 8080)) {
Serial.println("connected");
// Make a HTTP request:
client.println("GET /data HTTP/1.1");
client.println("Host: 10.0.0.20");
client.println("Connection: close");
client.println();

}

Once you have made all of these changes, go to the Arduino_GET_Webpy\ArduinoGET
folder and open the ArduinoGET. ino sketch. Compare your modified sketch with this
sketch and perform the appropriate changes. Now you can save your sketch and compile
your code for any errors.

At this stage, we are assuming that you have the Arduino Ethernet Shield mounted on
your Arduino Uno. Connect the Ethernet Shield to your local network using an Ethernet
cable, and connect Uno with your computer using a USB cable. Upload the sketch to the
Arduino board and open the Serial Monitor window to check the activity. At this stage,
Arduino would not be able to connect to the server because your web. py server is still not
running. You can close the serial monitor for now.

www.it-ebooks.info

http://www.it-ebooks.info/

The HTTP server using web.py to handle the GET request

In your first web . py application, you developed a server that returned Hello, world!
when requested from a web browser. Despite all the additional tasks it can perform, your
web browser is an HTTP client at its core. This means that if your first web . py server code
was able to respond to the GET request made by the web browser, it should also be able to
respond to the Arduino web client. To check this out, open your first web . py program,
webPyBasicExample.py, and change the return string from Hello World! to test. We are
performing this string change to differentiate it from the other instances of this program.
Execute the Python program from the terminal and open the Serial Monitor window in
the Arduino IDE again. This time, you will be able to see that your Arduino client is
receiving a response for the GET request it sent to the web . py server. As you can see in the
following screenshot, you will be able to see the test string printed in the Serial Monitor
window, which is returned by the web . py server for the GET request:

800 fdev/cu.usbmodemfal33l
(Send ;_I
coconnecting. .. —
connected
HTTP/1.1 288 OK |
Transfer-Encoding: chunked |
Connection: close |
Date: Wed, 24 Sep 22014 18:82:15 GMT |
Server: localhost |
A |
test |
@ |
o
& & 'y
disconnecting.
v
W Autoscroll 'No line ending | 3] 9600 baud |3/

Although in this example we are returning a simple string for the GET request, you can
extend this method to obtain different user-specified parameters from the web server. This
GET implementation can be used in a large number of applications where Arduino requires
repeated input from the user or other programs. But what if the web server requires input
from the Arduino? In that case, we will have to use the POST request. Let’s develop an
Arduino program to accommodate the HTTP POST request.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with the POST request from Arduino

Since we have now implemented the GET request, we can use a similar approach to
exercise the POST request. Instead of asking the server to provide a response for a state
request, we will send sensor data as payload from Arduino in the implementation of the
POST request. Similarly, on the server side, we will utilize web . py to accept the POST
request and display it through a web browser.

The Arduino code to generate the POST request

Open the Arduino sketch ArduinoP0ST. ino from the Arduino_POST_Webpy\ArduinoPOST
folder of the code repository. As in the previous exercise, you will first have to provide the
IP address and the MAC address of your Arduino.

Once you have completed these basic changes, observe the following code snippet for the
implementation of the POST request. You might notice that we are creating payload for the
POST request as the variable data from the values obtained from analog pin 0O:

String data;

data+="";

data+="Humidity ";
data+=analogRead(analogChannel);

In the following Arduino code, we’ll first create a client object using the Ethernet library.
In the recurring loop() function, we’ll use this client object to connect to the web. py
server running on our computer. You will have to replace the IP address in the connect()
method with the IP address of your web. py server. Once connected, we’ll create a custom
POST message with the payload data we calculated previously. The Arduino loop()
function will periodically send the updated sensor value generated by this code sample to
the web. py server:

if (client.connect("10.0.0.20",8080)) {
Serial.println("connected");
client.println("POST /data HTTP/1.1");
client.println("Host: 10.0.0.20");
client.println("Content-Type: application/x-www-form-urlencoded");
client.println("Connection: close");
client.print("Content-Length: ");
client.println(data.length());
client.println();
client.print(data);
client.println();
Serial.println("Data sent.");

}

Once you have performed the changes, compile and upload this sketch to the Arduino
board. As the web. py server is yet not implemented, the POST request that originated from
Arduino will not be able to reach its destination successfully, so let’s create the web . py
server to accept POST requests.

The HT'TP server using web.py to handle the POST request

www.it-ebooks.info

http://www.it-ebooks.info/

In this implementation of the POST method, we require two web . py classes, index and
data, to individually serve requests from the web browser and Arduino respectively. As
we are going to use two separate classes to update common sensor values (that is,
humidity and temperature), we are going to declare them as global variables:

global temperature, humidity
temperature = 25

As you may have noticed in the Arduino code (client.println("POST /data
HTTP/1.1")), we were sending the POST request to the URL located at /data. Similarly,
we will use the default root location, '/', to land any request coming from the web
browser. These requests for the root location will be handled by the index class, just as we
covered in exercise 2:

urls = (

'/', 'index',

'/data', 'data’,
)
The data class takes care of any POST request originating from the /data location. In this
case, these POST requests contain payload that has sensor information attached by the
Arduino PoST client. On receiving the message, the method splits the payload string into
sensor-type and value, updating the global value of the humidity variable in this process:

class data:
def POST(self):

global humidity
i = web.input()
data = web.data()
data = data.split()[1]
humidity = relativeHumidity(data, temperature)
return humidity

Each PosST request received from Arduino updates the raw humidity value, which is
represented by the data variable. We are using the same code from exercise 2 to obtain
manual temperature values from the user. The relative humidity value, humidity, is
updated according to the temperature value you updated using the web browser and the
raw humidity value is obtained from your Arduino.

www.it-ebooks.info

http://www.it-ebooks.info/

8enn e e
10.0.0.20:B0B0 \oo

€ - C [J10.0.0.20:8080 O *
Arduino POST request to Web.py

Use following form to manually enter temperature value to obtain
relative humidity. Default temperature is 25 C.

Temperature 15

submit

Relative Humidity is:

193822393518 %

To check out the Python code, open the WwebPyEthernetPOST. py file from the code
repository. After making the appropriate changes, execute the code from the terminal. If
you don’t start getting any updates from the Arduino on the terminal, you should restart
Arduino to reestablish the connection with the web . py server. Once you start seeing
periodic updates from the Arduino POST requests at the terminal, open the location of the
web application in your browser. You will be able to see something similar to the
preceding screenshot. Here, you can submit the manual temperature value using the form,
while the browser will reload with the updated relative humidity according to the

temperature value entered.

www.it-ebooks.info

http://www.it-ebooks.info/

Exercise 3 — a RESTful Arduino web application

The goal of this exercise is to simply combine the GET and POST methods you learned in
the previous two sections in order to create a complete REST experience using Arduino
and Python. The architecture for this exercise can be described as follows:

e The Arduino client periodically uses the GET request to obtain the sensor type from
the server. It uses this sensor type to select a sensor for observation. In our case, it is
either a humidity or motion sensor.

e The web server responds to the GET request by returning the current sensor type of the
sensor selected by the user. The user provides this selection through a web
application.

o After receiving the sensor type, the Arduino client utilizes POST to send sensor
observation to the server.

e The web server receives the POST data and updates the sensor observation for that
particular sensor type.

e On the user side, the web server obtains the current sensor type through the web
browser.

e When the submit button in the browser is pressed, the server updates the sensor
value in the browser with the latest value.

The Arduino sketch for the exercise

Using the same Arduino hardware we built, open the Arduino sketch named
WebPyEthernetArduinoGETPOST. ino from the Exercise 3 - RESTful application
Arduino and webpy code folder. As we described in the exercise’s architecture earlier, the
Arduino client should periodically send GET requests to the server and get the
corresponding value of the sensor type in the response. After comparing the sensor type,
the Arduino client fetches the current sensor observation from the Arduino pins and sends
that observation back to the server using POST:

if (client.connected()) {
if (client.find("Humidity")){
Fetch humidity sensor value
if (client.connect("10.0.0.20",8080)) {
Post humidity values

3
}
else{

Fetch motion sensor value

if (client.connect("10.0.0.20",8080)) {

Post motion values

3
}

Add delay

}

After changing the appropriate server’s IP address in the code, compile and upload it to
the Arduino. Open the Serial Monitor window, where you will find unsuccessful
connection attempts, as your web . py server is not yet running. Close any other instance or

www.it-ebooks.info

http://www.it-ebooks.info/

program of the web . py server running on your computer.

The web.py application to support REST requests

Open the webPyEthernetGETPOST. py file from the Exercise 3 - RESTful application
Arduino and webpy code folder. As you can see, the web . py based web server implements
two separate classes, index and data, to support the REST architecture for the web
browser and the Arduino client, respectively. We are introducing a new concept for the
Form element, called Dropdown (). Using this Form method, you can implement the drop-
down selection menu and ask the user to select one option from the list of options:

form.Dropdown('dropdown',
[('Humidity', 'Humidity'), ('Motion', 'Motion')]),
form.Button('submit"',
type="submit", description='submit'))

In the previous web . py program, we implemented the GET and POST methods for the index
class and only the POST method for the data class. Moving forward in this exercise, we’ll
also add the GET method to the data class. This method returns the value of the
sensorType variable when the GET request is made for the /data location. From the user
side, the value of the sensorType variable is updated when the form gets submitted with
an option. This action sends a selected value to the POST method of the index class,
ultimately updating the sensorType value:

class data:
def GET(self):
return sensorType
def POST(self):
global humidity, motion
i = web.input()
data = web.data()
data = data.split()[1]
if sensorType == "Humidity":
humidity = relativeHumidity(data, temperature)
return humidity
else:
motion = data
return motion

Before you run this Python program, make sure you have checked every component of the
code and updated the values where needed. Then execute the code from the terminal. Your
web server will now run on your local computer on the port number 8080. Power-cycle
your Arduino device in case the connection attempt from Arduino fails. To test your
system, open the web application from your web browser. You will see a web page open in
your browser, as displayed in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

[~ 4
=4

|
G

® O 0 / [10.0.0.20:8080

% C | [10.0.0.20:8080 | 77 O N
Arduino GET & POST request to Web.py

Select sensor to send GET request to Arduino.

drnpdﬂw[¥ Humidity
Motion

|TEWLTTITE |

Humidity value is:

18.2700870301 %

You can choose the sensor type from the dropdown menu (Humidity or Motion) before
pressing the Submit button. On submission, you will be able to see the page updated with
the appropriate sensor type and its current value.

www.it-ebooks.info

http://www.it-ebooks.info/

Why do we need a resource-constrained messaging
protocol?

In the previous section, you learned how to use the HTTP REST architecture to send and
receive data between your Arduino and the host server. The HTTP protocol was originally
designed to serve textual data through web pages on the Internet. The data delivery
mechanism used by HTTP requires a comparatively large amount of computation and
network resources, which may be sufficient for a computer system but not for resource-
constrained hardware platforms such as Arduino. As we discussed earlier, the client-server
paradigm implemented by the HTTP REST architecture creates a tightly coupled system.
In this paradigm, both sides (the client and the server) need to be constantly active, or live,
to respond. Also, the REST architecture only allows unidirectional communication from
client to server, where requests are always initialized by the client and the server responds
to the client. This request-response-based architecture is not suitable for constrained
hardware devices because of (but not limited to) the following reasons:

e These devices should avoid active communication mode to save power

e The communication should have less data overhaul to save network resources

e They usually do not have enough computational resources to enable bidirectional
REST communication, that is, implementing both client and server mechanisms on
each side

e The code should have a smaller footprint due to storage constraints

Tip
The REST-based architecture can still be useful when the application specifically

requires a request-response architecture, but most sensor-based hardware applications
are limited due to the preceding points.

Among other data delivery paradigms that solve the preceding problems, the architecture
based on publisher/subscriber (pub/sub) stands tall. The pub/sub architecture enables
bidirectional communication capabilities between the node that generates the data
(Publisher) and the node that consumes the data (Subscriber). We are going to use
MQTT as the protocol that uses the pub/sub model of message transportation. Let’s begin
by covering the pub/sub architecture and MQTT in detail.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

MQTT - A lightweight messaging protocol

Just like REST, pub/sub is one of the most popular messaging patterns, mostly deployed to
transfer short messages between nodes. Instead of deploying client-server-based
architecture, the pub/sub paradigm implements messaging middleware called a broker to
receive, queue, and relay messages between the subscriber and publisher clients:

[Publisher) [Broker j (Subscriber j

subscribe <topic>

publish <topic, data>

notify <data>

Publisher-Subscriber architecture

The pub/sub architecture utilizes a topic-based system to select and process messages,
where each message is labeled with a specific topic name. Instead of sending a message
directly to the subscriber, the publisher sends it first to the broker with a topic name. In a
totally independent process, the subscriber registers its subscription for particular topics
with the broker. In the event of receiving a message from the publisher, the broker
performs topic-based filtering on that message before forwarding it to the subscribers
registered for that topic. As publishers are loosely coupled to subscribers in this
architecture, the publishers do not need to know the whereabouts of the subscribers and
can work uninterrupted without worrying about their status.

While discussing the limitations of the REST architecture, we noticed that it requires the
implementation of both the HTTP client and server on the Arduino end to enable
bidirectional communication with Arduino. With the broker-based architecture
demonstrated by pub/sub, you only need to implement lightweight code for the publisher
or subscriber client on Arduino, while the broker can be implemented on a device with
more computation resources. Henceforth, you will have bidirectional communication
enabled on Arduino without using significant resources.

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction to MQTT

Message Queue Telemetry Transport (MQTT) is a very simple, easy, and open
implementation of the pub/sub paradigm. IBM has been working on standardizing and
supporting the MQTT protocol. The documentation for the latest specification of the
MQTT protocol, v3.1, can be obtained from the official MQTT website at

http://www.mqtt.org.

As a standard for machine messaging, MQTT is designed to be extremely lightweight and
with a smaller footprint for code, while also using a lower network bandwidth for
communication. MQTT is very specifically designed to work on embedded systems—Iike
hardware platforms such as Arduino and other appliances—that carry limited processor
and memory resources. While MQTT is a transport layer messaging protocol, it uses
TCP/IP for network-level connectivity. As MQTT is designed to support the pub/sub
messaging paradigm, the implementation of MQTT on your hardware application provides
support for one-to-many distributed messaging, eliminating the limitation of unidirectional
communication demonstrated by HTTP REST. As MQTT is agnostic of the content of the
payload, there is no restriction on the type of message you can pass using this protocol.

Due to all the benefits associated with the pub/sub paradigm and its implementation in the
MQTT protocol, we will be using the MQTT protocol for the rest of the exercises to have
messages communicated between Arduino and its networked computer. To achieve this,
we will be using the MQTT broker to provide the ground work for message
communication and host topics, while deploying the MQTT publisher and subscriber
clients at the Arduino and Python ends.

www.it-ebooks.info

http://www.mqtt.org
http://www.it-ebooks.info/

Mosquitto — an open source MQTT broker

As we described, MQTT is just a protocol standard, and it still requires software tools so
that it can be implemented in actual applications. Mesquitto is an open source
implementation of the message broker, which supports the latest version of the MQTT
protocol standard. The Mosquitto broker enables the pub/sub paradigm implemented by
the MQTT protocol, while providing a lightweight mechanism to enable messaging
between machines. Development of Mosquitto is supported through community efforts.
Mosquitto is one of the most popular MQTT implementations, freely available and widely
supported on the Internet. You can obtain further information regarding the actual tool and
community from its website, at http://www.mosquitto.org.

www.it-ebooks.info

http://www.mosquitto.org
http://www.it-ebooks.info/

Setting up Mosquitto

The installation and configuration of Mosquitto are very straightforward processes. At the
time of writing this book, the latest version of Mosquitto is 1.3.4. You can also obtain the
latest updates and installation information regarding Mosquitto at

http://www.mosquitto.org/download/.

On Windows, you can simply download the latest version of the installation files for
Windows, which is made for Win32 or Win64 systems. Download and run the executable
file to install the Mosquitto broker. To run Mosquitto from the command prompt, you will
have to add the Mosquitto directory to the PATH variables in the environment variables of
the system properties. In Chapter 1, Getting Started with Python and Arduino, we
comprehensively described the process of adding a PATH variable to install Python. Using
the same method, add the path of the Mosquitto installation directory at the end of the
PATH value. If you are using a 64-bit operating system, you should use C:\Program Files
(x86)\mosquitto. For a 32-bit operating system, you should use C:\Program
Files\mosquitto as the path. Once you are done with adding this value at the end of the
PATH value, close any existing command prompt windows and open a new Command
Prompt window. You can validate the installation by typing the following command in the
newly opened window. If everything is installed and configured correctly, the following
command should execute without any errors:

C:\> mosquitto

For Mac OS X, the best way to install Mosquitto is to use the Homebrew tool. We already
went through the process of installing and configuring Homebrew in Chapter 1, Getting
Started with Python and Arduino. Install the Mosquitto broker by simply executing the
following script on the terminal. This script will install Mosquitto with the Mosquitto
utilities and also configure them to run from the terminal as commands:

$ brew install mosquitto

On Ubuntu, the default repository already has the installation package for Mosquitto.
Depending on the version of Ubuntu you are using, this Mosquitto version could be older
than the current version. In that case, you must add this repository first:

$ sudo apt-add-repository ppa:mosquitto-dev/mosquitto-ppa
$ sudo apt-get update

Now you can install the Mosquitto packages by simply running the following command:

$ sudo apt-get install mosquitto mosquitto-clients

www.it-ebooks.info

http://www.mosquitto.org/download/
http://www.it-ebooks.info/

Getting familiar with Mosquitto

Due to the multiple installation methods involved for different operating systems, the
initialization of Mosquitto may be different for your instance. In some cases, Mosquitto
might already be running on your computer. For a Unix-based operating system, you can
check whether Mosquitto is running or not with this command:

$ ps aux | grep mosquitto

Unless you find a running instance of the broker, you can start Mosquitto by executing the
following command in the terminal. After executing it, you should be able to see the
broker running while printing the initialization parameters and other requests coming to it:

$ mosquitto

When you installed the Mosquitto broker, the installation process would also have
installed a few Mosquitto utilities, which include the MQTT clients for the publisher and
the subscriber. These client utilities can be used to communicate with any Mosquitto
broker.

To use the subscriber client utility, mosquitto_sub, use the following command at the
terminal with the IP address of the Mosquitto broker. As we are communicating to the
Mosquitto broker running on the same computer, you can avoid the -h <Broker-IP>
option. The subscriber utility uses the -t option to specify the name of the topic that you
are planning to subscribe. As you can see, we are subscribing to the test topic:

$ mosquitto_sub -h <Broker-IP> -t test

Similar to the subscriber client, the publisher client (mosquitto_pub) can be used to
publish a message to the broker for a specific topic. As described in the following
command, you are required to use the -m option followed by a message to successfully
publish it. In this command, we are publishing a He11o message for the test topic:

$ mosquitto_pub -h <Broker-IP> -t test -m Hello

Other important Mosquitto utilities include mosquitto_password and mosquitto.conf,
which can be used to manage the Mosquitto password files and the setup broker
configuration, respectively.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Getting started with MQTT on Arduino
and Python

Now that you have the Mosquitto broker installed on your computer, it means that you
have a working broker that implements the MQTT protocol. Our next goal is to develop
the MQTT clients in Arduino and also in Python so that they will work as publishers and
subscribers. After implementing the MQTT clients, we will have a fully-functional MQTT
system, where these clients communicate through the Mosquitto broker. Let’s begin with
deploying MQTT on the Arduino platform.

www.it-ebooks.info

http://www.it-ebooks.info/

MQTT on Arduino using the PubSubClient library

As MQTT is a network-based messaging protocol, you will always need an Ethernet
Shield to communicate with your network. For the following exercise, we will continue
using the same hardware that we have been using throughout this chapter.

Installing the PubSubClient library

To use Arduino for pub/sub and enable simple MQTT messaging, you need the Arduino
client library for MQTT, also known as the PubSubcClient library. The PubSubClient
library helps you develop Arduino as an MQTT client, which can then communicate with
the MQTT server (Mosquitto broker in our case) running on your computer. As the library
provides methods to create only an MQTT client and not a broker, the footprint of the
Arduino code is quite small compared to other messaging paradigms. The PubSubClient
library extensively utilizes the default Arduino Ethernet library and implements the
MQTT client as a subclass of the Ethernet client.

To get started with the PubsubClient library, you’ll first need to import the library to your
Arduino IDE. Download the latest version of the PubSubClient Arduino library from
https://github.com/knolleary/pubsubclient/. Once you have the file downloaded, import it
to your Arduino IDE.

We will be using one of the examples installed with the PubSubClient library to get
started. The goal of the exercise is to utilize a basic example to create an Arduino MQTT
client, while performing minor modifications to accommodate the local network
parameters. We will then use the Mosquitto commands you learned in the previous section
to test the Arduino MQTT client. Meanwhile, ensure that your Mosquitto broker is
running in the background.

Developing the Arduino MQTT client

Let’s start with opening the mqtt_basic example by navigating to File | Examples |
PubSubClient in our Arduino IDE menu. In the opened program, change the MAC and IP
address values for Arduino by updating the mac[] and ip[] variables, respectively. In the
previous section, you successfully installed and tested the Mosquitto broker. Use the IP
address of the computer running Mosquitto to update the server[] variable:

byte mac[] = { 0Ox90, OxA2, OxDA, 0x0D, Ox3F, 0x62 };
byte server[] = { 10, 0, 0, 20 };
byte ip[] = {10, 0, 0, 75 },;

As you can see in the code, we are initializing the client using the IP address of the server,
Mosquitto port number, and Ethernet client. Before using any other method for the
PubSubcClient library, you will always have to initialize the MQTT client using a similar
method:

EthernetClient ethClient;
PubSubClient client(server, 1883, callback, ethClient);

Further on in the code, we are using the publish() and subscribe() methods on the

www.it-ebooks.info

https://github.com/knolleary/pubsubclient/
http://www.it-ebooks.info/

client class to publish a message for the outTopic topic and subscribe to the inTopic
topic. You can specify the name of the client using the client.connect() method. As you
can see in the following code snippet, we are declaring arduinoClient as the name for
this client:

Ethernet.begin(mac, ip);

if (client.connect("arduinoClient")) {
client.publish("outTopic", "hello world");
client.subscribe("inTopic");

}

As we are using this code in the setup() function, the client will only publish the hello
world message once—during the initialization of the code—while the subscribe method
will keep looking for new messages for inTopic due to the use of the client.loop()
method in the Arduino loop() function:

client.loop();

Now, while running Mosquitto in the background, open another terminal window. In this
terminal window, run the following command. This command will use a computer-based
Mosquitto client to subscribe to the outTopic topic:

$ mosquitto_sub -t "outTopic"

Compile your Arduino sketch and upload it. As soon as the upload process is complete,
you will be able to see the hello world string printed. Basically, as soon as the Arduino
code starts running, the Arduino MQTT client will publish the hello world string to the
Mosquitto broker for the outTopic topic. On the other side, that is, on the side of the
Mosquitto client, you’ve started using the mosquitto_sub utility and will receive this
message, as it is subscribed to outTopic.

Although you ran the modified Arduino example, mqtt_basic, you can also find the code
for this exercise from this chapter’s code folder. In this exercise, the Arduino client is also
subscribed to inTopic to receive any message that originates for this topic. Unfortunately,
the program doesn’t display or deal with messages it obtains as a subscriber. To test the
subscriber functionalities of the Arduino MQTT client, let’s open the mqtt_advance
Arduino sketch from this chapter’s code folder.

As you can see in the following code snippet, we have added code to display the received
message in the callback() method. The callback() method will be called when the
client receives any message from the subscribed topics. Therefore, you can implement all
types of functionality on the received message from the callback() method:

void callback(char* topic, byte* payload, unsigned int length) {
// handle message arrived
Serial.print(topic);
Serial.print(':");
Serial.write(payload, length);
Serial.println();

}

In this mqtt_advance Arduino sketch, we have also moved the publishing statement of

www.it-ebooks.info

http://www.it-ebooks.info/

outTopic from setup() to the loop() function. This action will help us to periodically
publish the value for outTopic. In future, we will expand this method to use sensor
information as messages so that the other devices can obtain those sensor values by
subscribing to these sensor topics:

void loop()
{

client.publish("outTopic", "From Arduino");
delay(1000);
client.loop();

}

After updating the mqtt_advance sketch with the appropriate network addresses, compile
and upload the sketch to your Arduino hardware. To test the Arduino client, use the same
mosquitto_sub command to subscribe to outTopic. This time, you will periodically get
updates for outTopic on the terminal. To check out the subscriber functionality of your
Arduino client, open your Serial Monitor window in your Arduino IDE. Once the Serial
Monitor window begins running, execute the following command in the terminal:

$ mosquitto_pub - t "inTopic" -m "Test"

You can see in the Serial Monitor window that the Test text is printed with the topic
name as inTopic. Henceforth, your Arduino will serve as both an MQTT publisher and an
MQTT subscriber. Now let’s develop a Python program to implement the MQTT clients.

www.it-ebooks.info

http://www.it-ebooks.info/

MQTT on Python using paho-mqtt

In the previous exercise, we tested the Arduino MQTT client using command-line utilities.
Unless the published and subscribed messages are captured in Python, we cannot utilize
them to develop all the other applications we’ve built so far. To transfer messages between
the Mosquitto broker and the Python interpreter, we use a Python library called paho-
mqtt. This library used to be called mosquitto-python before it was donated to the Paho
project. Identical to the Arduino MQTT client library, the paho-mqtt library provides
similar methods to develop the MQTT pub/sub client using Python.

Installing paho-mqtt

Like all other Python libraries we used, paho-mqtt can also be installed using Setuptools.
To install the library, run this command in the terminal:

$ sudo pip install paho-mqtt

For the Windows operating system, use easy_install.exe to install the library. Once it is
installed, you can check the successful installation of the library using the following
command in the Python interactive terminal:

>>> import paho.mqtt.client
Using the paho-mqtt Python library

The paho-mqtt Python library provides very simple methods to connect to your Mosquitto
broker. Let’s open the mgttPython.py file from this chapter’s code folder. As you can see,
we have initialized the code by importing the paho.mqtt.client library method:

import paho.mqgtt.client as mq

Just like the Arduino MQTT library, the paho-mqtt library also provides methods to
connect to the Mosquitto broker. As you can see, we have named our client
mosquittoPython by simply using the Client () method. The library also provides
methods for activities, for example, when the client receives a message, on_message, and
publishes a message, on_publish. Once you have initialized these methods, you can
connect your client to the Mosquitto server by specifying the server IP address and the
port number.

To subscribe to or publish for a topic, you simply need to implement the subscribe() and
publish() methods on the client, respectively, as displayed in the following code snippet.
In this exercise, we are using the loop_forever () method for the client to periodically
check the broker for any new messages. As you can see in the code, we are executing the
publishTest () function before the control enters the loop:

cli = mqg.Client('mosquittoPython')
cli.on_message = onMessage
cli.on_publish = onPublish
cli.connect("10.0.0.20", 1883, 15)
cli.subscribe("outTopic", 0)
publishTest()

www.it-ebooks.info

http://www.it-ebooks.info/

cli.loop_forever()

It is very important to run all the required functions or pieces of code before you enter the
loop, as the program will enter the loop with the Mosquitto server once loop_forever() is
executed. During this period, the client will only execute the on_publish and on_message
methods for any update on the subscribed or published topics.

To overcome this situation, we are implementing the multithreading paradigm of the
Python programming language. Although we are not going to dive deep into
multithreading, the following example will teach you enough to implement basic
programming logic. To understand more about the Python threading library and supported

methods, visit https://docs.python.org/2/library/threading.html.

To better understand our implementation of the threading method, check out the following
code snippet. As you can see in the code, we are implementing recursion for the
publishTest() function every 5 seconds, using the Timer () threading method. Using this
method, the program will start a new thread that is separate from the main program thread
that contains the loop for Mosquitto. Every 5 seconds, the publishTest () function will be
executed, recursively running the publish() method, and ultimately publishing a message
for inTopic:

import threading
def publishTest():

cli.publish("inTopic", "From Python'")

threading.Timer (5, publishTest).start()
Now, in the main thread, when the client gets a new message from the subscribed topics,
the thread invokes the onMessage () function. In the current implementation of this
function, we are just printing the topic and message for demonstration purposes. In real
applications, this function can be used to implement any kind of operation on the received
message, for example, writing a message to a database, running an Arduino command,
selecting an input, calling other functions, and so on. In short, this function is the entry
point of any input you receive through the Mosquitto broker from your subscribed topics:

def onMessage(mosq, obj, msg):

print msg.topic+":"+msg.payload
Similarly, every time you publish a message from the second thread, the onPublish()
function is executed by the program. Just like the previous function, you can implement
various operations within this function, while the function behaves as the exit point of any
message published using this Python MQTT client. In the current implementation of
onPublish(), we are not performing any operations:

def onPublish(mosq, obj, mid):
pass

In the opened Python file, mqttPython. py, you will only need to change the IP address of
the server running the Mosquitto broker. If you are running the Mosquitto broker on the
same computer, you can use 127.0.0.1 as the IP address of the localhost. Before you
execute this Python file, ensure that your Arduino is running with the MQTT client we
created in the previous exercise. Once you run this code, you can start seeing the messages

www.it-ebooks.info

https://docs.python.org/2/library/threading.html
http://www.it-ebooks.info/

being sent from your Arduino in the Python terminal, as displayed in the following
screenshot. Whenever a new message is received, the Python program prints the outTopic
topic name followed by the From Arduino message. This confirms that the Python client
is receiving messages for outTopic, to which it is subscribed. If you look back at the
Arduino code, you will notice that it is the same message that we were publishing from the
Arduino client.

8 00 *Python 2.7.6 Shell*

>
outTopic:From Arduino
outTopic:From Arduino
outTopic:From Arduino
outTopic:From Arduino
outTopic:From Arduino
outTopic:From Arduino
outTopic:From Arduino
outTopic:From Arduino
outTopic:From Arduino
outTopic:From Arduino
outTopic:From Arduino
outTopic:From Arduino
outTopic:From Arduino
outTopic:From Arduino
outTopic:From Arduino

Ln: 25 |Col: O

Now, to confirm the publishing operation of the Python MQTT client, let’s open the Serial
Monitor window from your Arduino IDE. As you can see in the Serial Monitor window,
text that contains the inTopic topic name and the From Python message is being printed
every 5 seconds. This validates the Python publisher, as we are publishing the same
message for the same topic every 5 seconds through the publishTest () function.

800 /dev/cu.usbmodemfal33l

“t_Send's

irTDpit:FrDm nyFDr
inTopic:From Python
inTopic:From Python
inTopic:From Python
inTopic:From Python
inTopic:From Python
inTopic:From Python
inTopic:From Python
inTopic:From Python
inTopic:From Python
inTopic:From Python
inTopic:From Python
inTopic:From Python
inTopic:From Python

W Autoscroll "No line ending ﬂ '_950[} baud _:]

www.it-ebooks.info

http://www.it-ebooks.info/

Exercise 4 —- MQTT Gateway for Arduino

In exercise 3, we used the REST architecture to transfer motion and humidity sensor data
between our Arduino and the web browser. In this exercise, we will develop an MQTT
Gateway using the Mosquitto broker and the MQTT clients to transfer sensor information
from our Arduino to the web browser. The goal of the exercise is to replicate the same
components that we implemented in the REST exercise, but with the MQTT protocol.

As you can see in the architectural sketch of the system, we have Arduino with the
Ethernet Shield connected to our home network, while the computer is running the
Mosquitto broker and the Python applications on the same network. We are using the same
sensors (that is, a motion sensor and a humidity sensor) and the same hardware design that
we used in the previous exercises in this chapter.

Sensors

Arduino

Computer

Ethernet
Weh
browser
Ethernet
H - WiFi L Python
mosquitto
Router e

System Architecture

In the software architecture, we have the Arduino code that interfaces with the humidity
and motion sensors using analog pin 0 and digital pin 3, respectively. Using the
PubSubcClient library, the Arduino publishes sensor information to the Mosquitto broker.
On the MQTT Gateway, we have two different Python programs running on the computer.
The first program uses the paho-mqtt library to subscribe and retrieve sensor information
from the Mosquitto broker and then post it to the web application. The second Python
program, which is based on web . py, implements the web applications while obtaining
sensor values from the first Python program. This program provides a user interface front

www.it-ebooks.info

http://www.it-ebooks.info/

for the MQTT Gateway.

Although both of the preceding Python programs can be part of a single application, we
are delegating the tasks of communicating with Mosquitto and serving information using
the web application to separate applications for the following reasons:

e We want to demonstrate the functions of both libraries, paho-mqtt and web. py, in
separate applications

¢ If you want to run routines based on paho-mqtt and web . py in the same application,
you will have to implement multithreading, as both of these routines need to be run
independently

e We also want to demonstrate the transfer of information between the two Python
programs using Python-based REST methods with the help of the httplib library

(Browser
F
Sensors Arduino
(Humidity sensor) _ Ethernet : .
“—=| PubSubClient » | Mosquitto —— I
i — (MQTT) broker
(Motion sensor) Gateway Web
app app
Python
Computer

In this exercise, we are labeling humidity and motion sensor information with the topic
labels Arduino/humidity and Arduino/motion, respectively. The Arduino-based MQTT
publisher and the Python-based MQTT subscriber will be utilizing these topic names if
they want to transfer information through the Mosquitto broker. Before we begin with
implementing the MQTT client on our Arduino, let’s start the Mosquitto broker on our
computer.

Developing Arduino as the MQTT client

The goal of the Arduino MQTT client is to periodically publish the humidity and motion
data to the Mosquitto broker running on your computer. Open the Step1l_Arduino.ino
sketch from the Exercise 4 - MQTT gateway folder in your code repository. Like all the
other exercises, you first need to change the MAC address and the server address value,
and assign an IP address for your Arduino client. Once you are done with these
modifications, you can see the setup() function that we are publishing as a one-time
connection message to the Mosquitto broker to check the connection. You can implement
a similar function on a periodic basis if you have a problem with keeping your Mosquitto
connection alive:

if (client.connect("Arduino")) {
client.publish("Arduino/connection", "Connected.");
}

www.it-ebooks.info

http://www.it-ebooks.info/

In the loop() method, we are executing the publishData() function every 5 seconds. It
contains the code to publish sensor information. The client.loop() method also helps us
keep the Mosquitto connection alive and avoids the connection timeout from the
Mosquitto broker.

void loop()

{
publishData();

delay(5000);
client.loop();

}

As you can see in the following code snippet, the publishData() function obtains the
sensor values and publishes them using the appropriate topic labels. You might have
noticed that we are using the dtostrf () function in this function to change the data format
before publishing. The dtostrf() function is a function provided by the default Arduino
library that converts a double value into an ASCII string representation. We are also
adding a delay of another 5 seconds between the successive publishing of sensor data to
avoid any data buffering issues:

void publishData()

{
float humidity = getHumidity(22.0);

humidityC = dtostrf(humidity, 5, 2, message_buff2);
client.publish("Arduino/humidity", humidityC);
delay(5000);

int motion = digitalRead(MotionPin);

motionC = dtostrf(motion, 5, 2, message_buff2);
client.publish("Arduino/motion", motionC);

}

Complete any other modification you want to implement, and then compile your code. If
your code is compiled successfully, you can upload it to your Arduino board. If your
Mosquitto is running, you will be able see that a new client is connected as Arduino,
which is the client name you specified in the preceding Arduino code.

Developing the MQTT Gateway using Mosquitto

You can have the Mosquitto broker running on the same computer as the Mosquitto
Gateway, or on any other node in your local network. For this exercise, let’s run it on the
same computer. Open the program file named mosquittoGateway . py for this stage from
the Step2_Gateway_mosquitto folder, which is inside the Exercise 4 - MQTT gateway
folder. The first stage of the Gateway application includes the paho-mqtt based Python
program, which subscribes to the Mosquitto broker for the Arduino/humidity and
Arduino/motion topics:

cli.subscribe("Arduino/humidity", 0)
cli.subscribe("Arduino/motion", 0)

When this MQTT subscriber program receives a message from the broker, it calls the
onMessage () function, as we’ve already described in the previous coding exercise. This
method then identifies the appropriate sensor type and sends the data to the web. py

www.it-ebooks.info

http://www.it-ebooks.info/

program using the POST method. We are using the default Python library, httplib, to
implement the POST method in this program. While using the httplib library, you have to
use the HTTPConnection () method to connect to the web application running on port
number 8080.

Note

Although this program requires that your web application (second stage) must run in
parallel, we are going to implement this web application in the upcoming section. Make
sure that you first run the web application from the next section before executing this
program; otherwise you will end up with errors.

The implementation of this library requires that you first import the library into your
program. Being a built-in library, httplib does not require an additional setup process:

import httplib

Once the connection is established with the web application, you have to prepare the data
that needs to be sent in the POST method. The httplib method uses the request() method
on the opened connection to post the data. You can also use the same method in other
applications to implement the GET function. Once you are done with sending the data, you
can close the connection using the close() method. In the current implementation of the
httplib library, we are creating and closing the connection on each message. You can also
declare the connection outside the onMessage () function and close it when you terminate
the program:

def onMessage(mosq, obj, msg):

print msg.topic

connection = httplib.HTTPConnection('10.0.0.20:8080")

if msg.topic == "Arduino/motion":
data = "motion:" + msg.payload
connection.request('POST', '/data', data)
postResult = connection.getresponse()
print postResult

elif msg.topic == "Arduino/humidity":
data = "humidity:" + msg.payload
connection.request('POST', '/data', data)
postResult = connection.getresponse()
print postResult

else:
pass

connection.close()

Once you have performed the appropriate modifications, such as changing the IP address
of the Mosquitto broker and the web . py application, go to the next exercise before running
the code.

Extending the MQTT Gateway using web.py

The MQTT Gateway code provides the user interface with the sensor information using
the web . py based web application. The code is quite similar to what you implemented in
exercise 3. The program file is named GatewayWebApplication.py and located in your

www.it-ebooks.info

http://www.it-ebooks.info/

Exercise 4 - MQTT gateway code folder. In this application, we have removed the sensor
selection process by simply implementing a button, displayed as Refresh. This application
waits for the POST message from the previous program, which will be received on the
http://<ip-address>:8080/data URL, ultimately triggering the data class. The POST
method in this class will split the received string to identify and update the value of the
humidity and motion global sensor variables:

class data:
def POST(self):
global motion, humidity
i = web.input()
data = web.data()
data = data.split(":")

if data[0@] == "humidity":
humidity = data[1]
elif data[@] == "motion":
motion = data[1]
else:
pass
return "Ok"

The default URL, http://<ip-address>:8080/, displays the base template with the
Refresh button, populated using the Form() method. As displayed in the following code
snippet, the default index class renders the template with the updated (current) humidity
and motion values when it receives the GET or POST request:

class index:
submit_form = form.Form(
form.Button('Refresh',
type="submit",
description='refresh')

)
GET function

def GET(self):
f = self.submit_form()
return render.base(f, humidity, motion)

POST function
def POST(self):
f = self.submit_form()
return render.base(f, humidity, motion)
Run the program from the command line. Make sure that you are running both programs

from separate terminal windows.

Testing your Mosquitto Gateway

You have to follow these steps in the specified order to successfully execute and test all
the components of this exercise:

1. Run the Mosquitto broker.
2. Run the Arduino client. If it is running already, restart the program by powering off
the Arduino client and powering it on again.

www.it-ebooks.info

http://www.it-ebooks.info/

3. Execute the web application in your terminal or from the Command Prompt.
4. Run the paho-mgtt Gateway program.

If you follow this sequence, all of your programs will start without any errors. If you get
any errors while executing, make sure that you follow all the instructions correctly, while
also confirming the IP addresses in your programs. To check out your Arduino MQTT
client, open the Serial Monitor window in your Arduino IDE. You will be able to see the
periodic publication of the sensor information, as displayed in this screenshot:

800 /dev/cu.usbmodemfal331

[Send)
Publishing data...
Arduinos/humidity: 41.35
Arduinos/motion: @.8@
Data pbulished.
Publishing data...
Arduinos/humidity: 18.63
Arduinos/motion: @.8@
Data pbulished.

W Autoscroll "No line ending ﬂ :'-950(} baud ﬂ

Now open a web browser on your computer and go to the URL of your web application.
You should be able to see a window that looks like what is shown in the following
screenshot. You can click on the Refresh button to check out the updated sensor values.

. = \
® OO / [0.0.0.08080 x e (;?

% C [} 0.0.0.0:8080 w0 8 =

Get sensor information from mosquitto.
Refresh humidity and motion values by pressing button.
Refresh

Humidity : 17.84

Motion : 0.00

Note

We have set a delay of 5 seconds between successive sensor updates. Henceforth, you
won’t be able to see the updated values if you rapidly press the Refresh button.

www.it-ebooks.info

http://www.it-ebooks.info/

On the Gateway program terminal, you will be able to see the label of the topic every time
the program receives a new message from Mosquitto. If the delay between successive
sensor updates is not sufficient and httplib doesn’t have enough time to get the response
back from the web . py application, the program will generate an error message with the
httplib function. Although we require an additional delay for httplib to successively
send the data and receive the response, we will be able to avoid this delay when we
implement the core Python code with threading, avoiding the entire notion of POST in
between the programs:

800 *Python 2.7.6 Shell*

Python 2.7.6 (default, Apr 2B 2014, 02:15:56)

[GCC 4.2.1 Compatible Apple LLVM 5.1 (clang-503.0.40)] on darwin
Type "copyright", "credits" or "license()" for more information.
T T e e e e RESTPLHT [e e v e e e e e ey e e e e
5>

Arduino/humidity

<httplib.HTTPResponse instance at 0x10d5387a0>

Arduino/motion

<httplib.HTTPResponse instance at 0x10d5387a0>

Arduino/humidity

<httplib.HTTPResponse instance at 0x10d45387a0>

Arduino/motion

<httplib.HTTPResponse instance at 0x10d45387a0>

Ln: 12|Col: D

With this exercise, you have implemented two different types of messaging architecture to
transfer data between your Arduino and your computer or web applications using your
home network. Although we recommend the use of hardware-centric and lightweight
MQTT messaging paradigms over REST architecture, you can use either of these
communication methods according to the application’s requirements.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Summary

Connectivity to computer networks can really open up limitless possibilities for future
application development using Arduino. We started the chapter by explaining important
computer network fundamentals, while also covering hardware extensions that enable
computer networking for Arduino. Regarding the various methods of enabling
networking, we began the chapter by establishing a web server for Arduino. We concluded
that the web server on Arduino is not the best way for network communication due to the
limited number of connections offered by the web server. Then we demonstrated the use
of Arduino as a web client to enable HTTP-based GET and POST requests. Although this
method is useful for request-based communication and requires fewer resources compared
to a web server, it is still not the best way for sensor communication due to the additional
data overhead. In the later part of the chapter, we described a lightweight messaging
protocol, MQTT, designed specifically for sensor communication. We demonstrated its
superiority to HTTP-based protocols using a few exercises.

With the help of each method of Arduino Ethernet communication, you learned about
compatible Python libraries used to support these communication methods. We used the
web . py library to develop a web server using Python, and demonstrated the use of the
library with multiple examples. To support the MQTT protocol, we explored an MQTT
broker, Mosquitto, and employed the Python library, paho_mqtt, to serve the MQTT
requests.

Overall, we covered every major aspect of Arduino and Python communication methods
throughout this chapter, and demonstrated them with simple exercises. In the upcoming
chapters, we will build upon the basics you learned in this chapter, in order to develop
advanced Arduino-Python projects that will enable remote access to our Arduino hardware
through the Internet.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9. Arduino and the Internet of
Things

In the previous chapter, we learned how to access Arduino using Ethernet from a remote
location. The main objective was to get you started with developing Arduino-based
network applications using Python. We were able to accomplish this using various tools
such as the web . py Python library, Mosquitto MQTT broker, and the Arduino Ethernet
library. Remote access to sensor data via a Python-like extensible language can open up
limitless possibilities for sensor-based web applications. In recent years, the rapid growth
of these applications has enabled the development of a domain called the Internet of
Things (IeT).

In the last chapter, we worked on Arduino networking. However, it was limited to LAN
and the premise of the exercises was limited to your home or office. We didn’t even
involve the Internet to enable global access in our exercises. Traditional IoT applications
require Arduino to be accessed remotely from any part of the world via the Internet. In this
chapter, we will extend the Arduino networking concepts by interfacing Arduino with
cloud-based platforms. We will also develop web applications to access the sensor data
from these cloud platforms. Later in the chapter, we will go through the process of setting
up your cloud-based messaging platform to serve sensor data. At the end of this chapter,
you should be able to design and develop full-stack IoT applications, using Arduino,
Python, and the cloud.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting started with the IoT

Long before the Internet, sensor- and actuator-based electronic control systems existed in
high-tech automation systems. In those systems, sensors were interfaced to the
microcontroller via hard-wired connections. Due to extensibility limitations, the coverage
area of these systems was geographically restricted. Examples of these high-tech systems
included factory automation, satellite systems, weapon systems, and so on. In most cases,
the sensors used in these systems were huge and the microcontrollers were also limited by
their low computational capabilities.

With recent advancements in technology, especially in the semiconductor industry, the
physical size of sensors and microcontrollers has significantly reduced. It has also been
made possible to manufacture low-cost and highly efficient electronic components, hence
today it is relatively inexpensive to develop small and efficient sensor-based hardware
products. Arduino and Raspberry Pi are great examples of these achievements. These
sensor-and actuator-based hardware systems interface with the physical world that we live
in. The sensors measure various elements from the physical environment, while the
actuators manipulate the physical environment. These types of hardware-based electronic
systems are also known as physical systems.

On the other front, advancements in the semiconductor industry also enabled the
development of highly efficient computation units, empowering personal computer and
networking industries. This movement led to the worldwide network of connected
computers called CyberWorld or the Internet. Every day, petabytes of data get generated
and transferred across the Internet.

The domain of IoT stands at the crossroads of these progresses in physical and cyber
systems, where ancient hardwired sensor-based systems are ready to get upgraded to more
powerful and efficient systems that are also highly connected through the Internet. Due to
the large number of sensors involved, these systems generate and send an avalanche of
data. The data generated by these sensors has already eclipsed the data generated by
humans.

The 10T has started to become a significant domain in recent years after a large number of
consumer IoT products have started entering the market. These products include
applications in home automation, health care, activity tracking, smart energy, and so on.
One of the major reasons behind the rapid growth of the IoT domain is the introduction of
these visible solutions. In a large number of cases, this was made possible due to fast and
inexpensive prototyping that was enabled by Arduino and other open source hardware
platforms.

Up to this point in the book, we have learned various methods of interfacing sensors and
then developing applications using these connected sensors. In this chapter, we will learn
the last step in the development of a full-stack IoT application—enabling access for your
Python-Arduino application through the Internet. Now, let’s try to first understand the
architecture of the IoT.

www.it-ebooks.info

http://www.it-ebooks.info/

Architecture of IoT web applications

In this book, we have covered three major concepts in the first eight chapters:

e Physical layer: We used various sensors and actuators with the Arduino board to
deal with the physical environment. The sensors such as the temperature sensor,
humidity sensor, and motion sensor were used measured the physical phenomenon,
while the actuators such as LEDs were utilized to alter or produce physical elements.

e Computation layer: We used Arduino sketches and Python programs to convert
these physical elements into numerical data. We also utilized these high-level
languages to perform various computations such as calculating relative humidity,
developing user interfaces, plotting data, and providing web interfaces.

¢ Interfacing layer: Throughout the material that we covered, we also utilized various
interfacing methods to establish communication between Arduino and Python. For
interfacing part of the interfacing layer between the physical and computation layers,
we used serial port libraries, established network-based communication using the
REST and MQTT protocol, and developed web applications.

As you can see, we have developed applications with tightly-coupled physical,
computation, and interfacing layers. In the research domain, these types of applications are
also known as cyber-physical systems. One of the widely used and popular terms for the
domain of cyber-physical system is the IoT. Although the cyber-physical domain is
thoroughly defined compared to the 10T, the IoT has recently gained more popularity due
to the large number of subdomains—industrial Internet, wearable devices, connected
devices, smart grid, and so on—that are covered under this umbrella term. In simple
terms, an application can qualify as an IoT application if it consists of hardware devices
that deal with the physical world and have sufficient computational capabilities with
Internet connectivity. Let’s try to understand the architecture of the IoT from the material
that we have already covered.

On the physical side, the following figure shows the hardware components that we utilized
to deal with the physical environment. The sensors and actuators that interface with the
actual physical world can be connected to Arduino using multiple low-level protocols.
These components can be connected using GPIO pins and using the 12C or SPI protocols.
The data acquired from these components gets processed on the Arduino board using the
code that is uploaded by the user. Although the Arduino code can be made self-reliant to
execute tasks without any external inputs, these inputs from users or other applications are
required in advanced applications.

www.it-ebooks.info

http://www.it-ebooks.info/

Imternet
Hardware layer Router

Ethernet Shield
o

Ethernet

GPIO

Serial

12C
SPI

Arduino

As part of the communication layer, Arduino can be connected locally to other computers

using USB. One can extend the coverage range by utilizing Ethernet, Wi-Fi, or any other
radio communication method.

As illustrated in the following figure, the sensor data is collected using computation units
for advance processing. These computation units are powerful enough to host operating
systems and programming platforms. In this book, we utilized Python to develop various
features at the computation layer. At this level, we performed high-level computation tasks
such as developing graphical user interfaces using the Tkinter library, plotting charts
using the matplotlib library, and developing web applications using the web. py library.

www.it-ebooks.info

http://www.it-ebooks.info/

Interneat
Router

Computation layer Python features

-

- =
nesr i

[Etherneat)

Ethernat Raspberry Pi

:

Serial MQTT

(Etherneat)

Computer

In all the coding exercises that we performed previously, the physical coverage areas of
the projects were limited because of hardwired serial interfaces or local Ethernet network,
as displayed in the following figure:

"
-----i Router

Computer

Sample architecture of home networking

To develop full-stack IoT applications, we need to remotely access Arduino or host the
computation layer on the Internet. In this chapter, we are going to work on this missing
link and develop various applications to provide Internet connectivity to the exercises. To
perform this operation, we are going to utilize a commercial cloud platform in the first
section and develop our customized platform in the later section.

www.it-ebooks.info

http://www.it-ebooks.info/

As the focus of this chapter is going to be on cloud connectivity, we are not going to
develop a hardware circuit for each exercise. We will go through the hardware design
exercise only once and keep using the same hardware for all the programming exercises.
Similarly, we will also reuse the web . py programs that we developed in the previous
chapter to focus on code snippets that are associated with Python libraries to develop
cloud applications.

www.it-ebooks.info

http://www.it-ebooks.info/

Hardware design

Let’s begin by developing standard hardware for all the upcoming exercises. We will need
the Arduino board that is attached to the Ethernet Shield to use the Ethernet protocol for
network connectivity. In terms of components, you will be using simple sensors and
actuators that you already used in the previous coding exercises. We will use the PIR
motion sensor and the HIH-4030 humidity sensor to provide digital and analog outputs,
respectively. We will also have an LED as part of the hardware design and this will be
used in coding exercises as an actuator. For more information regarding the properties and
detailed explanations of these sensors, you can refer to previous chapters.

To begin assembly of the hardware components, first attach the Ethernet Shield on top of
the Arduino board. Connect the sensors and actuators to the appropriate pins, as displayed
in the following figure. Once you have the hardware assembled, you can connect the
Ethernet Shield to your home router using the Ethernet cable. You will need to power the
board using the USB cable to upload the Arduino code from your computer. In case you
want to deploy the Arduino board to a remote location, you will need an external 5V
supply to power Arduino.

PIR mation sensor

Arduing + Ethernet Shield

fritzing

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

The IoT cloud platforms

The term IoT cloud platform is used for the cloud platforms that provide very specific
services, protocol support, and web-based tools for IoT applications. In more informal
terms, these cloud IoT platforms can be used to upload your sensor data and access them
from anywhere using the Internet. With these basic features, they also provide tools to
access, visualize, and process your sensor data on various platforms such as computers
and smartphones. Examples of similar IoT cloud platforms include Xively
(http://www.xively.com), 2lemetry (http://www.2lemetry.com), Carriots
(http://www.carriots.com), ThingSpeak (http://thingspeak.com), and so on.

The following figure shows the architecture of an IoT system with an Arduino-based
sensor system that is sending data to a cloud platform, while a computation unit is
accessing the data remotely from the cloud:

Cloud
Platfarm

Compute rg

Wi Fi
H""Eﬂ:&?ﬁér’
Phone
Router

Sample architecture of the Internet of
Things

E Ethernat
Arduino 1 "

Router

Xively, being the oldest and most popular IoT platform, has a large amount of community-
based online help that is available for beginners. This is one of the major reasons why we
have chosen Xively as our platform of choice for the upcoming exercises. Recently,
Xively has changed their policy of creating free developer accounts and a user has to
request access to this free account instead of obtaining one freely. In case you want to use
another platform other than Xively, we have briefly covered a few similar platforms at the
end of this section.

www.it-ebooks.info

http://www.xively.com
http://www.2lemetry.com
http://www.carriots.com
http://thingspeak.com
http://www.it-ebooks.info/

Xively — a cloud platform for the IoT

Xively is one of the very first loT-specific cloud platforms that was founded in 2007 as
Pachube. It went through multiple name changes, as it was called Cosm, but it is currently
known as Xively. Xively provides an IoT cloud platform with tools and services to
develop connected devices, products, and solutions. As mentioned on its website, Xively
is the public cloud that is specifically built for the IoT.

Setting up an account on Xively

Now, we can go ahead and set up a new user account for the Xively platform. To set up an
account, you need to execute following steps in the given order:

1. To begin the sign up process on Xively.com, open https://xively.com/signup in a web
browser.

2. On the sign up page, you will be prompted to select the username and the password,
as displayed in the following screenshot:

Username

Email

Password

3. On the next page, you will be asked to enter some additional information that
includes your full name, organization’s name, country, zip code, time zone, and so
on. Fill out the form appropriately and click on the Sign Up button:

www.it-ebooks.info

http://Xively.com
https://xively.com/signup
http://www.it-ebooks.info/

What describes you best?

Pick one_..

Full Name
Organization

Country
United States

ZIP Code [Postcode

Time zone
(CMT+00:00) UTC

Areas of interest

Commercial
Government
Personal
Education

Communication Settings

¥ Xively may contact me directly

IIIIII I':ll I-I“I.

4. Xively will send an activation e-mail to the e-mail account that you specified in the
form. Open the e-mail and click on the activation link. Check your spam folder if you
don’t see the e-mail in your inbox.

5. Once you click on the activation link, you will be redirected to the welcome page on
Xively’s website. We advise you to go through the tutorials provided on the welcome
page, as it will help you to get familiar with the Xively platform.

6. After completing the tutorials, you can come back to the main user screen from the
page using the https://xively.com/login link.

If you are not already logged in, you will require your e-mail address as the username
and an appropriate password to log into the Xively platform.

Working with Xively

The Xively platform lets you create cloud device instances that can be connected to the
actual hardware device, app, or service. Perform the following steps in order to work with
Xively:

1. To begin working with the Xively platform, add a device from the main page, as

www.it-ebooks.info

https://xively.com/login
http://www.it-ebooks.info/

displayed in the following screenshot:

<> Development Devices

TErE

4 Add Device

2. Once you click on the Add Device button, it will prompt you to the following
window where you will be asked to provide the device name, description, and
privacy status of the device that you are going to assign. In the form, select a device
name that you want your development device to be called, provide a brief
description, and select Private Device as the privacy status:

www.it-ebooks.info

http://www.it-ebooks.info/

Device Name

Device Description

Privacy i ta, ¥ t. more info

() Private Device

() Public Device

Universal license. T

+ Add Device Cancel

3. Once you click the Add Device button, Xively will create a device instance with
automatically-generated parameters and prompt you to the development workbench
environment. On the page of the device that you just added, you can see various
identification and security parameters such as Product ID, Serial Number, Feed ID,
Feed URL, and API Endpoint. From among these parameters, you will frequently
need the Feed ID information for the upcoming exercises:

Private Device

i Activated ") Deactivats

4. A unique and secure API key of the newly created device is also located in the right-
hand side bar of the page. This API key is very important and needs to be secured
just like your password, as anyone with the API key can access the device.

www.it-ebooks.info

http://www.it-ebooks.info/

API Keys

Auto-generated Arduino device key for feed
1649696305

permissions AEAD UPDAT

5. Now, to remotely access this device, open the terminal and use the cURL command
to send data to it. In the following command, change the <Your_Feed_ID> and
<Your_API_key> values with the ones available for your device:

$ curl --request PUT --data "0,10" --header "X-ApiKey: <Your_API_key"
https://api.xively.com/v2/feeds/<Your_Feed_ID>.csv

6. As you can see, the previous command sent the value of 10 on channel 0 of your
device on Xively. After executing the previous command, you will notice that the
Xively workbench is updated with the information that you just sent using cURL.:

Channels B minube ago N Graphs

0 10

< Add Channel

7. Try sending multiple values on channel 0 using the previous command. On the
Xively workbench, you will be able to see a plot being generated by these values in
real time. Access the plot by clicking on channel 0 in the workbench:

Channels & minube ago NN Graphs
0 2
A mrinule ago
({3} 30 minutes
FEdt @D

www.it-ebooks.info

http://www.it-ebooks.info/

Using the method that we used in this example, we can also configure Arduino to send
sensor values automatically to the Xively platform. This will enable the storage and
visualization of Arduino data on Xively.

www.it-ebooks.info

http://www.it-ebooks.info/

Alternative IoT platforms

In this section, we have provided important links for the ThingSpeak and Carriots
platforms. As we are not covering these platforms in detail, these links will help you to
find similar examples to interface Arduino and Python with ThingSpeak and Carriots.

ThingSpeak

The tutorials in the following links will help you to get familiar with the ThingSpeak
platform if you chose to use it instead of Xively:

e The official website: https://thingspeak.com/
¢ Using Arduino and Ethernet to update a ThingSpeak channel:

http://community.thingspeak.com/tutorials/arduino/using-an-arduino-ethernet-shield-
to-update-a-thingspeak-channel/
¢ Arduino examples for ThingSpeak: https://github.com/iobridge/ThingSpeak-

Arduino-Examples
¢ Communicating with ThingSpeak using Python:

a-memory-cpu-monitor
e Using Arduino and Python to talk to a ThingSpeak channel:
http://vimeo.com/19064691

e Series of ThingSpeak tutorials: http://community.thingspeak.com/tutorials/

ThingSpeak is an open source platform and you can create your own customized version
of ThingSpeak using the files provided. You can obtain these files and the associated

guideline from https://github.com/iobridge/ThingSpeak.
Carriots

Carriots also provides a free, basic account for developers. If you want to use Carriots as
an alternative to Xively, use the tutorials in the following links to get started:

¢ The official website: https://www.carriots.com/

e Setting up an account on Carriots: https://learn.adafruit.com/wireless-gardening-
arduino-cc3000-wifi-modules/setting-up-your-carriots-account

e The Carriots library for Arduino:_https://github.com/carriots/arduino_library

e A Carriots example for Arduino: https://github.com/carriots/arduino_examples

e Connect Carriots to the Python web application:
http://www.instructables.com/id/Connect-your-Carriots-Device-to-Panics-Status-Boa/

www.it-ebooks.info

https://thingspeak.com/
http://community.thingspeak.com/tutorials/arduino/using-an-arduino-ethernet-shield-to-update-a-thingspeak-channel/
https://github.com/iobridge/ThingSpeak-Arduino-Examples
http://www.australianrobotics.com.au/news/how-to-talk-to-thingspeak-with-python-a-memory-cpu-monitor
http://vimeo.com/19064691
http://community.thingspeak.com/tutorials/
https://github.com/iobridge/ThingSpeak
https://www.carriots.com/
https://learn.adafruit.com/wireless-gardening-arduino-cc3000-wifi-modules/setting-up-your-carriots-account
http://github.com/carriots/arduino_library
https://github.com/carriots/arduino_examples
http://www.instructables.com/id/Connect-your-Carriots-Device-to-Panics-Status-Boa/
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Developing cloud applications using
Python and Xively

Now, you have a basic idea about the available commercial IoT platforms and you can
select one according to your comfort level and requirements. It will be very difficult to
comprehensively explain every cloud platform with practical examples, as the objective of
this chapter is to make you familiar with integrating the cloud platform with Python and
Arduino. For this reason, we are going to use Xively as the de facto IoT cloud platform for
the rest of the integration exercises.

Now that you know how to create an account on Xively and work with the Xively
platform, it is time to start interfacing real hardware with the Xively platform. In this
section, we will go through methods to upload and download data from Xively. We will
combine the Arduino hardware that we built with the Python programs to show you basic
methods of communicating with Xively.

www.it-ebooks.info

http://www.it-ebooks.info/

Interfacing Arduino with Xively

The first stage to establish communication with Xively includes interfacing the Arduino
board with the Xively platform via standalone Arduino code. We have already built the
necessary hardware using the Arduino Uno, Ethernet Shield, and a few sensors. Let’s
connect it to your computer using the USB port. You also need to connect the Ethernet
Shield to your home router using the Ethernet cable.

Uploading Arduino data to Xively

The Arduino IDE has a built-in example that can be used to communicate with the Xively
service. This is known as PachubeClient (Pachube was Xively’s previous name).

Note

It is important to note that the reason behind using this default example is to give you a
jump-start in the interfacing exercises. This particular sketch is rather old and may get
dropped as a default exercise in the upcoming releases of the Arduino IDE. In that case,
you can directly jump to the next exercise or develop your custom sketch to perform the
same exercise.

Perform the following steps to upload Arduino data to Xively:

1. Open the Arduino IDE and then open the PachubeClient example by navigating to
File | Examples | Ethernet | PachubeClient.

2. To establish communication with Xively, you will need the feed ID and the API key
of your Xively device, which you obtained in the last section.

3. In the opened Arduino sketch, perform the following changes using the obtained feed
ID and API key. You can specify any project name for the USERAGENT parameter:

#define APIKEY "<Your-API-key>"
#define FEEDID <Your-feed-ID>
#define USERAGENT "<Your-project-name>"

4. In the Arduino sketch, you will also have to change the MAC address and the IP
address of your Ethernet Shield. You should be familiar with obtaining these
addresses from the exercise that you performed in the previous chapter. Use these
values and modify the following lines of code appropriately:

byte mac[] = {0x90, 0OxA2, OxDA, OxOD, Ox3F, 0x62};
IPAddress ip(10,0,0,75);

5. As the opened Arduino example was created for the Pachube, you need to update the
server address to api.xively.com as specified in the following code snippet.
Comment the IP address line as we will not need it anymore and add the server[]
parameter:

//IPAddress server(216,52,233,122);
char server[] = "api.xively.com";

6. In the sendData() function, change the channel name to HumidityRaw as we have our
HIH-4030 humidity sensor connected to the analog port. We are not performing any

www.it-ebooks.info

http://www.it-ebooks.info/

relative humidity calculations at this stage and are going to upload just the raw data
from the sensor:

// here's the actual content of the PUT request:
client.print("HumidityRaw,");
client.println(thisData);

7. Once you have performed these changes, open the XivelyClientBasic.ino file from
the folder containing codes for this chapter. Compare them with your current sketch
and compile/upload the sketch to the Arduino board if everything seems satisfactory.
Once you have uploaded the code, open the Serial Monitor window in the Arduino
IDE to observe the following output:

800 [dev/tty.usbmodemfal331

| (Send)
conecting.

connecting. .. m
disconnecting.

connecting. ..

HTTP/1.1 28& OK

Date: Thu, 24 Jul 2014 22:89:24 GMT

Content-Type: text/plain; charset=utf-3

Content-Length: @

Connection: close

X-Reguest-Id: f58259f927d5e836d79276F5f3350650125c9b61

Cache-Control: max-age=8

Vary: Accept-Encoding

disconnecting. &
connecting. .. -
W Autoscroll No line ending |5 ! 9600 baud |5

8. If you see an output in the Serial Monitor window that is similar to the one
displayed in the previous screenshot, your Arduino is successfully connected to
Xively and is uploading data on the HumidityRaw channel.

9. Open your device in Xively’s website and you will be able to see an output that is
similar to the following screenshot on the web page. This confirms that you have
successfully uploaded data to an IoT cloud platform using your remotely-located
Arduino:

www.it-ebooks.info

http://www.it-ebooks.info/

HumidityRaw 463

a few seconds ago

/_W“N—-\

(@ 5 minutes

Z Edit @ Delete

Downloading data to Arduino from Xively

In the previous coding exercise, we used a default Arduino example to communicate with
Xively. However, Xively also provides a very efficient Arduino library with built-in
functions for rapid programming. In the next exercise, we will use an alternative method
to communicate with the Xively platform using the Xively-Arduino library. Although you
can use either of these methods, we recommend that you use the Xively-Arduino library
as it is officially maintained by Xively.

In this exercise, we will download digital values from a channel called LED. Later, we
will use these digital values, 0 and 1, to switch an LED that is connected to our Arduino
board. As an input to this channel, we will alter the current value of the channel on the
Xively platform’s website while letting the Arduino download that value and perform the
appropriate task.

Let’s begin by importing the Xively-Arduino library and its dependencies. As you already
know how to import libraries in the Arduino IDE, visit
https://github.com/amcewen/HttpClient to download and import the HttpClient library.
This is a dependency that is required by the xively-Arduino library to function.

Once you have imported the HttpClient library, download the Xively-Arduino library
from https://github.com/xively/xively_arduino and repeat the import process.

The Xively-Arduino library ships with few examples so that you can get started. We will
use their example as base code for downloading data for our exercise.

1. In the Arduino IDE, navigate to File | Examples | Xively_arduino |
DatastreamDownload and open the DatastreamDownload example. Change the
default API key to your own API key that was obtained from the device that you
created. As displayed in the following code snippet, you need to also identify your
channel name, which is LED in this case:

char xivelyKey[] = "<Your-API-key>";

www.it-ebooks.info

https://github.com/amcewen/HttpClient
https://github.com/xively/xively_arduino
http://www.it-ebooks.info/

char ledId[] = "LED";

. The Xively-Arduino library requires you to define the XivelyDatastream variable
as an array. You can also specify multiple data streams according to your application:

XivelyDatastream datastreams[] = {
XivelyDatastream(ledId, strlen(ledId), DATASTREAM_FLOAT),

i

. You also need to declare a variable called feed using the XivelyFeed function. As
displayed in the following line of code, replace the default feed ID with the
appropriate one. In the initialization of the feed variable, the value 1 represents the
number of datastreams in the XivelyDatastream array:

XivelyFeed feed(<Your-feed-ID>, datastreams, 1);

. In our exercise, we want to periodically retrieve the value of the LED channel and
turn the actual LED on or off accordingly. In the following code snippet, we obtain
the float value from feed[0], where 0 specifies the data stream located at the @
position in the datastreams array:

Serial.print("LED value is: ");
Serial.println(feed[0].getFloat());

if (feed[0].getFloat() >= 1){
digitalWrite(ledPin, HIGH);
}

else{

digitalwWrite(ledPin, LOW);
}
. As you now know that the parameters need to be changed for this exercise, open the
XivelyLibBasicRetrieveData.ino Arduino sketch from the code folder. This sketch
contains the exact code that you need to use for the exercise. Although this sketch
includes the necessary modifications, you will still have to change the values for
account-specific parameters, that is, the API key, feed ID, and so on. Before you go
ahead and upload this sketch, go to the Xively platform and create a channel called
LED with Current Value as 1, as displayed in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Add Channelp

LED

Tags | f tag Units Symbol

Current Value

1|

Save Channel Cancel

6. Now, compile and upload the code to your Arduino.

7. Once you have uploaded the compiled code to your Arduino, open the Serial
Monitor window and wait for an output that is similar to the one displayed in
following screenshot. You will notice that the LED on the Arduino hardware is

turned on:
8006 Jdev/tty.usbmodemfal33l
(Send)
Reunifg from Xively exomple
xivelyclient.get returned 299
Datastream is...
{ "id" : "LED", "current_walue™ : "1.88" }
LED walue is: 1.88
xivelyclient.get returned 229
Datastream is...
{ "id" : "LED", "current_walue™ : "1.88" }
LED walue is: 1.88
ik
v
W Autoscroll 'No line ending | 4] 9600 baud | 4]

8. You can go back to the Xively LED channel and change the Current Value field to
0. Within a few seconds, you will notice that the LED on the Arduino hardware is
turned off. With this exercise, you have successfully established two-way
communication between Arduino and the Xively platform.

Advanced code to upload and download data using Arduino

In the previous two Arduino exercises, we individually performed the uploading and
downloading tasks. In this exercise, we want to create an Arduino program where we can

www.it-ebooks.info

http://www.it-ebooks.info/

upload data from the connected sensors (the PIR motion sensor and the HIH-4030
humidity sensor) while retrieving the value to control the LED. Open the Arduino sketch,
XivelyLibAdvance.ino, which contains the code that demonstrates both the
functionalities. As you can see in the following code snippet, we have defined three
separate channels for each component while having independent XivelyDatastream
objects for upload (datastreau[]) and download (datastreamb[]). Similarly, we have
also created two different feeds, feedu and feedD. The main reason behind delegating the
upload and download tasks to different objects is to independently update the value of the
LED channel while uploading the data stream for channels, HumidityRaw and MotionRaw:

char ledId[] = "LED";
char humidityId[] = "HumidityRaw";
char pirId[] = "MotionRaw";

int ledPin
int pirPin

2;
3;

XivelyDatastream datastreamU[] = {
XivelyDatastream(humidityId, strlen(humidityId), DATASTREAM_FLOAT),
XivelyDatastream(pirId, strlen(pirId), DATASTREAM_FLOAT),

};

XivelyDatastream datastreamD[] = {
XivelyDatastream(ledId, strlen(ledId), DATASTREAM_FLOAT),

};

XivelyFeed feedU(<Your-feed-ID>, datastreamu, 2);
XivelyFeed feedD(<Your-feed-ID>, datastreamD, 1);

In the loop() function of the Arduino code, we periodically fetch the current value of the
LED channel from feedD and then perform the LED action:

int retD = xivelyclient.get(feedD, xivelyKey);
Serial.print("xivelyclient.get returned ");

In the second stage of the periodic function, we obtain the raw sensor values from the
analog and digital pins of the Arduino board and then upload those values using feedu:

int humidityValue = analogRead(A0);
datastreamuU[@].setFloat(humidityValue);
int pirValue = digitalRead(pirPin);
datastreamU[1l].setFloat(pirVvalue);

int retU = xivelyclient.put(feedU, xivelyKey);
Serial.print("xivelyclient.put returned ");

Make the appropriate changes in the code to accommodate feed ID and API key and then
upload the sketch to the Arduino board. Once you upload this Arduino sketch to your
platform, you should be able to see the following output on the Serial Monitor window.
You can now disconnect your Arduino from the USB port and connect the external power
supply. Now that you have connected your Arduino assembly to your local network using
an Ethernet cable, you can place the Arduino assembly at any location in your workplace.

www.it-ebooks.info

http://www.it-ebooks.info/

8006 /dev/tty.usbmodemfal33l

(Send)

Row humidity and motion walues sent to xively

xivelyclient.get returned 289

Datastream is...

{ "id"™ : "LED", "current_walue™ : "@.88" }
LED walue is: @.88

LED stotus updated from xively channel value

xivelyclient.put returned 229
Row humidity and motion walues sent to xively

xivelyclient.get returned 299 m
Datastream is...

{ "id™ : "LED", "current_walue™ : "8.88" } -
LED walue is: 8.8 b
W Autoscroll :Nu line ending |] :E}Ef}[} baud =

www.it-ebooks.info

http://www.it-ebooks.info/

Python — uploading data to Xively

Similar to how we interfaced Arduino to Xively, we will now explore methods to connect
the Xively platform via Python and thus complete the loop. In this section, we will focus
on different ways of uploading data to Xively using Python. We will start with a basic
method of communicating with Xively and extend it further with web . py to implement the
interface using a web application.

To begin with, let’s first install Xively’s Python library, xively-python, on your computer
using the following command:

$ sudo pip install xively-python
The basic method for sending data

Once again, you will need the API key and feed ID of your virtual device that you created
on the Xively platform. Python, assisted by the xively-python library, provides very
simple methods to establish a communication channel with the Xively platform. From
your code folder, open the uploadBasicXively.py file. As specified in the code, replace
the FEED_ID and API_KEY variables with the appropriate feed ID and API key:

"<Your-feed-ID>"
"<Your-API-key>"

FEED_ID
API_KEY

Using the XivelyAPIclient method, create an api instance and create the feed variable
by using the api.feeds.get () method:

apli = xively.XivelyAPIClient (API_KEY)
feed = api.feeds.get(FEED_ID)

Just as we did in the Arduino exercises, you will need to create data streams for each
channel from the feeds. As specified in the following code snippet, try to get the specified

channel from the feed or create one if it is not present on the Xively virtual device. You
can also specify tags and other variables while creating a new channel:

try:
datastream = feed.datastreams.get('"Random")

except HTTPError as e:
print "HTTPError({0}): {1}".format(e.errno, e.strerror)
datastream = feed.datastreams.create("Random", tags="python")
print "Creating 'Random' datastream"

Once you have opened the data stream for a channel, you can specify the current value
using the datastream.cuurent_value method and update the value, which will upload
this value to the specified channel:

datastream.current_value = randomValue
datastream.at = datetime.datetime.utcnow()
datastream.update()

Once you have performed the specified modifications to the uploadBasicXively.py file,
execute it using the following command:

www.it-ebooks.info

http://www.it-ebooks.info/

$ python uploadBasicXively.py

Open your virtual device on the Xively website to find the Random channel populated with
the data that you uploaded. It will look similar to the following screenshot:

Random 0.4467/869376
4633315

28

(@ 5 minutes

4]

Uploading data using a web interface based on web.py

In the previous chapter, we worked with the web. py library while developing templates
and web applications. In this exercise, we will utilize one of the programs in which we
created the web . py forms with the Xively code that we developed in the previous exercise.
The goal of this exercise is to send data to the LED channel using a web application while
observing the LED’s behavior on the Arduino hardware.

You can find the Python program for this exercise in this chapter’s folder with the name
uploadwebpyXively.py. As you can see in the code, we are using the web . py forms to
obtain two inputs, Channel and Value. We will use these inputs to modify the current
value of the LED channel:

submit_form = form.Form(

form.Textbox('Channel', description = 'Channel'),
form.Textbox('value', description = 'Value'),
form.Button('submit', type="submit", description="'submit')
)

The template file, base.html, is also modified to accommodate minor changes that are
required by this exercise. As you can see in the opened Python file, we are using the same
code that we used to interface with Xively in the previous exercise. The only major
modification is done to the datastream.update () method, which is now placed in the
POST() function. This method will be executed when you submit the form. Once you
change the API key and feed ID in this file, execute the Python code and open
http://localhost:8080 in your web browser. You can see the web application running,
as displayed in the following screenshot. Enter the value as displayed in the figure to turn
on the LED on the Arduino board. You can change the Value parameter to 0 to turn off the
LED.

www.it-ebooks.info

http://www.it-ebooks.info/

800 |] localhost:BOBO

€« &

[localhost:BOBO

(9
L

i _{I

Manually sending data to Xively channel
Channel Leo
Value 1

submit

www.it-ebooks.info

http://www.it-ebooks.info/

Python — downloading data from Xively

The process of downloading data from Xively includes requesting the Current Value
parameter for the specified channel. In the next exercise, we will develop a reference code
that will be used in the next downloading exercise. In that exercise, we will develop an
advanced web application to retrieve data from a specific Xively channel.

As we are using functions based on the REST protocol to communicate with Xively,
Xively will not simply notify you about any new, available update, instead you will have
to request it. At this point, it is important to note that we will have to periodically request
data from Xively. However, Xively provides an alternative method called triggers to
overcome this problem, which is explained later in this section.

The basic method for retrieving data from Xively

Just like the uploading exercises, the downloading exercises also require a similar code to
instantiate the XivelyAPIClient () and api.feeds.get () methods. As we are retrieving
the data instead of sending it, we will only use the feed.datastreams.get () method and
avoid the feed.datastreams.create() method. The download process requires the
channel to be already present and this is the main reason why we only have to use the
get () method:

try:
datastream = feed.datastreams.get('"Random")

except HTTPError as e:
print "HTTPError({0}): {1}".format(e.errno, e.strerror)
print "Requested channel doesn't exist"

Once the datastream object is initialized, the latest available value from the channel can
be obtained using the datastream.current_value method:

latestValue = datastream.current_value

To enable the complete code to perform this exercise, open the downloadXivelyBasic.py
code and change the values for the feed ID and API key to the appropriate ones. In this
exercise, we are working with the Random channel that we created in the uploading
exercise. Before you execute this Python code, you need to execute the
uploadXivelyBasic.py file that will continuously provide random data to the Random
channel. Now, you can execute the downloadxivelyBasic.py file that will fetch the
current value of the Random channel periodically (with a delay specified by the sleep()
function). As you can see in the following screenshot, we are getting a new value for the
Random channel every 10 seconds:

www.it-ebooks.info

http://www.it-ebooks.info/

800 [4 DownloadBasicXively — bash — 77x10 e
Sachis-Mac-mini:4_DownloadBasicXively sachi3% python downloadBasicXively.py
Latest received value from 'Random' channel: B.631456416B582527

Latest received value from 'Random' channel: B.57554765856274085

Latest received value from 'Random' channel: B.32560490434041245

Latest received value from 'Random' channel: B.7624B63557473238

Latest received value from 'Random' channel: B.7624B863557473238

Latest received value from 'Random' channel: B.59821510375B52082

Latest received value from 'Random' channel: B.REEEB13RB25BA3S5B1Z

Latest received value from 'Random' channel: B.REEEB13RB25BA35B1Z

Latest received value from 'Random' channel: B.REEB13RB25BR3SB1Z

Retrieving data from the web.py web interface

This is an advanced exercise where we will upload data to one Xively channel after
fetching data from another Xively channel, and process it by using the data entered via the
web form. As you know, the analog pin on which the HIH-4030 sensor is connected
provides you with raw sensor value, whereas the relative humidity depends upon the value
of the current temperature. In this exercise, we will develop a web application so that the
user can manually enter the temperature value and we will use this to calculate relative
humidity from the raw sensor data.

Before we begin with the details of the code, let’s first open the uploadwebpyXively.py
file, change the appropriate parameters, and execute the file. Now, in a web browser, open
the http://localhost:8080 location. You will be able to see following web application,
asking you to provide it with the current temperature value. Meanwhile, upload the
XivelyLibAdvance.ino sketch to the Arduino board after making the appropriate changes.
With this program, Arduino will start sending raw motion and humidity values to the
MotionRaw and HumidityRaw channels. In the web application that is running, submit the
form with the custom temperature value and you will be able to see the web application
load the current relative humidity in percentage units. Internally, when you submitted the
form, the web application retrieved the current raw humidity value from the HumidityRaw
channel, executed the relativeHumidity(data, temperature) function, uploaded the
calculated humidity value to a new channel called Humidity, and then displayed that value
in the web application.

www.it-ebooks.info

http://www.it-ebooks.info/

e oo localhost: 8080 X) .

€« C' | [localhost:8080

Receiving and updating data to Xively
Enter current temperature value, which effects the Humidity.

Temperature 2z

submit
Manually entered temperature value is 22.0.

Current humidity value from raw humidity data: 35.4672147584 %

If you open your Xively platform page on a web browser, you will be able to see a newly
created Humidity channel with the current value for relative humidity. You can submit
multiple values for temperature in the web application to see the results reflected on the
graph of the Humidity channel, as displayed in the following screenshot. Although this
exercise demonstrates a single use case, this web application can be extended in multiple
ways to create complex applications.

Humidity 35.782487592

7413
(T @ 5 m.i:;mtes | b h
Z Edit @ Delete

Triggers — custom notifications from Xively

The Xively platform primarily deploys services based on the REST protocol, which
doesn’t have a provision to automatically publish data when it is updated with a new
value. In order to overcome this limitation, Xively implements the concept of triggers,
which provide additional functionality beyond just publishing data when it is changed.

www.it-ebooks.info

http://www.it-ebooks.info/

Through this, you can basically create a trigger for any channel to perform the POST
operation on the specified location when conditions that are set for that trigger get
satisfied by the incoming data. For example, you can set a trigger on the Humidity channel
to send you a notification when the value of humidity changes, that is, increases above or
decrease below a given threshold. You can create a trigger in your Xively platform
account by just clicking on the Add Trigger button, as displayed in the following
screenshot:

Triggers

== Add Trigger

While creating a trigger, you can specify the channel you want to monitor and the
condition to trigger a notification on the specified HTTP pPosT URL. As shown in the
following screenshot, complete the information for Channel, Condition, and HTTP
POST URL before saving the trigger. The major drawback with this approach is that
Xively requires an actual URL to send the POST notification. If your current computer
doesn’t have a static IP address or a DNS address, the trigger won’t be able to send you
the notification:

Add Trigger

Channel

Humidit',.-f_

Condition

| = + | zcl

HTTP POST URL

http:/fexample.com:8080/

+" Save Trigger Cance

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Your own cloud platform for the IoT

In the previous section, we worked with a commercial IoT platform that also provides
restricted, free access to basic functionalities. We also learned various ways to
communicate with Xively that is based on the REST protocol. For any small projects or
prototypes, Xively and other similar IoT platforms provide a sufficient solution and are
therefore recommended by us. However, the limited free service provided by Xively may
not satisfy all of your requirements to develop a full-stack IoT product. The following are
a few cases where you may want to configure or develop your own IoT platform:

e Develop your own commercial IoT platform

e Develop custom features that are exclusive to your product

¢ Add more control features and communication protocols while also securing your
data

e Require an inexpensive solution for large-scale projects

This section will guide you through the step-by-step process of creating an elementary
small-level IoT cloud platform. The goal of the section is to make you familiar with the
requirements and the process of creating an IoT platform. To develop a large-scale,
diverse, and feature-rich platform such as Xively, you will need a significant amount of
knowledge and experience in the domains of cloud and distributed computing.
Unfortunately, cloud and distributed computing are out of scope of this book and we will
stick with the implementation of the basic features.

To develop a cloud platform that is accessible through the Internet, you will at least
require a computational unit with Internet connection and a static IP or DNS address.
Today, the majority of consumer-oriented Internet Service Providers (ISPs) do not
provide static IPs with their Internet service, making it difficult to host a server at home.
However, various companies such as Amazon, Google, and Microsoft, provide free or
cost-effective cloud computing services, which make it easier to host your cloud on their
platforms. These services are highly scalable and they are equipped with a large amount of
features to satisfy the majority of consumer requirements. In the following section, you
will be creating your first cloud computing instance on Amazon Web Services (AWS).
Later in this chapter, we will install and configure the appropriate software tools such as
Python, Mosquitto broker, and so on, to utilize this Amazon instance as an IoT cloud
platform.

Note

The major reason behind developing or configuring a personal cloud platform is to have
access to your IoT hardware through the Internet. Due to the lack of a static IP address for
your home network, you may not be able to access you prototypes or projects from a
remote location. A cloud platform can be used as the de facto computation unit for your
network-based projects.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting familiar with the Amazon AWS platform

AWS is a collection of various cloud services offered by Amazon, which together make up
a cloud computing platform. One of the original and most popular services offered by
AWS is its Elastic Computer Cloud (EC2) service. The EC2 service lets a user create
instances of a virtual machine with different combinations of computation power and
operating systems from their large cloud infrastructure. It is also really easy to change the
computational properties of these virtual instances at any time, making them highly
scalable. When you are trying to create your own IoT platform using EC2, this scalability
feature greatly helps you as you can expand or compress the size of your instances
according to demand. If you are not familiar with the concept of cloud computing or AWS
as a particular product, you can learn more about them from http://aws.amazon.com.

The EC2 cloud platform is different from Xively as it provides general-purpose cloud
instances, virtual machines, with computation power and storage that can be converted to
any feature-specific platform by installing and configuring platform-specific software. It is
important to note that you really do not have to be an expert in cloud computing to further
advance in this chapter. The upcoming sections provide an intuitive guide to perform basic
tasks, such as setting up an account, creating and configuring your virtual machines, and
installing software tools to create IoT platforms.

Setting up an account on AWS

Amazon provides one year of free access to the basic instance of the cloud-based virtual
machine. This instance includes 750 hours of free usage time per month and this is greater
than the number of hours in any month, thereby making it free for the entire month. The
data storage capacity and bandwidth of the AWS account are sufficient for basic IoT or
Arudino projects. To create a free account for a year on Amazon’s AWS cloud platform,
perform the following steps:

1. Open http://aws.amazon.com and click on the button that asks you to try AWS for
free or some other similar text.

2. This action will lead you to a Sign In or Create an AWS Account page as displayed
in the following screenshot. Enter the e-mail address that you want to use for this
account when you select the I am a new user. option and click on the Sign in using
our secure server button. If you already have an AWS account and you know how to
create an account on Amazon AWS, you can use those credentials and skip to the
next section:

www.it-ebooks.info

http://aws.amazon.com
http://aws.amazon.com
http://www.it-ebooks.info/

Sign In or Create an AWS Account

You may sign in using your existing Amazon.com account
or you can create a new account by selecting "I am a new
user."

My e-mail address is:

.E} I am a new user.

. Iam a returning user
and my password is:

|__Sign in using our secure server @)

Forgot yvour password?

Has your e-mail address changed?

Note

Amazon only allows one free instance for each account. If you are an existing AWS
user and your free instance is already occupied with another application, you can use
the same instance to accommodate the MQTT broker or buy another instance.

On the next page, you will be prompted to enter your name, e-mail address, and a
password, as displayed in the following screenshot. Fill in the information to
continue with the sign up process:

My name is: Pratik Desai

My e-mail address is: pratik@example.com

Type it again: pratik@example.com

note: this is the e-mail address that we
will use to contact you about your
account

Enter a new password: sssssssss

Type it again: .

Continue Q'j

www.it-ebooks.info

http://www.it-ebooks.info/

4. You will be asked to enter your credit card information during the sign up process.
However, you won’t be charged for using the services included in the free account.
Your credit card will be only used if you exceed any limitations or buy any additional
services.

5. The next stage includes the verification of your account using your phone number.
Follow the instructions that are displayed in the following screenshot to complete the
identity verification process:

1. Provide a telephone number

Please enter your information below and click the "Call Me Now" button,

Country Code Phone Number Ext

—

United 5States {+1)

Call Me MNow

2. Call in progress

3. Identity verification complete

6. Once you have verified your identity, you will be redirected to the page that lists the
available Amazon AWS plans. Select the appropriate plan that you want to subscribe
to and continue. If you are not sure, you can select the Basic (Free) plan option,
which we recommend for our purpose. The Amazon Management Console page
will let you select other plans if you want to upgrade the current one.

7. Launch the Amazon management console.

As you have an Amazon AWS account now, let’s create your virtual instance on it.

Creating a virtual instance on the AWS EC2 service

In order to create a virtual instance on Amazon’s EC2 platform, first log in to AWS using
your credentials and open the management console. Next, click on the EC2 tab and
execute the following instructions step by step:

1. On the EC2 Console page, go to Create Instance and click on the Launch Instance
button. This will open a wizard to create an instance that will guide you through the
setup process:

www.it-ebooks.info

http://www.it-ebooks.info/

Create Instance

To start using Amazon EC2 you will want to launch a virtual server, known as an Amazon EC2 instance.

Note: Your instances will launch in the US West (Dregan) regior

2. On the first page of the wizard, you will be prompted to select an operating system
for your virtual instance. Select Ubuntu Server 14.04 LTS as displayed in the next
screenshot, which is eligible for the free tier. To avoid any charges for using an
advanced instance, make sure that the option you select is eligible for the free tier:

® Ubuntu Server 14.04 LTS (HVM), SSD Volume Type - ami-e7b8c0d7 m

Ubwuntu Ubuntu Server 14.04 LTS (HVM), EBS General Purpose (S50) Volume Type. Support available from Canonical

Fros Ber slighile {hittp:/f'www. ubuntu. comdcloud/services). B4-oit

Root device type: ehs Viruakization type: vm

3. In next window, you will be prompted with a list of options that have different
configurations of computational capacity. From the General purpose family, select
the t2.micro type, which is eligible for the free tier. The computational capabilities
provided by the t2.micro tier are sufficient for the exercises that we are going to
perform in the book and for most of the DIY projects. Make sure that you do not
select any other tier unless you are confident of your selection.

. - Mamory Instance Storage EBS-Optimized Network
Family Type vCPUs (i) - i =
(GiB) (GB) (i Available || Performance | |

[General purpose SR 1 1 EBS only - Low to Moderate

General purpose t2.small 1 2 EBS only - Low to Moderate

General purpose t2.medium 2 4 EBS only . Low to Moderate

General purpose m3.medium 1 375 1x4(SSD) - Moderate

General purpose m3.large 2 75 1x 32 (SSD) . Moderate

4. Once you have selected the specified tier, click on the Review and Launch button to
review the final configuration of the instance.

5. Review the configuration and make sure that you have selected the appropriate
options, as mentioned earlier. You can now click on the Launch button to proceed
further.

6. This will open a pop-up window that will prompt you to create a new key pair that
will be used for authentication in the upcoming steps:

www.it-ebooks.info

http://www.it-ebooks.info/

7.

10.

Select an existing key pair or create a new key pair X

A key pair consists of a public key that AWS stores, and a private key file that you store. Together,
they allow you to connect to your instance securely. For Windows AMIs, the private key file is required
to obtain the password used to log into your instance. For Linux AMIs, the private key file allows you to
securely SSH into your instance.

Mote: The salected key pair will beé added to the set of keys authorized for this instance. Learn more
about removing existing key pairs from a public AMI.

Choose an existing key pair

Select a key pair
No key pairs found

A Mo key pairs found

You don't have any key pairs. Please create a new key pair by selecting the
Create a new key pair option above to continue.

Cancel

As shown in the previous screenshot, select Create a new key pair from the first
drop-down menu while providing a name for the key pair. Click on the Download
Key Pair button to download the key. The downloaded key will have the name that
you provided in the previous option with the . pem extension. If you already have an
existing key, you can select the appropriate options from the first drop-down menu.
You will need this key every time you want to log in to this instance. Save this key in
a safe place.

Once again, click on the Launch Instances button to finally start the instance. Your
virtual instance is launched on AWS now and it is running in the EC2.

Now, click on the View Instance button that will take you back to the EC2 console
window. You will be able to see your recently created t2.micro instance in the list.
To find out more details about your virtual instance, select it from the list. As soon as
you select your instance, you will be able to see additional information in the bottom
tab. This information includes the public DNS, private DNS, public IP address, and
SO on.

www.it-ebooks.info

http://www.it-ebooks.info/

Instance: | i-2eed8323 Public DNS: et ttab b s suaat. — ——— =N -]
Description Status Checks Monitoring Tags
Instance ID i-2ead8323 Public DNS ===
Instance state running Public IP

Instance type

Private DNS

Private IPs
Secondary private IPs

t2.micro

Elastic IP

Availability zone

Security groups
Scheduled events

us-west-2a

launch-wizand-1. view rules

MNo scheduled events

11. Save this information, as you will need it to log in to your instance.

Now, you have successfully created and turned on a virtual cloud instance using Amazon
AWS. However, this instance is running in the Amazon EC2 and you will have to
remotely authenticate into this instance to access its resources.

Logging into your virtual instance

In reality, your virtual instance is a virtual computer on a cloud with computation
resources that are similar to your regular computer. You now need to log in to the running
virtual instance to access files, run scripts, and install additional packages. To establish a
secure authentication and access procedure, you need to use the Secure Shell (SSH)
protocol and there are multiple ways to use SSH from your computer. If you are using
Mac OS X or Ubuntu, an SSH client program already exists within your operating system.
For Windows, you can download the PuTTY SSH client from http://www.putty.org/.

From the EC2 management window, retrieve the public IP address of your instance. To
use the default SSH client in the Linux or Mac environment, open the terminal and
navigate to the folder where you have saved your key file with the .pem extension. In the
terminal window, execute the following command to make your key accessible:

$ chmod 400 test.pem

Once you have changed permission for your key file, run the following command to log in
to the virtual instance. In the command, you will have to replace <key-name> with the file
name of your key and <public-IP> with the public IP that you retrieved from the
management console:

$ ssh -i <key-name>.pem ubuntu@<public-IP>

Once you execute this command, you will be asked to continue with the connection
process if you are authenticating the instance for the very first time. At the prompt, write
yes and press Enter to continue. On successful authentication, you will be able to see the
command prompt of your virtual instance in the same terminal window.

In case you are using the Windows operating system and are not sure about the status of
your SSH client, select your instance in the EC2 window and click on the Connect button

www.it-ebooks.info

http://www.putty.org/
http://www.it-ebooks.info/

in the top navigation bar, which is displayed in the following screenshot:

Launch Instance Connect Actions ¥

Filter: All instances v All instance types ~ q

@ HName ¥ ~ InstancelD =~ Instance Type ~

This action will open a pop-up window with a short tutorial that explains the connection
process. This tutorial is also linked to the step-by-step authentication guide for PuTTY.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating an IoT platform on the EC2 instance

As you have successfully set up an Amazon EC2 instance, you have a virtual computer
that is running in the cloud and has a static IP address to enable remote access. However,
this instance cannot be categorized as an IoT platform, as it only contains a plain operating
system (Ubuntu Linux in our case) and lacks the necessary software packages and
configurations.

There are two distinct ways of setting up a custom IoT cloud platform on your virtual
instance:

e Setting up an open source IoT platform such as ThingSpeak
e Separately installing and configuring the required software tools

Keep the following points in mind when setting up an open source 10T platform:

e ThingSpeak is one of the open source 10T platforms that provides supporting files to
create and host your own replica of the ThingSpeak platform.

e Setting up this platform on your AWS instance is quite simple and you can obtain the
necessary files and guidelines to install it via
https://github.com/iobridge/ThingSpeak.

e Although this personalized version of the ThingSpeak platform will provide
sufficient tools to start developing IoT applications, the functionalities of the platform
will be confined to the supplied feature set. To have complete control over
customization, you may have to use the next option.

If you want to separately install and configure the necessary software tools, here’s what
you need to remember:

e This option includes furnishing project-specific software tools such as Python and the
Mosquitto broker with the required Python libraries such as web.py and paho_mqtt.

e We have already worked with exercises that implemented applications which were
based on the Mosquitto broker and web . py. This version of the custom IoT cloud
platform can reduce the complexity of installing additional open source platform
tools and still provide the necessary support to host applications.

e The Arduino program can directly communicate with this custom platform using
REST or MQTT protocols. It can also behave as the remote computation unit to
communicate with Xively or other third-party [oT cloud platforms.

In the next section, we will begin the platform deployment process by installing the
Mosquitto broker and the necessary packages on your virtual instance. This will be
followed by the configuration of the virtual instance to support the MQTT protocol. Once
your IoT cloud platform is up and running, you can just run the Python-based Mosquitto
code from the last chapter from the instance with minor or no modifications. In future, this
IoT platform that contains the Mosquitto broker and the Python project can be extended to
accommodate additional features, protocols, and extra security.

Installing the necessary packages on AWS

www.it-ebooks.info

https://github.com/iobridge/ThingSpeak
http://www.it-ebooks.info/

Using the SSH protocol and the key pair, log into your virtual instance. Once you are at
the Command Prompt, the first task that you need to perform is to update all the outdated
packages in Ubuntu, the operating system of your virtual instance. Successively execute
the following commands:

$ sudo apt-get update
$ sudo apt-get upgrade

Ubuntu already comes with the latest version of Python. However, you will still need to
install Setuptools to install the additional Python packages:

$ sudo apt-get install python-setuptools

Ubuntu’s package repository also hosts Mosquitto and it can be directly installed using the
following command. With this command, we will install the Mosquitto broker, Mosquitto
client, and all other dependencies together. During the installation, you will be asked to
confirm the installation of additional packages. Enter Yes at the terminal and proceed with
the installation:

$ sudo apt-get install mosquitto*

Now you have installed the Mosquitto broker on your virtual instance and you can run it
by executing the Mosquitto command. To develop Python-based Mosquitto applications,
we need the Python Mosquitto library on our instance. Let’s install the library using
Setuptools, through the following commands:

$ sudo easy_install pip
$ sudo pip install paho_mqtt

In the previous chapter, we developed a web application based on web . py that utilizes the
paho_mqtt library to support the MQTT protocol. As with the first project, we are going to
deploy the same web application on the EC2-based virtual instance to demonstrate your
custom IoT cloud platform. As a dependency of this project, you first need the web. py
Python library, which you can install using the following command:

$ sudo pip install web.py

Now you have all the necessary software packages to run the IoT application. To make
your web application accessible via the Internet, you need to configure the security of you
virtual instance.

Configuring the security of the virtual instance

First, we will configure the virtual instance to securely host the Mosquitto broker. Later,
we will go through the methods to set up basic security to prevent the abuse of your
Mosquitto server by automated bots or spamming attempts.

To change any parameters on your virtual instance, you will have to use the Security
Groups tools from the Network & Security section of your AWS Management Console
page. Open the Security Groups section, as displayed in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

@ecun‘ty GmupD
Elastic IPs

Placement Groups

Load Balancers
Key Pairs
Network Interfaces

Launch Configurations

Auto Scaling Groups

Each virtual instance has a default security group that is generated automatically to allow
access to your instance through the SSH port 22. This security configuration is responsible
for letting you access your virtual instance through the SSH client from your computer.
The Mosquitto broker uses the TCP port number 1883 to establish communication with
publishers and subscriber clients. To allow incoming access from this Mosquitto port, you
will have to edit the current inbound rules and add an entry for port 1883:

Create Security Group Actions v O & @

Filter: All security groups ~ o} .- 1 to 2 of 2 Security Groups
Name Y - GrouplID +« Group Name « VPCID » Description
- sg-8al7beeb launch-wizard-1 vpc-abcB37Be launch-wizard-1 created 2014-07-28T02-25:31.968-07:
sg-a3caibEb dafault vpc-aebcB37Be default VPC security group
Security Group: sg-8e07beeb _ B — Q-]

Description Inbound Outbound Tags

Type (i Protocol i Port Range (i Source | i

SSH TCP 22 0.0.0.0/0

Once you click on the Edit button, the website will open a pop-up window to add new
rules and edit the existing rules. Click on the Add Rule button to create an additional rule
to accommodate the Mosquitto broker:

www.it-ebooks.info

http://www.it-ebooks.info/

Edit inbound rules X

Type (i Protocal (i Port Range i Source i

55H : TCP 22 Anywhere 3 | 0.0.0.0/0 (3]

Add Rule Cancel E

As displayed in the following screenshot, enter the TCP port’s number as 1883 and
complete the other information in the form. Once you have completed the form with the
given values, save the rules and exit the window:

Edit inbound rules X
Type (i Protocol (i Port Range i Source i
S5H - TCP 22 Anywhere = | 0.0.0.0/0 6
Custom TCP Rule 3 TCP 1883 Anywhere : 0.0.0.0/0 G

Add Rule Cancel

Now, with this configuration, port 1883 is accessible by other devices and enables remote
communication with the Mosquitto broker. You can use the same method to add a rule for
port 8080 to allow access to Python’s web applications that were developed using web . py.
In future, you can add any additional ports to allow access to various services. Although it
is very easy to change the security rules on your virtual instance, make sure that you
refrain from opening excessive ports to avoid any security risk.

Testing your cloud platform

In this testing section, we will first perform checks for the Mosquitto broker from your
computer and then set up authentication parameters for the Mosquitto broker. Later, we
will upload files and folders containing the Python code to our virtual instance using the
SSH file transfer protocol.

Testing the Mosquitto service

The first thing that we are going to check on our IoT platform is the accessibility of the
Mosquitto broker. Open the terminal on your computer and execute the following
command, after replacing <Public-IP> with the public IP or public DNS address of your

www.it-ebooks.info

http://www.it-ebooks.info/

virtual instance:

$ mosquitto_pub -h <Public-IP> -t test -m 3

This command will publish the message value 3 for the test topic for the Mosquitto
broker that is specified at the given IP address; in our case, this is the virtual instance.
Now, open a separate terminal window and execute the following command to subscribe
to the test topic on our broker:

$ mosquitto_sub -h <Public-IP> -t test

On the execution of this command, you will be able to see the latest value that is published
for this topic. Use the mosquitto_pub command to post multiple messages and you can
see the output of these messages in the other terminal window that is running the
mosquitto_sub command.

Configuring and testing basic security

As you saw in the previous example, the publishing and subscribing commands just used
the IP address to send and receive data without using any authentication parameters. This
is a major security loophole, as anyone on the Internet can send data to your Mosquitto

broker. To avoid unauthorized access to your broker, you have to establish authentication
credentials. You can specify these parameters by following these steps in the given order:

1. If you have not already logged into your instance through SSH, open a terminal
window and log in using SSH. Once you are logged in, navigate to the Mosquitto
directory and create a new file called passwd using the following set of commands.
We will use this file to store the usernames and passwords:

$ cd /etc/mosquitto
$ sudo nano passwd

2. In the file, enter the username and password information separated by using the colon
operator (:). For testing purposes, we will use the following credentials, which can be
changed any time once you are more familiar with the Mosquitto configuration:

user :password

3. Press Ctrl + X to save and exit the file from the nano editor. When you are prompted
to confirm the save operation, select Y and press Enter.
4. In the same folder, open the Mosquitto configuration file using thenano editor:

$ sudo nano mosquitto.conf

5. In the opened file, scroll down the text content until you reach the security section. In
this section, find the #allow_anonymous true line of the code and replace it with
allow_anonymous false. Make sure that you have removed the # symbol. With this
operation, we have disabled the anonymous access to the Mosquitto broker and only
those clients with proper credentials can access it.

6. After performing the previous changes, scroll further down in the file, uncomment
the line #password_file, and replace it with this:

www.it-ebooks.info

http://www.it-ebooks.info/

password_file /etc/mosquitto/passwd

7. Now that you have configured the basic security parameters for your broker, you
must restart the Mosquitto service for the changes to take effect. In Ubuntu,
Mosquitto is installed as part of the background service and you can restart it using
the following command:

$ sudo service mosquitto restart

8. To test these authentication configurations, open another terminal window in your
computer and execute the following command with the public IP address of your
instance. If you are able to successfully publish your message without any errors,
your Mosquitto broker now has a security configuration:

$ mosquitto_pub -u user -P password -h <Public-Ip> -t test -m 3

9. Also, check your Mosquitto subscriber using the following command:

$ mosquitto_sub -u user -P password -h <Public-Ip> -t test

Uploading and testing a project on the instance

As we discussed in the previous chapters, you can always use your computer for
development purposes. Once you are ready for deployment, you can utilize this newly
configured virtual instance as the deployment unit. You can copy your files from your
local computer to the virtual instance using a utility called PuTTY

(https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/putty.html) or using the SCP
(SSH copy) command.

Now it is time to upload the project files from the final coding exercise of the previous
chapter, which implemented the MQTT protocol using Python and the Mosquitto library.
As a reminder, the final exercise is located in the folder named Exercise 4 - MQTT
gateway of the previous chapter’s code repository. We will be using the SCP utility to
upload these files to your virtual instance. Before we use this utility, let’s first create a
directory on your virtual instance. Log in to your virtual instance and go to the user
directory of the virtual instance by using the following command:

$ ssh -i <key-name>.pem ubuntu@<public-ip>
$ cd ~

Using the character tilde (~) with the cd command will change the current directory to the
home directory, unless you are planning to use any other location on your virtual instance.
At this location, create a new empty directory named project by using following
command:

$ mkdir project

Now, on the computer you are working on (Mac OS X or Linux), open another terminal
window and use the following command to copy the entire directory to the remote
instance:

$ scp -v -i test.pem -r <project-folder-path> ubuntu@<your-ec2-static-

www.it-ebooks.info

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/putty.html
http://www.it-ebooks.info/

ip>:~/project

Once you have successfully copied the files to this location, you can go back to the
terminal that is logged in to your virtual instance and change the directory to project:

$ cd project

Before running any commands, make sure that you have changed the appropriate IP
addresses in the Arduino sketch and the Python programs. You will have to replace the
previous IP address with the one of your virtual instance. Now that you have made these
changes, you can execute the Python code containing the Mosquitto Gateway and web
application to start the program. Open your web browser from the http://<Public-
Ip>:8080 location to see you web application running on the custom IoT platform. From
now on, you should be able to access this application from any remote location through
the Internet.

Tip
Do not forget to change the IP address of the Mosquitto broker in the Arduino sketch and

upload the sketch to the Arduino board again. You may not be able to obtain the sensor
data if the appropriate IP address changes are not applied.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Summary

At the end of this chapter, and hence the end of the contextual part of the book, you should
be able to develop your own Internet of Things projects. In this chapter, we used a
commercial IoT cloud platform to handle your sensor data. We also deployed a cloud
instance to host open source 10T tools and created our own version of the customized IoT
cloud platform. Certainly, the content that you learned is not sufficient to develop scalable
and fully-stacked commercial products, but it is really helpful to get you started with
them. In a large number of cases, this material is sufficient to develop DIY projects and
product prototypes that will ultimately lead you to the final product. In the next two
chapters, we will put the material that we learned to the test and develop two complete IoT
hardware projects. We are also going to learn a project development methodology that is
specific to hardware-based IoT products, which can be applied to convert your prototypes
into real products.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10. The Final Project — a Remote
Home Monitoring System

It is now time to combine every topic that we learned in the previous chapters into a
project that combines Arduino programming, Python GUI development, MQTT
messaging protocol, and a Python-based cloud application. As you might have already
figured out from the chapter title, we are going to develop a remote home monitoring
system using these components.

The first section of the chapter covers the project design process, including goals,
requirements, architecture, and UX. Once we are done with the design process, we will
jump into the actual development of the project, which is divided into three separate
stages. Next, we will cover common troubleshooting topics that are usually faced while
working with large projects. In our efforts to develop utilizable DIY projects, the later
section covers tips and features to extend the project. As this is quite a large project
compared to other projects in the book, we are not going to jump straight into the actual
development process without having any strategy. Let’s start by getting ourselves familiar
with the standard design methodology for hardware projects.

www.it-ebooks.info

http://www.it-ebooks.info/

The design methodology for IoT projects

The process of developing a complex product that tightly couples hardware devices with
high-level software services requires an additional level of planning. For this project, we
will exercise a proper product development approach to help you get familiar with the
process of creating real-world hardware projects. This method can then be used to plan
your own projects and take them to the next level. The following diagram describes a
typical prototype development process, which always begins by defining the major goals
that you want to achieve with your product:

Define major project
goals

Y
Derive project
requirements from
goals

.

Design System
Architectura 1

¢ Update Systern Architecture

to accommodate UX

Define User +
Experience (LX) flow

]

Identify development
stages

Y

Assemble and code
each stage

]

Integrate
Development Stages

Debug

Y

Test and
Troubleshoot

Once you have defined the set of major goals, you need to break them down into project
requirements that include every detail of the tasks that your prototype should execute to
achieve these goals. Using the project requirements, you need to sketch out the overall
architecture of the system. The next step includes the process of defining the UX flow that
will help you to lay out the user interaction points for your system. At this stage, you will
be able to identify any changes that are required in the system architecture and the
hardware and software components to start the development.

As you have defined the interaction points, now you need to distribute the entire project
development process into multiple stages and delegate the tasks between these stages.
Once you have completed the development of these stages, you will have to interface

www.it-ebooks.info

http://www.it-ebooks.info/

these stages with each other according to your architecture and debug the components if it
is needed. At the end, you will have to test your project as a whole system and
troubleshoot minor problems. In hardware projects, it is very difficult to work on your
electric circuits again after the completion of complex development processes, as the
changes can have recurring effects on all other components. This process will help you to
minimize any hardware rework and subsequent software modifications.

Now that you have learned about the methodology, let’s begin with the actual
development process for our remote home monitoring system.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Project overview

The smart home is one of the most well-defined and popular subdomains of the IoT. The
most important feature of any smart home is its capability to monitor the physical
environment. Fortunately, the exercises and projects that we covered in the previous
chapters include components and features that can be used for the same purpose. In this
chapter, we are going to define a project that will utilize these existing components and
programming exercises. In the midterm project of Chapter 7, The Midterm Project — a
Portable DIY Thermostat, we created a deployable thermostat with the ability to measure
temperature, humidity, and ambient light. If we want to utilize this midterm project, the
nearest [oT project that we can build on top of it is the remote home monitoring system.
The project will have Arduino as the main point of interaction between the physical
environment and the software-based services. We will have a Python program as the
middle layer, which will bridge the sensor information coming from Arduino with the
user-facing graphical interface. Let’s start by defining the goals that we want to achieve
and the project requirements to satisfy these goals.

www.it-ebooks.info

http://www.it-ebooks.info/

The project goals

The Nest thermostat provides an idea of the type of features that a properly designed
remote monitoring system with professional features should have. Achieving this level of
system capabilities requires a lot of development effort from a large team. Although it will
be difficult to include each of the features that are supported by a commercial system in
our project, we will still try to implement the common features that can be incorporated by
a prototype project.

The top-level features that we are planning to incorporate in this project can be described
by the following goals.

e Observe the physical environment and make it accessible remotely
e Provide basic level controls to the user to interact with the system
e Demonstrate a primitive level of built-in situational awareness

www.it-ebooks.info

http://www.it-ebooks.info/

The project requirements

Now that we have defined the major goals, let’s convert them into detailed system
requirements. On the completion of the project, the system should be able to satisfy the
following requirements:

It must be able to observe physical phenomenon such as temperature, humidity,
motion, and ambient light.

It should provide local access to sensor information and control over actuators such
as a buzzer, a button switch, and an LED.

The monitoring should be done by a unit that is developed using the open source
hardware platform, Arduino.

The monitoring unit should be limited to collect sensor information and communicate
it to the control unit.

The control unit should not comprise of a desktop computer or laptop. Instead, it
should be made deployable using a platform such as a Raspberry Pi.

The control unit should demonstrate a primitive level of situation awareness
capability by utilizing the collected sensor information.

The control unit should have a graphical interface to provide the sensor’s observation
and the current state of the system.

The system must be accessible via the Internet using cloud-based services.

The web application that provides remote access should have the capability to display
the sensor’s observations through a web browser.

The system should also provide basic control of the actuators to complete the remote
access experience by using the web application.

As the monitoring unit can be constrained by computation resources, the system
should use hardware-oriented messaging protocols to transfer information.

Although there are many other minor requirements that can be part of our project, they
have been skipped in this book. If you have any additional plans for your remote home
monitoring system, this is the time that you must define these requirements before you
jump into designing the architecture. Any future changes to the requirements can
significantly affect the development stage and make hardware and software modification
difficult. In the last section of the chapter, we have laid down a number of additional
features that you may want to consider implementing for your future projects.

www.it-ebooks.info

http://www.it-ebooks.info/

Designing system architecture

Continuing from project goals, first, you need to sketch out a high-level architecture of the
system. This architectural sketch should include major components that enable the system
to pass on information between the sensors and the remote users. The following figure
shows an architectural sketch for our project:

— "-\,--___‘_\
L Xively {_1
S cloud e
Monitoring Station i .-\?""'—_—"\.___,_/E':/ el
Room1 ar r1l* .,
- ' . I
m Etharnet ’i,-" ! % st
-____.-" y -._Lx "__-"-
T o
Amazon
Maonitoring Station E’ Instance g
¥Room 2 ~— e — Teg -
H Etharnet Q)
Caontral Centar

According to the goals, the user should be able to access the system using the Internet; this
means that we need cloud components in the architecture. The system also needs to
monitor the physical environment using a resource-constrained device, and this can be
executed using Arduino. The middle layer, which connects the cloud service and the
sensor system, can be built using a Raspberry Pi. In the last project, we connected Arduino
and the Raspberry Pi using a serial connection, but we want to move away from serial
connections and start using our home’s Ethernet network to make the system deployable.
Hence, the Arduino-based unit is connected to the network using Ethernet while the
Raspberry Pi uses Wi-Fi to connect to the same network.

In order to lay out the overall system architecture, let’s utilize the sketch that we designed,
which can be seen in the preceding figure. As you can see in the next figure, we have
converted the overall system into three main architectural units:

e Monitoring station
e Control center
e Cloud service

In this figure, we have addressed each and every major component that we are going to
utilize in the project along with their association to each other. In the following sections,
we are going to define these three main units briefly. The comprehensive description and
implementation steps for these units are provided later in the chapter under separate
sections.

www.it-ebooks.info

http://www.it-ebooks.info/

Control Center

Monitoring Station @
{ Sensors J‘K_\ | ' E

Arduing —_-F| Raspberry Pi

(Actuators J/" .
LY r

Usar interaction paints

C| Components interacting
with physical word

_ Cloud Service 4
T N v

Computation unils

Web Application Kively
= | (Amazon AWS) Virtual Instance

The monitoring station

We need a resource-constrained and robust unit that will communicate with the physical
environment periodically. This monitoring unit can be built using Arduino since low-level
microcontroller programming can provide uninterrupted stream of sensor data. The usage
of Arduino at this stage will also help us to avoid the direct interfacing of basic low-level
sensors with computers that are running on complex operating systems. The sensors and
the actuators are connected to Arduino using digital, analog, PWM, and 12C interfaces.

The control center

The control center behaves as the main user interaction point between the sensor
information and the user. It is also responsible for conveying the sensor information from
the monitoring station to the cloud services. The control center can be developed using
your regular computer or a single-board computer such as a Raspberry Pi. We are going to
utilize a Raspberry Pi since it can be easily deployed as a hardware unit and it is also
capable enough at hosting Python programs. We will replace a computer screen with a
small TFT LCD screen for the Raspberry Pi to display the GUI.

The cloud services

The main purpose of the cloud services is to provide an Internet-based interface for the
control center so that the user can access it remotely. Before we host a web application to
perform this operation, we will need an intermediate data relay. This sensor data relay
works as a host between the cloud-based web application and the control center. In this
project, we will be using Xively as the platform to collect this sensor data. The web
application can be hosted on an Internet server; in our case, we are going to use Amazon
AWS due to our familiarity with it.

www.it-ebooks.info

http://www.it-ebooks.info/

Defining UX flow

Now, although we know what the architecture of the overall system looks like, we haven’t
defined how the user is going to interact with it. This process of designing user interaction
for our system will also help us to figure out data flow between major components.

Let’s begin with the components that are operating locally at your house, that is, the
monitoring station and the control center. As you can see from the following figure, we
have our first user interaction point at the control center. The user can observe the
information or act upon it if the system’s status is an alert. The user action to dismiss the
alert prompts multiple operations to take place at the control center and the monitoring
station. We recommend you thoroughly examine the figure to better understand the flow
of the system.

Monitoring Control ":' Wi
Station Center

Sense physical
anvirenment

¥

Send sensar Display current | Observe status &
data to Contral - Obtap;;nsc-r i zystem status & |- — = —h-f sensor autputs on
Center SENSH QUlpUts LCD TFT screen
Temgperature s - 4 o
out of range i e ”,.:' an [e)
Set status alart? M
Green ‘Mormal’ with =
Set LED status [r Green LED
|
Hizdl
Humidity out ! Dismiss alert
of range N Set status ‘Alert
—=| with Red LED
| and buzzer
| Prass bullon swilch
SES[_E'EI::er o Ln 1 arn Monilaring
= lation
|_ O Send buzzer “off’
message o - Click button on GUI
Monitoring station

Similarly, the second user interaction point is located at the web application. The web
application displays the observations and system’s status that we calculated at the control
center and provides an interface to dismiss the alert. In this scenario, the dismiss action
will travel through Xively to the control center where the appropriate actions for the
control center will remain the same as in the previous scenario. However, in the web

www.it-ebooks.info

http://www.it-ebooks.info/

application, the user has to load the web browser every time to request the data, which was
happening automatically at the control center. Take a look at the following figure to
understand the UX flow for the web application:

o,
Web Application = User
Open Web
Application in
browser
Read Xively
Channels i
Drisplay current Ohserve slalus &
systam staus & F———————————————— | sonsor outputs on
sensor outpuls LCD TFT screen
e)
!
Dizmiss alert —
¥
Press button switch
on Monitoring
slation
Sel Xively Buzzer | L)
b aroal ik Click button on GLU

www.it-ebooks.info

http://www.it-ebooks.info/

The list of required components

The necessary components for the project are derived using three main criteria:

e FEase of availability

e Compatibility with the Arduino board
e Familiarity with the components due to previous utilization in this book

This is the list of the components that you will need to start working on the project. If you
have completed the previous exercises and projects, you should already have most of the
components. If you don’t want to disassemble the projects, you can obtain them from the
websites of SparkFun, Adafruit, or Amazon, whose links are provide in the next table.

The hardware components for the monitoring station are as follows:

Component (first stage) Quantity ||[Link
Arduino Uno ||1 https://www.sparkfun.com/products/11021
Arduino Ethernet Shield ||1 https://www.sparkfun.com/products/9026
Breadboard ||1 https://www.sparkfun.com/products/9567
TMP102 temperature sensor ||1 ||https://www.sparkfun.corn/products/ 11931
HIH-4030 humidity sensor ||1 ||https://www.sparkfun.com/products/9569
Mini photocell ||1 ||https://www.sparkfun.com/products/9088
PIR motion sensor ||1 ||https://www.sparkfun.com/products/8630
Super-flux RGB LED, common 1 http://www.adafruit.com/product/314
anode
Buzzer ||1 http://www.adafruit.com/products/160
Push button switch ||1 https://www.sparkfun.com/products/97
USB cable for Arduino
1 https://www.sparkfun.com/products/512
(for development stage)
Arduino power supply) http://www.amazon.com/Arduino-9V-1A-Power-
(for deployment Stage) AdaDter/dD/BOOCP].QLSC/
Resistors “AS . 220 ohm, 1 kilo-ohm, and 10 kilo-ohm
required
. . “As
Connection wires .
required

The hardware components for the control center are as follows:

www.it-ebooks.info

https://www.sparkfun.com/products/11021
https://www.sparkfun.com/products/9026
https://www.sparkfun.com/products/9567
https://www.sparkfun.com/products/11931
https://www.sparkfun.com/products/9569
https://www.sparkfun.com/products/9088
https://www.sparkfun.com/products/8630
http://www.adafruit.com/product/314
http://www.adafruit.com/products/160
https://www.sparkfun.com/products/97
https://www.sparkfun.com/products/512
http://www.amazon.com/Arduino-9V-1A-Power-Adapter/dp/B00CP1QLSC/
http://www.it-ebooks.info/

Component (first stage)

"Quantity"Link

Raspberry Pi ||1 https://www.sparkfun.com/products/11546

TFT LCD screen ||1 ||http://www.arnazon.com/gp/product/BOOGASHVDU/

SD card (8 GB) ||1 https://www.sparkfun.com/products/12998

\Wi-Fi donele 1 http://www.amazon.com/Edimax-EW-7811Un-150Mbps-Raspberry-

& Supports/dp/B003MTTIOY

Raspberry Pi power sunpl 1 http://www.amazon.com/CanaKit-Raspberry-Supply-Adapter-
PDEILy F1P PPy Charger/dp/BO0GF9T3I0

Keyboard, mouse, USB hub, As . .

and monitor required Requried for development and debugging stages

www.it-ebooks.info

https://www.sparkfun.com/products/11546
http://www.amazon.com/gp/product/B00GASHVDU/
https://www.sparkfun.com/products/12998
http://www.amazon.com/Edimax-EW-7811Un-150Mbps-Raspberry-Supports/dp/B003MTTJOY
http://www.amazon.com/CanaKit-Raspberry-Supply-Adapter-Charger/dp/B00GF9T3I0
http://www.it-ebooks.info/

Defining the project development stages

As per the system architecture, we have three main units that collaboratively create the
remote home monitoring project. The overall hardware and software development process
is also aligned with these three units and can be distributed as follows:

e Monitoring station development stage
e Control center development stage
e Web application development stage

The software development for the monitoring station stage includes developing the
Arduino code to monitor sensors and perform actuator actions on one side, while
publishing this information to the control center on the other side. The middle layer of the
development stage, that is, the Raspberry Pi-based control center, hosts the Mosquitto
broker. This stage also contains the Python program that contains the GUI, situation
awareness logic, and subroutines to communicate with the Xively cloud service. The last
stage, the cloud services, includes two distinct components, sensor data relay and a web
application. We will be using the Xively platform as our sensor data relay and the web
application will be developed in Python on the Amazon AWS cloud instance. Now, let’s
jump into the actual development process and our first stop will be the Arduino-based
monitoring station.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Stage 1 — a monitoring station using
Arduino

As we discussed, the main tasks of the monitoring systems are to interface sensor
components and communicate the information generated by these sensors to the observers.
You will be using Arduino Uno as the central microcontroller component to integrate these
sensors and actuators. We also need a means of communication between the Arduino Uno
and the control center and we will be utilizing the Arduino Ethernet Shield for this
purpose. Let’s discuss the hardware architecture of the monitoring station and its
components.

www.it-ebooks.info

http://www.it-ebooks.info/

Designing the monitoring station

We already designed units based on Arduino and the Ethernet Shield in various exercises
in Chapter 8, Introduction to Arduino Networking, and Chapter 9, Arduino and the Internet
of Things. Therefore, we have assumed that you are familiar with interfacing the Ethernet
Shield with the Arduino board. We will connect various sensors and actuators with the
Arduino board, as displayed in the following diagram. As you can see in this diagram, the
sensors will provide the data to the Arduino board while the actuators will seek the data
from the Arduino board. Although we are automatically collecting environment data for
these sensors, the data from the button will be collected from manual user inputs.

P R S e e L S S L |
| Temperature |
| L Sensar (TMP102]] \l ()) |
| (Humidity] |
HIH 4030 Publish
| [e Arduing <> Ethemet Shield e To Control
| (Ambient Light J th.Tnet Center
Maticn (PIR sensor) _J |
| '.\ A LS
&
| Sensors o i ’-‘ |
| 2 ‘
7 |
| Al
\ |
| — —
[|
| . o |
| I |
H m
[E |
|
| ks 4 |
| Actuators |
______________________ i |
Monitoring Station

Check out the following Fritzing diagram for the detailed connections in the monitoring
station. As you can see in our hardware design, the temperature sensor TMP102 is
connected through the I2C interface, which means that we will need the SDA and SCL
lines. We will be using analog pins 5 and 6 of the Arduino board to interface SDA and
SCL respectively. The humidity (HIH-4030) and ambient light sensors also provide analog
output and are connected to the analog pins of the Arduino board. Meanwhile, the buzzer,
the button switch, and the PIR motion sensor are connected through the digital I/O pins.
The super-flux RGB LED is a common anode LED; this means that it is always powered
using the common anode pins and the R, G, and B pins are controlled by using the PWM
pins.

Make sure that you properly connect all the components to the pins that are specified in
the following diagram:

www.it-ebooks.info

http://www.it-ebooks.info/

Buzzer

i RGB LED
PIR motion sensor {Common Anode)

HIH 4020 TMP102 ﬂn

: U T A R . -m#-:::

ight sensor
}@i----rvrvliiii-----vvvr

"o W W W

Arduino + Ethernet Shield

fritzin

Note

You can learn more about the interfacing of RGB LED with Arduino from the tutorial at
https://learn.adafruit.com/all-about-leds.

If you are using an Arduino board other than Arduino Uno, you will have to adjust the
appropriate pin numbers in the Arduino code. In addition, make sure that this Arduino
board is compatible with the Ethernet Shield.

In terms of circuit connections, you can use a breadboard as shown in the previous
diagram, or if you are comfortable, you can use a PCB prototype board and solder the
components. In our setup, we first tested the components on the breadboard and once they
were tested, we soldered the components, as shown in the following figure. If you venture
to solder the PCB board, make sure that you have the necessary components for the job.
The PCB prototype will yield a robust performance compared to the breadboard, but it

www.it-ebooks.info

https://learn.adafruit.com/all-about-leds
http://www.it-ebooks.info/

will also make it difficult for you to debug and change the components afterwards.

Light sensor

Buzzer
TMP102 o
4}
LED — =
L= 7]
- 4]
Button = g

| sEBZER

Arduino

HIH 4[:"'3(] . PIR sensar

If you are ready with your circuit connection, connect your Arduino to your computer

using the USB cable. Also, connect the Ethernet Shield to your home router using an
Ethernet cable.

www.it-ebooks.info

http://www.it-ebooks.info/

The Arduino sketch for the monitoring station

Before jumping into the coding stage, make sure that you have collected the prebuilt
Arduino code for the project. You can find it in the code folder of this chapter with the
filename Arduino_monitoring_station.ino. The code implements the necessary logic to
support the overall UX flow at the monitoring station, which we discussed in the previous
section. In the following sections, we will go through the major areas of the program so
that you can better understand these code snippets. Now, open this sketch in the Arduino
IDE. You are already familiar with setting up the IP address for Arduino. You also learned
how to use the Arduino MQTT library PubSubClient in the previous chapter, which
means that your Arduino IDE should already have the PubSubcClient library installed on
it. At the beginning of the code, we have also declared few constants, such as the IP
addresses of the MQTT server and Arduino and the pin numbers of various sensor and
actuators.

Note

You will have to change the IP address of the monitoring station and the control center
according to your network setup. Make sure that you perform these modifications before
uploading the Arduino code.

In the code structure, we have two mandatory Arduino functions, setup() and loop(). In
the setup() function, we will set up the Arduino pin types and the MQTT subscriber
channels. In the same function, we will also attach an interrupt for the press of the button
while setting up the timer for the publishData() function.

Publishing sensor information

The publishData() function reads the sensor inputs and publishes this data to the
Mosquitto broker that is located on the control center. As you can see in the following
code snippet, we are measuring sensors values one by one and publishing them to the
broker using the client.publish() method:

void publishbData (){
Wire.requestFrom(partAddress,2);
byte MSB = Wire.read();
byte LSB = Wire.read();

int TemperatureData = ((MSB << 8) | LSB) >> 4,

float celsius = TemperatureData*0.0625;
temperatureC = dtostrf(celsius, 5, 2, message_buff2);
client.publish("MonitoringStation/temperature", temperatureC);

float humidity = getHumidity(celsius);
humidityC = dtostrf(humidity, 5, 2, message_buff2);
client.publish("MonitoringStation/humidity", humidityC);

int motion = digitalRead(MotionPin);

motionC = dtostrf(motion, 5, 2, message_buff2);
client.publish("MonitoringStation/motion", motionC);

www.it-ebooks.info

http://www.it-ebooks.info/

int light = analogRead(LightPin);

lightC = dtostrf(light, 5, 2, message_buff2);

client.publish("MonitoringStation/light", lightC);
}

If you check out the setup() function, you will notice that we have used a library called
SimpleTimer to set up a timer method for this function. This method executes the
publishData() function periodically without interrupting and blocking the actual flow of
the Arduino execution cycle. In the following code snippet, the number 300000 represents
the time delay in milliseconds, that is, 5 minutes:

timer.setInterval(300000, publishData);

Note

You will need to download and import the SimpleTimer library to compile and run the
code successfully. You can download the library from

https://github.com/infomaniac50/SimpleTimer.
Subscribing to actuator actions

You can see in the setup() function that we are initializing the code by subscribing to the
MonitoringStation/led and MonitoringStation/buzzer channels. The
client.subscribe() method will make sure that whenever the Mosquitto broker gets any
updates for these channels, the Arduino-based monitoring system gets notified:

if (client.connect("MonitoringStation")) {
client.subscribe("MonitoringStation/led");
client.subscribe("MonitoringStation/buzzer");

}
Programming an interrupt to handle the press of a button

We have taken care of the publishing and subscribing functions of the monitoring station.
Now, we will need to integrate the button switch that is controlled by inputs from the user.
In the Arduino programming routines, we run a periodic loop to check the status of the
pins. However, this may not be useful if the button is pressed since it requires immediate
action. This action of pressing the button is handled using the Arduino interrupts, as
shown in the following line of code:

attachInterrupt(©, buttonPress, RISING);

The preceding line of code associates an interrupt at pin 0 (digital pin 2) with the
buttonPress() function. This function sets off the buzzers whenever the state of the
interrupt is changed. In other words, when the button is pressed by the user, the buzzer
will be instantaneously turned off irrespective of the current status of the buzzer:

void buttonPress(){

digitalWrite(BUZZER, LOW);
Serial.println("Set buzzer off"),

www.it-ebooks.info

https://github.com/infomaniac50/SimpleTimer
http://www.it-ebooks.info/

Testing

The current Arduino code communicates with the control center for publishing and
subscribing the data, but we haven’t yet set up the Mosquitto broker to handle these
requests. You can still go ahead and upload the Arduino sketch to your monitoring station
using the USB cable. This will not result in any fruitful actions from the monitoring
station and you will only be able to use the Serial.prinln() command to print various
sensor measurements. Therefore, we will develop the control center next so that we can
start addressing communication requests from the monitoring station.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Stage 2 — a control center using Python
and the Raspberry Pi

In order to deliver the status of the system and other sensor observations to the user, the
control center needs to perform various operations that include obtaining raw sensor data
from the monitoring station, calculating the status of the system, reporting this data to the
cloud services, and displaying observation using GUI. While the control center includes
two major hardware components (the Raspberry Pi and TFT LCD screen), it is also
comprised of two major software components (the Mosquitto broker and Python code) to
handle the control center logic.

Tip
We are using a Raspberry Pi instead of a regular computer as we want the control center to

be a deployable and portable unit that can be mounted on a wall.

You can still use your own computer to edit and test the Python code for development
purposes instead of using a Raspberry Pi directly. However, we recommend that you
switch back to the Raspberry Pi once you are ready for deployment.

www.it-ebooks.info

http://www.it-ebooks.info/

The control center architecture

The Raspberry Pi is the main computation unit of the control center and works as the brain
of the entire system. Since the Raspberry Pi is used as a replacement for a regular
computer, the architecture of the control center can interchangeably use a computer in
place of the Raspberry Pi. As you can see in the following diagram, the control center is
connected to the home network using Wi-Fi and this will make it accessible to the
monitoring station. The control center includes the Mosquitto broker; this is used as the
communication point between the monitoring station and the Python program for the
control center. The Python program utilizes the Tkinter library for GUI and the
paho_mqtt library to communicate with the Mosquitto broker. By utilizing these two
libraries, we can convey sensor information from the monitoring station to the user.
However, we will need a separate arrangement to establish communication between the
control center and cloud services. In our overall system architecture, the control center is
designed to communicate with the intermediate data relay, Xively. The Python code uses
the xively-python library to enable this communication.

TFT LED Screen (#— — — — — — — =

e, @ A
o
GLUI,
in Python Tkinter
&
From g 2
Monitoring — — l— e T Conlrol center g ||
@ | —i=
Station | WiF 2 lagic in Python x
B
| =
| \
| Raspberry Pi

Control Center

In Chapter 8, Introduction to Arduino Networking, we already provided you with methods
to install the Mosquitto broker, the Python-mosquitto library, and the xively-python
library. We also learned the process of setting up the TFT LCD screen with the Raspberry
Pi in Chapter 7, The Midterm Project — a Portable DIY Thermostat. Please refer to those
tutorials in case you haven’t completed those exercises yet. Assuming that you have
configured the Mosquitto broker and the required Python libraries, you can move on to the

www.it-ebooks.info

http://www.it-ebooks.info/

next section, which includes the actual Python programming.

www.it-ebooks.info

http://www.it-ebooks.info/

The Python code for the control center

Before you start interfacing these libraries in the Python code, start your Mosquitto broker
first from the command line using this simple command:

$ mosquitto

Make sure that you restart your monitoring station every time you start or restart the
Mosquitto broker. This action will make sure that your monitoring station is connected to
the Mosquitto broker, since the process of establishing the connection only gets executed
once in our Arduino code, that is, at the beginning of the setup process.

The Python code for the current project is located in the code folder of this chapter with
the name controlCenter.py. Open this file using your Python IDE and modify the values
of the appropriate parameters before executing it. These parameters include the IP address
of the Mosquitto broker along with the feed ID and the API key of the Xively virtual
device. You should already have the feed ID and the API key of your Xively virtual device
from the previous chapter:

cli.connect("10.0.0.18", 1883, 15)
FEED_ID "<feed-id>"
API_KEY "<api-key"

If you are using a local instance of the Mosquitto broker, you can replace the IP address
with 127.0.0.1. Otherwise, replace the 10.0.0.18 address with the appropriate IP address
of the computer that is hosting the Mosquitto broker. Let’s try to understand the code now.

Note

Sometimes on Mac OS X, you won’t be able to run Tkinter window and Python threads
in parallel due to an unknown bug. You should be able to execute the program
successfully in Windows and Linux environments. This program has been tested with the
Raspberry Pi, which means you won’t encounter the same bug while deploying the control
center.

Creating the GUI using Tkinter

In the previous exercises, we always used a single Python thread to run the program. This
practice will not help us to perform multiple tasks in parallel such as obtaining sensor
observation from the monitoring station and simultaneously updating the GUI with that
information. As a solution, we have introduced multithreading in this exercise. As we
need two separate loops, one each for Tkinter and paho-mqtt, we will be running them
independently in separate threads. The main thread will run methods that are related to
Mosquitto and the cloud services, while the second thread will handle the Tkinter GUI In
the following code snippet, you can see that we have initialized the
controlCenterWindow() class with the threading.thread parameter. Therefore, when
we execute window = controlCenterWindow() in the main program, it will create another
thread for this class. Basically, this class creates the GUI window while populating labels
and other GUI components. The labels need to be updated when new sensor observations

www.it-ebooks.info

http://www.it-ebooks.info/

arrive, are declared as class variables, and are accessible from the class instant. As you can
see in the following code snippet, we have declared the labels for temperature, humidity,
light, and motion as class variables:

class controlCenterWindow(threading.Thread):

def __init_ (self):
Tkinter canvas
threading.Thread.__init__ (self)
self.start()

def callback(self):
self.top.quit()

def run(self):
self.top = Tkinter.Tk()
self.top.protocol("WM_DELETE_WINDOW", self.callback)
self.top.title("Control Center")
self.statusValue = Tkinter.StringVar ()
self.statusValue.set("Normal")
self.tempValue = Tkinter.StringVar()
self.tempValue.set('-")
self.humdValue = Tkinter.StringVar ()
self.humdvValue.set('-")
self.lightValue = Tkinter.StringVar ()
self.lightValue.set('-")
self.motionValue = Tkinter.StringVar()
self.motionValue.set('No')

Begin code subsection

Declares Tkinter components

Included in the code sample of the chapter
End code subsection

self.top.mainloop()

The previous code snippet doesn’t contain the portion where we declared the Tkinter
components, as it is similar to what we coded in the midterm project. If you have
questions regarding Tkinter-related issues, please refer to Chapter 6, Storing and Plotting
Arduino Data, and Chapter 7, The Midterm Project — a Portable DIY Thermostat.

Communicating with the Mosquitto broker

At the control center level, we subscribe to topics that are published from the monitoring
station, that is, MonitoringStation/temperature, MonitoringStation/humidity, and so
on. If you have performed any modification to the Arduino code to change the MQTT
topics, you need to reflect those changes in this section. If the topics published by the
monitoring station do not match the topics in the control center’s code, you will not get
any updates. As you can see in the Python code, we are associating the on_message and
on_publish methods with very important function. Whenever a message arrives from the
subscriber, the client will call the functions associated with the on_message method.
However, every time a message gets published from the Python code, the onPublish()
function will get called:

cli = mg.Client('ControlCenter')
cli.on_message = onMessage

www.it-ebooks.info

http://www.it-ebooks.info/

cli.on_publish = onPublish
cli.connect("10.0.0.18", 1883, 15)

cli.subscribe("MonitoringStation/temperature", 0)
cli.subscribe("MonitoringStation/humidity", 0)
cli.subscribe("MonitoringStation/motion", 0)
cli.subscribe("MonitoringStation/light", 0)
cli.subscribe("MonitoringStation/buzzer", 0)
cli.subscribe("MonitoringStation/led", 0)

Calculating the system’s status and situation awareness

The control center is assigned with the task of calculating the status of the overall system.
The control center calculates the status of the system as Alert, Caution, or Normal using
the current values of temperature and humidity. To calculate the status, the control center
executes the calculateStatus() function every time it gets an update for the temperature

or humidity from the monitoring station. According to the current situation awareness
logic, if the temperature is measured above 45 degree Celsius or below 5 degree Celsius,
we call the system’s status as Alert. Similarly, you can identify the range of temperature
and humidity values for caution and Normal statuses from the following code snippet:

def calculateStatus():
if (tempG > 45):
if (humdG > 80):
status = "High Temperature, High Humidity"
elif (humdG < 20):

status = "High Temperature, Low Humidity"
else:

status = "High Temperature"
setAlert(status)

elif (tempG < 5):
if (humdG > 80):

status = "Low Temperature, High Humidity"
elif (humdG < 20):

status = "Low Temperature, Low Humidity"
else:

status = "Low Temperature"
setAlert(status)

else:

if (humdG > 80):
status = "High Humidity"
setCaution(status)

elif (humdG < 20):
status = "Low Humidity"
setCaution(status)

else:
status = "Normal"
setNormal(status)

Communicating with Xively

The control center is also required to communicate with Xively when it receives a

www.it-ebooks.info

http://www.it-ebooks.info/

message from the subscribed topics. We are already familiar with the process of setting up
virtual devices and data streams on Xively. Open your Xively account and create a virtual
device called controlcenter. Note down the feed ID and API key for this device and
replace them in the current code. Once you have these values, create the Temperature,
Humidity, Light, Motion, Buzzer, and Status channels in this virtual device.

Looking at the Python code, you can see that we have declared the individual data stream
for each topic and associated them with the appropriate Xively channel. The following
code snippet shows the data stream for just the temperature observation, but the code also
contains a similar configuration for all the other sensor observations:

try:
datastreamTemp = feed.datastreams.get("Temperature")

except HTTPError as e:
print "HTTPError({0}): {1}".format(e.errno, e.strerror)
datastreamTemp = feed.datastreams.create("Temperature", tags="C")
print "Creating new channel 'Temperature'"

Once the control center receives a message from the monitoring station, it updates the data
stream with the latest values and pushes these changes to Xively. At the same time, we
will also update the appropriate label in the Tkinter GUI using the onMessage () function.
We will use the same code snippet for all the subscribed channels:

if msg.topic == "MonitoringStation/temperature":
tempG = float(msg.payload)
window. tempValue.set(tempG)
datastreamTemp.current_value = tempG
try:
datastreamTemp.update()
except HTTPError as e:
print "HTTPError({0}): {1}".format(e.errno, e.strerror)

The control center also implements the function to set the system’s status across the
system, once it is calculated using the calculateStatus() function. There are three
different functions to perform this task using a method that is similar to what we described
in the previous code snippet. These functions include setAlert(), setCaution(), and
setNormal() and these are associated with Alert, Caution, and Normal respectively.
While updating the system’s status, these functions also perform buzzer and LED actions
by publishing the LED and buzzer values to the Mosquitto broker:

def setAlert(status):

window.statusValue.set(status)
datastreamStatus.current_value = "Alert"
try:

datastreamStatus.update()
except HTTPError as e:

print "HTTPError({0}): {1}".format(e.errno, e.strerror)
cli.publish("MonitoringStation/led", 'red')
cli.publish("MonitoringStation/buzzer", 'ON')

Checking and updating the buzzer’s status

In the control center, we set the buzzer’s status to ON if the system’s status is determined as

www.it-ebooks.info

http://www.it-ebooks.info/

Alert. If you look back at the UX flow, you will notice that we also want to include a
feature for the user to manually turn off the buzzer. The checkBuzzerFromXively()
function keeps track of the buzzer’s status from Xively and if the user manually turns off
the buzzer using the web application, this function sets off the buzzer.

To continue this process independently from the GUI and situation awareness threads, we
will need to create another thread for this function. The timer on this thread will
automatically execute the function every 30 seconds:

def checkBuzzerFromXively():

try:
datastreamBuzzer = feed.datastreams.get("Buzzer")
buzzervalue = datastreamBuzzer.current_value
buzzervValue = str(buzzervalue)
cli.publish("MonitoringStation/buzzer", buzzerValue)

except HTTPError as e:
print "HTTPError({0}): {1}".format(e.errno, e.strerror)
print "Requested channel doesn't exist"

threading.Timer (30, checkBuzzerFromXively).start()

With this function running in a separate thread every 30 seconds, the control center will
check the status of the Xively channel and stop the buzzer if the status is set to OFF. We
will explain how the user can update the Xively channel for the buzzer in the next section.

www.it-ebooks.info

http://www.it-ebooks.info/

Testing the control center with the monitoring
station

Assuming your Mosquitto broker is running, execute the controlCenter.py code with the
changed parameters. Then, start the monitoring station. After a few moments, you will see
on the terminal that the control center has already started getting messages from the
publishers that are initialized on the monitoring station. The update interval for the
messages from the publisher at the control center depends upon the configured publishing
interval at the monitoring station.

Note

The Arduino code executes the process of connecting to the Mosquitto broker only once
after powering on. If you start your Mosquitto broker after that, it won’t be able to
communicate with the broker. So, you need to make sure that you start the Mosquitto
broker before powering on the monitoring station.

If you need to restart the Mosquitto broker for any reason, remove and restart the
monitoring station first.

i pi@raspberrypi: ~/Deslki

File Edit Tabs Help

MonitoringStation/bu

On execution of the program, you will be able to see a small GUI window, as shown in the
following screenshot. This window displays the sensor’s values for temperature, humidity,
ambient light, and motion. Along with these values, the GUI also displays the status of the
system, which is Normal in this screenshot. You can also observe that every time the
control center gets updates from the monitoring station, the system’s status and sensor
observations change in real time:

www.it-ebooks.info

http://www.it-ebooks.info/

] Control Center - o x
Mormal
Temperature : 27,31 C
Humidity : 48.65 %

Light : 831.0 Ix
Motion : Mo

If this setup is working correctly on your computer, let’s move on to deploy the control
center on the Raspberry Pi.

www.it-ebooks.info

http://www.it-ebooks.info/

Setting up the control center on the Raspberry Pi

The process of installing the Raspbian operating system is explained in Chapter 7, The
Midterm Project — a Portable DIY Thermostat. You can use the same module that you
used in the Midterm project or set up a new one. Once you have installed Raspbian and
configured the TFT screen, connect the Wi-Fi dongle through a USB port. At this stage,
we assume that your Raspberry Pi is connected with a monitor, a keyboard, and a mouse
to perform the basic changes. Although we won’t recommend it, you can also use the TFT
screen for the following operations, if you are comfortable with it:

1. Start your Raspberry Pi and log in. At the command prompt, execute the following
command to enter the visual desktop mode:

$ startx

2. Once your graphical desktop starts, you will be able to see the icon of the WiFi
config utility. Double-click on this icon and open the WiFi config utility. Scan for
wireless networks and connect to the Wi-Fi network that has the monitoring station.
When asked, enter the password of your network in the form window called PSK,
and connect to your network.

3. Now, your Raspberry Pi is connected to the local home network and to the Internet
through it. It’s time to update the existing packages and install the required ones. To
update the Raspberry Pi’s existing system, execute the following commands in the
terminal:

$ sudo apt-get update
$ sudo apt-get upgrade

4. Once your system is updated with the latest version, it’s time to install the Mosquitto
broker on your Raspberry Pi. The Raspbian OS has Mosquitto in the default
repository, but it doesn’t have the current version that we need. To install the latest
version of Mosquitto, execute following commands in the terminal:

curl -0 http://repo.mosquitto.org/debian/mosquitto-repo.gpg.key
sudo apt-key add mosquitto-repo.gpg.key

rm mosquitto-repo.gpg.key

cd /etc/apt/sources.list.d/

sudo curl -0 http://repo.mosquitto.org/debian/mosquitto-repo.list
sudo apt-get update

sudo apt-get install mosquitto, mosquitto-clients

LR AR A

5. To install other Python dependencies, let’s first install the Setuptools package using
apt-get:

$ sudo apt-get install python-setuptools

6. Using Setuptools, we can now install all the required Python libraries such as
paho_mqtt, xively-python, and web.py:

$ sudo easy_install pip
$ sudo pip install xively-python web.py paho_mqtt

www.it-ebooks.info

http://www.it-ebooks.info/

Now that we have installed all the necessary software tools that are required to run our
control center on the Raspberry Pi, it is time to configure the Raspberry Pi so that it can
provide uninterrupted operation for a critical system such as a remote home monitoring
system:

1. In the current configuration of the Raspberry Pi, the screen of the Raspberry Pi will
go to sleep after some time and the Wi-Fi connection will be terminated when this
happens. To avoid this problem and force the screen to remain active, you will need
to perform the following changes. Open the 1ightdm.conf file using the following
command:

$ sudo nano /etc/lightdm/lightdm.conf

2. In the file, navigate to the SetDefaults section and edit the following line:

xserver-command-X -s O dpms

3. Now that your Raspberry Pi is set up, it is time to copy the program file from your
computer to the Raspberry Pi. You can use SCP, PuTTY, or just a USB drive to
transfer the necessary file to the Raspberry Pi.

If you install and configure everything as specified, your program should run without any
errors. You can run the Python program constantly in the background using the following
command:

$ nohup python controlCenter.py &

The last thing that we want to set up on the Raspberry Pi is the TFT LCD screen. The
installation and configuration processes of the TFT LCD screen are described in Chapter
7, The Midterm Project — a Portable DIY Thermostat. Please follow the steps in the given
order to set up the screen. The control center module along with the Raspberry Pi and the
TFT screen can now be deployed in any part of your house.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Stage 3 — a web application using Xively,
Python, and Amazon cloud service

The cloud services module of the overall system enables remote access to your monitoring
station through the Internet. The unit interacts with the user via a web application as an
extended version of the control center. With the use of this web application, the user can
observe the sensor information from the monitoring station and the system’s status
calculated by the control center while having remote control to turn off the buzzer. So,
what does the architecture of the cloud services look like?

www.it-ebooks.info

http://www.it-ebooks.info/

Architecture of the cloud services

The architecture of the cloud services module with its associated components is displayed
in the following diagram. In the cloud services architecture, we are using Xively as the
intermediate data relay between the web application and the control center. The control
center pushes the observations obtained from the monitoring station to the Xively
channels. Xively stores and relays the data to the web application that is hosted on the
Amazon AWS. The server instance on the Amazon AWS is used to make the web
application accessible through the Internet. The server instance runs the Ubuntu operating
system and the web application that is developed using the web . py library in Python.

User
A
|
.~ ! I
d & 'C Temperature Channel _:} - i ™
{__ Humidity Channel)
Ambient light Channel
ivel
From Xively (b
Control —— ——{ ™| Frivate { Motion Channel :I —= | Python-xively wab.py
device
Center (" LEdChamnel)
{ Buzzer Channel _:I
L) '.': System status Channel } . S
h A . .
Web application
Sensor data relay (Amazon AWS)
(Xively)

In the previous stage, we already covered the process of setting up Xively and the
channels to accommodate sensor data. In the control center code, we also explained how
we can push the updated observations to the appropriate Xively channels. Therefore, we
really do not have any ground to cover for the Xively platform at this stage and we can
move on to the web application.

www.it-ebooks.info

http://www.it-ebooks.info/

Python web application hosted on Amazon AWS

In the previous chapter, we set up an Amazon AWS cloud instance to host a web
application. You can use the same instance to host the web application for the remote
home monitoring system too. However, make sure that you have installed the web . py

library on your server.

1. In your computer, open the web_Application folder and then the
RemoteMonitoringApplication.py file in your editor.

2. In the code, you will be able to see that we just expand the web application program
that we created in Chapter 9, Arduino and the Internet of Things. We use the
templates based on web . py and the GET() and POST() functions to enable the web
application.

3. In the application, we fetch information from each Xively channel and process it via
a separate function. For example, the fetchTempXively() function obtains the
temperature information from Xively. Every time the POST() function is executed,
the fetchTempxively () function fetches the latest value of temperature reading from
Xively. This also means that the web application does not populate and refresh the
latest information automatically and waits for POST() to execute the appropriate
functions:
def fetchTempXively():

try:
datastreamTemp = feed.datastreams.get("Temperature")
except HTTPError as e:
print "HTTPError({0}): {1}".format(e.errno, e.strerror)
print "Requested channel doesn't exist"
return datastreamTemp.current_value

4. The web application also provides access to control the buzzer from the user
interface. The following code snippet adds the Buzzer Off button with other Form
components. When the form is submitted after this button is pressed, the web
application executes the setBuzzer () function:
inputData = web.input()
if inputData.btn == "buzzerOff":

setBuzzer ("OFF")
5. The setBuzzer () function access the Xively channel, Buzzer, and sends the off value

if the Buzzer Off button is pressed. The current web application doesn’t include the
Buzzer On button, but you can easily implement this functionality by reusing the
code that we developed for the Buzzer Off button. This function provides the
reference code for other control points, which you can reuse with minor
modifications:

def setBuzzer(statusTemp):
try:
datastream = feed.datastreams.get("Buzzer")
except HTTPError as e:
print "HTTPError({0}): {1}".format(e.errno, e.strerror)

www.it-ebooks.info

http://www.it-ebooks.info/

datastream = feed.datastreams.create("Buzzer",
tags="buzzer")
print "Creating new Channel 'Buzzer"
datastream.current_value = statusTemp
try:
datastream.update()
except HTTPError as e:
print "HTTPError({0}): {1}".format(e.errno, e.strerror)

6. In the code, you will also have to modify the Xively feed ID and the API key and
replace them with the values that your obtained from your virtual device. Once you
have performed this modification, run the following command. If everything goes as
planned, you will be able to open the web application in your web browser.

$ python RemoteMonitoringApplication.py

If you are running the Python code on your computer, you can open
http://127.0.0.1:8080 to access the application. If you are running the application on
the cloud server, you need to enter the IP address or domain name of your server to access
the web application, http://<AwS-IP-address>:8080. If the web application is running
from the cloud, it can be accessed from anywhere using the Internet, which was one of the
original project requirements. With this last step, you have successfully completed the
development of the remote home monitoring system that is based on Arduino and Python.

www.it-ebooks.info

http://www.it-ebooks.info/

Testing the web application

When you open the web application in a browser, you will be able to see a similar output
as shown in the following screenshot. As you can see, the web application displays the
temperature, humidity, light, and motion values. The Refresh button fetches the sensor
data from Xively again and loads the application once more. The Buzzer Off button sets
the value of the Xively’s Buzzer channel to oFF, which then get picked up by the control
center, and it turns off the buzzer at the monitoring station subsequently:

® 00 / 10.0.0.20:8080 x e '(;?

& - C | [} 10.0.0.20:8080 O @ =

Remote Home Monitoring System

Status: Normal

Temperature : 27.31
Humidity : 48.65
Light : 831.0

Motion : 0.0

Refresh

Buzzer Off

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Testing and troubleshooting

Due to the number of components involved and complex programming associated with
them, the overall project is a complex system to test and debug. Before you jump into
troubleshooting, make sure that you have properly followed the steps that were described
in the previous sections in order. The following are a few solutions to possible problems
that can occur during the execution of the project:

e Troubleshoot individual sensor performance:

o If your sensor measurements are way off the expected values, the first thing that
you want to evaluate is the connection of the sensor pins to the Arduino board.
Make sure that you have connected the digital, analog, and PWM pins correctly.

o Check whether your Ethernet Shield board is properly connected to Arduino
Uno.

o Evaluate the connections of the 5V power supply and ground for each
component.

e Avoid Xively’s update limit

o Xively imposes a limit on the maximum number of transactions that you can
perform in a limited amount of time. While running your control center code, if
you encounter an error for exceeding the limit, wait for 5 minutes before your
access limit gets lifted.

o Increase the delay between consecutive Xively updates at the control center
level:

threading.Timer (120, checkBuzzerFromXively).start()

o Reduce the frequency of published messages at the monitoring station:

timer.setInterval(600000, publishData);

o You can also combine various Xively channels by formatting data into JSON or
XML.

e Working with the maximum current draw limitation of Arudino:

o The +5V power pin and digital pin of Arduino can provide a maximum current
of 200 mA and 40 mA respectively. When running sensors directly from the
Arduino board, make sure that you do not exceed these limits.

o Make sure the combined current requirement of all the sensors is less than 200
mA. Otherwise, the components won’t be able to get enough power to run and
this will translate into faulty sensor information.

o You can provide external power to the components that require large amounts of
current and control this power mechanism via Arduino itself. You will need a
transistor that is acting as a switch that can then be controlled using the digital
pins of Arduino. The tutorial at https://learn.adafruit.com/adafruit-arduino-
lesson-13-dc-motors/transistors shows a similar example for a DC motor.

www.it-ebooks.info

https://learn.adafruit.com/adafruit-arduino-lesson-13-dc-motors/transistors
http://www.it-ebooks.info/

e Solve network problems:

o In some scenarios, your monitoring station won’t be able to communicate with
the control center due to network problems.

o This problem can be solved by using manual IP addresses for both, Arduino and
the Raspberry Pi. In our project, we use a manual IP address for the Arduino, but
the Raspberry Pi is connected using the Wi-Fi network. In most cases, when you
are using your home Wi-Fi network, Wi-Fi routers are set up to provide dynamic
IP addresses to the device every time they reconnect to the router.

o You can solve this by configuring your Wi-Fi router to a fixed IP address for the
Raspberry Pi. As the type and model of the Wi-Fi router is different for every
scenario, you will have to use its user manual or online help forums for setting it

up.
e Working with buzzer-related issues:

o Sometimes the buzzer sound can be too loud or too quiet, depending upon the
sensor that you are using. You can use PWM to configure the intensity of the
buzzer. In our project, we used the Arduino digital pin 9 to connect the buzzer.
This pin also supports PWM. In your Arduino code, modify the line to reflect
changes for the PWM pin. Replace the digitalwrite(BUZZER, HIGH); line
with analogWrite(BUZZER, 127);.

o This routine will reduce the intensity of the buzzer by half from the original
level. You can also change the PWM value from 0 to 255 and set the intensity of
the buzzer sound from lowest to highest.

e Control center GUI calibration:

o Depending upon the size of the TFT LCD screen that you are using, you will
have to adjust the size of the main window of Tkinter.

o First, run the current code on your Raspberry Pi and if you see that the GUI
window does not match the screen, add the following line of code after
initializing the main window:

top.minsize(320,200)

o This code will fix the problem with the size for a 2.8 inch TFT LCD screen. In
the previous code snippet, 320 and 200 represent the pixel sizes for width and
length respectively. For other screen sizes, change the pixel size accordingly.

e Test the LED:

o In current code configuration, the LED is turned on only when the system
changes to Alert or caution. That means you won’t be able to test the LEDs
unless these situations occur. To check whether they are working correctly,
execute the following command at the control center:

$ mosquitto_pub -t "MonitoringStation/led" -m "red"

o This command will light up the LED in red. To turn off the LED, just use off

www.it-ebooks.info

http://www.it-ebooks.info/

instead of red in the previous code.

If nothing lights up, you should check the connection wires of the LEDs. In
addition, check for network-related issues as the Mosquitto itself might not be
working.

If you see any color other than red, this means that you haven’t connected the
LED correctly and you need to interchange the pin configuration of your LED.
If you are using an LED different than super-flux RGB, you should check out
the pin layout in the datasheet and reorganize the connections.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Extending your remote home monitoring
system

To successfully create commercial products from DIY project prototypes, you will need an
additional layer of features on top of basic functionalities. These features actually make
things convenient for a user when they interact with the system. The other distinguishable
feature is the tangibility of the system, which makes large-scale production and support
possible. Although there are plenty of features that you can implement, we recommend the
following major improvements to elevate the level of the current project.

www.it-ebooks.info

http://www.it-ebooks.info/

Utilizing multiple monitoring stations

In this project, we developed a monitoring station as a prototype with a range of
functionality that is demonstrated by a remote home monitoring system. A remote
monitoring system can have multiple numbers of monitoring stations to cover various
geographical locations, such as different rooms inside a house, or different office cubicles.
Basically, a large number of monitoring stations can cover an extended area and provide
efficient surveillance of the domain that you are trying to monitor. If you want to extend
the current project with an array of monitoring stations, you will require some of the
following modifications:

e Fach monitoring station can have its own control center or a centralized control
center for all of them, depending upon the application requirements.

¢ You will have to update the Python code for the control center to accommodate the
changes. Examples of these changes include modifying topic titles for MQTT,
coordinating between these monitoring stations, updating data models for Xively
updates, and so on.

e The free Xively account may not be able to handle the large amounts of data coming
from the monitoring stations. In this case, you can either optimize the update rate
and/or payload size or upgrade your Xively account to comply with the requirements.
You can also resort to other free services such as ThingSpeak, Dweet.io, and Carriots,
but you will have to make substantial modifications to the existing code structure.

¢ You can also update the web application to provide you with a selection menu for the
monitoring stations or display all of them at once. You will also have to change the
code to yield the modified data models.

www.it-ebooks.info

http://www.it-ebooks.info/

Extending sensory capabilities

In term of sensors, we are only interfacing temperature, humidity, ambient light, and
motion sensors. However, the actuation is limited to the buzzer and LED. You can
implement the following changes to improve the sensory capabilities of the project.

In a real scenario, a remote home monitoring system should be able to interface with
other existing sensors such as the security system, monitoring cameras, refrigerator
sensors, door sensors, and garage sensors throughout a home.

You can also interface this project with other appliances such as the air conditioner,
heater, and security alarm, which can help you to control the environment that you
are already monitoring. As a trial, these components can be interfaced using a set of
relays and switches.

You can upgrade the current sensors at the monitoring station with more powerful,
efficient, and accurate sensors. However, the monitoring station with the upgraded
sensors may require a more powerful version of Arduino with more I/0O pins and
computation capabilities.

You can also use additional sensors other than those used in this project at the
monitoring station. There are large amount of heterogeneous, Arduino-supported DIY
sensors that you can buy off the shelf. Examples of these sensors include the Alcohol
Gas Sensor (MQ-3), LPG Gas Sensor (MQ-6), Carbon Monoxide Sensor (MQ-7),
Methane Gas Sensor (MQ-4), and so on. These sensors can be simply interfaced with
the Arduino just like the other sensors that we connected earlier.

To accommodate these changes, you will be required to change the control center
logic and algorithms. If you are interfacing a third-party component, you may also
have to revisit the system architecture and adjust it.

Similarly, you will also have to run frequent updates to Xively for the additional
number of sensors, making the free version inadequate. To resolve this, you can pay
for the commercial version of a Xively account or use a limited number of requests
using a JSON file format similar to the one displayed in the following code snippet:

{

"version": "1.0.0",
"datastreams": [
{
"id": "example",
"current_value": "333"
3
{
llidll : "key",
"current_value": "value"
3
{
"id": "datastream",
"current_value": "1337"
3
]

www.it-ebooks.info

http://www.it-ebooks.info/

Improving UX

When we designed the user experience for this project, our goal was to demonstrate the
usefulness of a UX design in developing the software flow. In the current UX design, the
control center and the web application have limited control and features for a user. The
following are a few changes that you need to implement to improve the UX of the project:

¢ Add tooltips and proper naming conventions for the various descriptions. Implement
a proper layout to differentiate between the various information categories.

¢ Add buttons for the buzzer and the LED control on the control center GUI.

¢ In the web application, use a JavaScript and Ajax-based interface to automatically
refresh the changes in sensor values.

e Provide a Ul mechanism so that the user can change the update interval at the control
center and the web application. Once these changes are made, propagate them
through each program so that the monitoring station can start publishing messages at
the new interval.

www.it-ebooks.info

http://www.it-ebooks.info/

Expanding cloud-based features

In the current setup, we are using two stages to provide cloud-based capabilities and
enable remote monitoring. We have Xively as a data relay and Amazon AWS to host the
web application. If you are working on a commercial-grade product and want to reduce
the complexity of the architecture, you can implement the following changes:

¢ You can develop your own data relay on your cloud instance using open source tools
such as ThingSpeak. Your control center will then communicate directly to your
server and eliminate dependency on third-party IoT services.

e If Xively is your platform, you can also use additional features, such as graphs on
your smart phone, which are provided by Xively. Once your phone is paired with
Xively, you can access this feature directly.

e Alternatively, you can use other cloud services such as Microsoft Azure and Google
App engine instead of Amazon AWS. You can also set up your own cloud server,
depending upon your familiarity with cloud computing. Although having your own
cloud will give you complete control of the server, third-party services such as
Amazon can be more cost effective and require less maintenance compared to self-
hosted servers.

¢ If you are planning to develop a large-scale system that is based on the current
architecture, you can increase the computing capability of your existing cloud
instance. You can also implement a distributed server system to accommodate the
large number of remote monitoring systems that can be accessed by an even greater
number of users.

www.it-ebooks.info

http://www.it-ebooks.info/

Improving intelligence for situation awareness

In this project, we have used four different sensors to monitor the physical environment—
each sensor obtains user inputs with two types of actuators for notification. Although we
are using a good amount of information sources, our situation awareness algorithm is
limited to identifying out-of-range temperature and humidity values. You can implement a
few extended features to make your system more versatile and useful:

e Implement different logic for day and night scenarios, which can help you to avoid
unwarranted false alarms at night.

e Implement an intruder detection algorithm using the motion sensor for when you are
not at home.

e Utilize a combination of ambient light sensor values with motion sensors to identify
energy wastage. For example, a scenario in which more light is recorded during the
night when the motions are significantly low explains that you may have forgotten to
turn off the lights during the night.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating an enclosure for hardware components

Just like software-based features, the hardware components also require a major revamp if
you develop a commercial-grade product. Nowadays, 3D printers have become viable and
it is really easy to design and print plastic 3D components. You can also use professional
3D printing services such as Shapeways (http://www.shapeways.com), Sculpteo
(http://www.sculpteo.com), or makexyz (http://www.makexyz.com) for your enclosures.
You can even use a laser cutter or other means of model making to create the hardware
enclosures. These are a few hardware improvements that you can implement:

e The sensor and actuators that are assembled on a prototype board can be organized on
a PCB and permanently fixed for stable and robust operation.

e A hardware enclosure for the monitoring station can make it portable and easily
deployable in any environment. When designing this enclosure, you should also
consider the proper placement of the motion sensor and the ambient light sensor,
along with a button to make them accessible to the user.

e The Raspberry Pi and TFT LCD screen, which make up the control center hardware,
can also be enclosed in a mountable package.

¢ Adding touch screen capabilities to the TFT LCD screen can enable additional
control over the system, expanding the UX use cases.

www.it-ebooks.info

http://www.shapeways.com
http://www.sculpteo.com
http://www.makexyz.com
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Summary

In this chapter, we developed a working prototype of a remote home monitoring system
and also learned the process of hardware product development simultaneously. In the
project, we utilized most of the hardware components and software tools that we used
throughout the book. We began by designing the system architecture so that we could
coordinate the utilization of these tools. Later, we ventured into the actual development
stages, which included designing the hardware units and developing programs to run these
units. In the end, we provided a list of improvements to make this prototype into a real
commercial product. You are welcome to use this methodology to develop your future
projects and products, as you now have experience working with this one.

In the last chapter, we are going to utilize the same project development methodology to
create an interesting project that utilizes your messages from a social network website to
give you control over your hardware.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11. Tweet-a-PowerStrip

Smart power management units or strips are part of some of the most popular [oT
subdomains, smart homes and smart grids. Nowadays, smart power strips are
commercially available and provide a large number of features, such as remote access,
smart power usage, and power management. In this project, we are going to create a smart
DIY power strip that can be controlled remotely using status messages posted on Twitter,
the popular social media website (http://www.twitter.com). These messages are also
known as tweets. Basically, just like you can control sensors remotely using a web
browser, you can control them by sending a tweet. We’ve already worked with low-power
sensors in the previous project, so let’s work with AC appliances in this project. We will
be implementing the same project development methods that we utilized in the previous
project. This chapter avoids additional explanations about the process and sticks only to
the details associated with the project.

www.it-ebooks.info

http://www.twitter.com
http://www.it-ebooks.info/

Project overview

This project requires the development of a smart power strip using Arduino and Python,
while the control inputs to the strips are tweets. Although we are only enabling remote
access to the power strip, there are a large number of additional features that can be
implemented in future to elevate this DIY project to a commercial product.

The major goals we want to achieve in this project are as follows:

e The user should be able to turn the individual power ports on and off using
customized tweets
e The user should be able to check the status of the power ports using Twitter

www.it-ebooks.info

http://www.it-ebooks.info/

Project requirements

Here are the initial project requirements, derived from the goals:

e The system should have 110V (or 220V) AC power ports interfaced with relays.

¢ An Arduino-based unit should be able to control these relays, ultimately controlling
the appliance connected through the power ports.

e The system should be able to decode the tweets sent by the user and convert them
into appropriate control messages for Arduino.

e The Python-based program that processes the tweets should then publish these
messages so that Arduino can complete those actions using the relays.

e To sum up, the relays should be controlled in a near real-time manner using the
tweets sent by the user.

e The system should also understand keywords to check the status of the relays and
automatically tweet the status. The system should process a tweet only once and
should be able to remember the last tweet processed.

Note
110V versus 220V AC power

Depending on the country, your AC power supply may have voltage ratings of
110/120V or 220/240V. Although the circuit diagram used by this project mentions a
110V AC power supply, the same circuit should also work for a 220V power supply.
If you are using a 220V supply, check out the following notes before moving
forward:

o Ensure that the appliances you are trying to operate, such as fans, lights, and so
on, are rated for similar AC power

o You have to ensure that the relays used by the project are compatible with your
AC power supply

o Arduino works on a DC power supply, and it is not affected by any variation in
AC power

www.it-ebooks.info

http://www.it-ebooks.info/

System architecture

From the preceding requirements, let’s sketch the architecture of the Tweet-a-PowerStrip
system. The system architecture tries to utilize the hardware components and software
tools you learned in the previous chapters, while having a relay component as the only
exceptional component. As you can see in the architecture in the following diagram, we
are employing the relay to control various home appliances. These appliances are usually
powered by a common 110V AC power supply available in each home. Instead of
controlling a single appliance, we are implementing a four-channel relay to control at least
four appliances, such as a lamp, a fan, a toaster, and a coffee machine.

15.;.:_"- - u_ . %
.____.-V
¥
T iy [ty e
E PR Relay . Twitter

e
H thernat WIF\I\ A A _‘ H
SRERCTIE Y

Arduino =
Computation
units

The relay is controlled using the digital pins of the Arduino Uno board, which utilizes the
Ethernet Shield to connect to your home network. A computation unit that may consist of
a computer, a Raspberry Pi, or a server, uses Python and its supporting libraries to access
tweets. The computation unit also deploys a Mosquitto broker. This broker handles the
topics from the Python program and Arduino to control the relays. The user can post
tweets containing keywords from any platform, such as a phone or a browser, and the
tweets are ultimately captured by the computation unit.

www.it-ebooks.info

http://www.it-ebooks.info/

Required hardware components

This project will require the following hardware components throughout the development
and the deployment stages:

Component ||Amount 'Website/note
Arduino Uno ||1 https://www.sparkfun.com/products/11021
Arduino Ethernet Shield ||1 https://www.sparkfun.com/products/9026
Relay (four-channel, Arduino- 1 http://www.amazon.com/JBtek-Channel-Module-Arduino-
compatible) Raspberry/dp/BOOKTEN3TM/
http://www.powerswitchtail.com/
PowerSwitch Tail 4
Alternative to relay
Power strip ||Optional ||
Breadboard ||1 For development stage
USB cable for Arduino ||1 For development stage
Arduino power supply ||1 For deployment stage
Electric tape AS per
requirements
Connection wires AS p.e i
requirements

Relays

As you can see in the following image, we are introducing a new hardware component
that was not utilized in any of the previous chapters—a relay:

www.it-ebooks.info

https://www.sparkfun.com/products/11021
https://www.sparkfun.com/products/9026
http://www.amazon.com/JBtek-Channel-Module-Arduino-Raspberry/dp/B00KTEN3TM/
http://www.powerswitchtail.com/
http://www.it-ebooks.info/

LRS-

et I

- Keye £
. Jeri4RIE =

2 ¢ 2 Er 0% e dunduine

—

b o,
]
= €A R

04 250y
y 24 svpp 4 g
LU &ne

O

Images courtesy - www.de.com

This is an electromagnetic device that uses electricity to be operated as a switch. A typical
relay contains three contacts on the high-power side, normally connected (NC), common
(C), and normally open (NO). The other side (the control side) of the relay requires an
activation voltage to toggle the connection from common-NC to common-NO. This action
demonstrates the switch functionalities for the connection on the high-power side. We’ll
use Arduino-compatible relays from manufacturers such as Keyes or SainSmart. These
relays are available in single-, two- or four-channel configurations. On the high-power
side, the relays support up to 250V, 10A AC power or 30V, 10A DC power. The relays are
controlled using 5V DC on the low-power side, which is provided using the digital I/O
pins of the Arduino board.

PowerSwitch Tail

Working with AC power can be hazardous if you haven’t dealt with it previously or if you
are not familiar with the necessary precautions and measurements. If you are not
comfortable with working with open relays or connecting AC power to them, there is
another device that you can use to replace the relay—the PowerSwitch Tail, a safely
enclosed box that contains optically isolated solid-state relays and provides a convenient
way to interface your AC appliance with the Arduino board. The following is an image of
the PowerSwitch Tail, which can be obtained from its official website
(http://www.powerswitchtail.com/):

www.it-ebooks.info

http://www.powerswitchtail.com/
http://www.it-ebooks.info/

FoerSwitch Tai i

PR POt S e Tl e

N X Geownd

Note

If you are dealing with a 220V/240V power supply, the PowerSwitch Tail website also
provides an assembly kit for 200V to 240V power supply, at

http://www.powerswitchtail.com/Pages/PowerSwitchTail240vackit.aspx.

It is really easy to assemble the kit from the guidelines provided at
http://www.powerswitchtail.com/Documents/PSSRTK%20Instructions.pdf.

For this project, you will need four of these devices to replace the four-channel relay that
we are going to use. As you can see in the following diagram, one end of the Tail goes into
the regular power port, while you need to connect your appliance to the other port.
Meanwhile, you can use the three control inputs to control the relay. We are using one of
the digital I/O pins of the Arduino board to send the control signal to the Tail. When going
ahead with the Tails instead of the relays, make sure that you make necessary amendments
to the upcoming hardware design.

www.it-ebooks.info

http://www.powerswitchtail.com/Pages/PowerSwitchTail240vackit.aspx
http://www.powerswitchtail.com/Documents/PSSRTK%20Instructions.pdf
http://www.it-ebooks.info/

PowerSwitch Tail

Towards
the appliance

From power
socket

fritzing

www.it-ebooks.info

http://www.it-ebooks.info/

User experience flow

From the system architecture we have created, what should the user experience (UX)
flow while working with the Tweet-a-PowerStrip be? We have divided the UX into two
separate sections: controlling the power to the appliances, and checking the status of the
power strip.

In the first UX flow design, as displayed in the following diagram, the user begins by
sending a tweet containing the name of the appliance (#fan, #lamp, #toaster, or #coffee)
and the control command (#on or #off). The system should be able to handle the tweet
from the point of parsing until the appliance has behaved as asked for. The system should
also provide a hassle-free experience for the user, where the user doesn’t have to perform
any further actions than simply sending tweets.

PowerStrip Computation . A
+ Arduino Unit
Tweet using mobile Tweet using web Tweet from any
app browser other source

Tweat with keyword
o toggle power

Fetch tweet -+

Has keywords
to toggle
power?

¥

lgnore for
this case

Received
message from
Subscribed
channels

ook

Turn onfoff relay

Publish to channel

I

Tum onfoff power

'

Fan/Bulb/TV
on/off

Toggle power port

Similarly, the user should be able to post #status #check tweets and simply obtain the
status report posted back by the system. The system should handle checking the status of
the power ports, publishing it to the computation unit, and posting a tweet with the
message without any additional input from the user.

www.it-ebooks.info

http://www.it-ebooks.info/

The following diagram shows the UX flow for checking the system status:

PowerStrip
+ Arduino

Subscribe to this -

Computation

Lnit

-
¥ User

app

Tweet using mobile

Tweet using web
browser

Tweet from any
other source

\l/

Fetch tweet

stas?

[)

Ignore for
this case

Publish to message

channel

Check slalus

Publish status

to ask for status

= Received slalus

Post tweet with
status

Tweet with
keywords to check
status

Check port status

Check tweet status

www.it-ebooks.info

http://www.it-ebooks.info/

Development and deployment stages

According to the architecture, we require two main development stages to complete the
project. The first stage, which interacts with the appliance through the relays, is developed
using Arduino. This unit subscribes to the topics associated with the appliances, and once
it receives an appropriate message, it executes the action on the relay level. In the second
stage, we deal with the individual tweets, where we parse the tweets from the Twitter
account, check for duplicates, decode actions from the messages, and also post tweets with
status reports. During these development stages, we are going to use a breadboard and
jumper wires to test the Arduino and Python programs. At this stage, the project is still not
ready to deploy as a portable unit for daily usage.

The deployment stage contains tasks of creating a PCB for the breadboard connections
and insulating wires to avoid any electric hazard. You can also buy or create an enclosure
box to isolate the open hardware from physical contact. As the development stage contains
everything that is required to convert the project into its working state, we are not going to
dive deep into the deployment stage. You can perform addition deployment tasks
according to your personal requirements.

Let’s start from the hardware design stage and develop the physical section of the smart
power strip using Arduino.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Stage 1 — a smart power strip with
Arduino and relays

The hardware of Tweet-a-PowerStrip contains Arduino as the main controller unit that
interfaces with the relays and the Ethernet Shield to communicate with the computation
unit. The Arduino code implements the MQTT client, using the PubSubClient library to
publish and subscribe to the topics. Although we are using some example appliances to
control the use of the relay, you can select any other appliance you own. You can also use
a commercial power strip instead of an individual power plug.

www.it-ebooks.info

http://www.it-ebooks.info/

Hardware design

While assembling the hardware components, as displayed in the following diagram, make
sure you are precise in connecting the appliances with the AC power plugs. One wire of
the AC plug is directly connected to the appliance, while the other is connected between
the C and NO ports of the relay. We have connected the control side of the relay to the
digital pin of our Arduino. As we are using a four-channel relay, we will have to utilize
four digital IO pins from the Arduino board. Complete the remaining connections as
shown here:

Arduino
+
Ethernet shield

||||||||||||||||||||||||||||||
..............................
++++++++++++++++++++++++++++++

.......................
ccccccccccccccccccccccc

Connecting the hardware unit is fairly simple, but requires a lot of precision because it
involves high-power AC connections.

Tip

You should cover the open 110V AC power cords going to the relay and the appliance
with electric tape to avoid any type of electrical hazard. Keeping these live wires open can
be really dangerous due to the large amount of current being carried by them. In the

deployment stage, a plastic cover or a box around the relay unit can also be helpful in
covering the live power wires.

Once you are ready with the connections, connect the Arduino board to your computer

www.it-ebooks.info

http://www.it-ebooks.info/

using a USB port, as shown in the following image:

www.it-ebooks.info

http://www.it-ebooks.info/

The Arduino code

The Arduino sketch for this section is located in the folder containing the chapter code
with the Arduino_powerstrip.ino filename. You can open the file in the Arduino IDE to
explore the code. As usual, you will have to change the IP addresses of the device and the
Mosquitto server to the appropriate IP addresses, while also changing the MAC address of
the Ethernet Shield. The following code snippet shows the declaration of the Arduino pins
and their roles in the main function, setup(). Make sure that you are using the same pin
numbers that you have used to connect the relay. Alternatively, you can change the
appliance name to that of the appliance you are using. Also, make sure whatever changes
you make in the variable names should be reflected in the entire code to avoid any
compilation errors:

pinMode(FAN, OUTPUT);
pinMode(LAMP, OUTPUT);
pinMode(TOASTER, OUTPUT);
pinMode (COFFEEMAKER, OUTPUT);
fanStatus = false;

lampStatus = false;
toasterStatus = false;
coffeemakerStatus = false;
digitalWrite(FAN, LOW);
digitalWrite(LAMP,LOW);
digitalWrite(TOASTER, LOW);
digitalWrite(COFFEEMAKER, LOW);

In the setup() function, the code also subscribes to the appropriate MQTT channels so
that it can receive messages from the Mosquitto broker as soon as they are available. As
you can see, we are also subscribing to the PowerStrip/statuscheck channel to deal with
the status report:

if (client.connect("PowerStrip")) {
client.subscribe("PowerStrip/fan");
client.subscribe("PowerStrip/lamp");
client.subscribe("PowerStrip/toaster");
client.subscribe("PowerStrip/coffeemaker");
client.subscribe("PowerStrip/statuscheck");

}

In the callback() function, we use the if statement to match the topic with the
appropriate digitalwrite() action. As you can see, we are setting up HIGH and LOW
statuses for the digital pin when the program receives on and of f messages, respectively
(for that appliance). With this action, we are also changing the state of the Boolean
variable associated with the appliance, which will be helpful in retrieving the status of the
port. The same process is then repeated for all appliances:

if(topicS == "PowerStrip/fan"){
if (payloadS.equalsIgnoreCase("on")) {
digitalWrite(FAN, HIGH);
fanStatus = true;

}

www.it-ebooks.info

http://www.it-ebooks.info/

if (payloadS.equalsIgnoreCase("off")){

}

digitalWrite(FAN, LOW);
fanStatus = false;

}

When the system receives a get message that is associated with the status check, the
program creates a message using the Boolean variables that we toggled earlier. The
program then publishes the status to the PowerStrip/statusreport channel:

if(topicS.equals("PowerStrip/statuscheck")){
if (payloadS.equalsIgnoreCase("get")) {

¥
3

Just as we did in the previous project, you can set up the code to periodically send keep

String report = "";
if (fanStatus) report += "Fan:on,";
else report += "Fan:off,";

if (lampStatus) report += "Lamp:on,";
else report += "Lamp:off,";

if (toasterStatus) report += "Toaster:on,";
else report += "Toaster:off,";

if (coffeemakerStatus) report += "Coffeemaker:on";
else report += "Coffeemaker:off";

report.toCharArray(reportChar, 100);
client.publish("PowerStrip/statusreport", reportChar);

alive messages to avoid the termination of the connection with the Mosquitto broker.

Once you are ready with the code, connect the Ethernet cable, compile the code, and then
upload it to your Arduino. Your Arduino should be in receiving mode now, and it will wait
for the message from the subscribed channels. As we discussed in the previous the project,

you need to ensure that your Mosquitto broker is running on the server IP address you
specified in the Arduino code.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Stage 2 — the Python code to process
tweets

As the user is interacting with the system at the level of the Twitter application, we do not
require a deployable computation or control unit for this project. Due to this, we can just
use any computer capable of hosting Python and Mosquitto as the computation unit. You
still need to ensure that the unit is always on and connected to the Internet, otherwise the
system will not work as expected. For simplicity, you can deploy the system on the
Raspberry-Pi-based control center that you developed in the previous project, or even on
the Amazon AWS server. For the development stage, let’s start with the regular computer
that you have been using all along. We are assuming that this computer has the Mosquitto
broker installed and running. Note down the IP address of this unit, as you will need it in
the Arduino code that you developed in the previous section.

www.it-ebooks.info

http://www.it-ebooks.info/

Python software flow

The Python code deals with two services during execution, the Twitter API to get or post
tweets and the Mosquitto broker to relay messages to the hardware unit. The program
begins by parsing the latest tweet from the user account and checking whether it has been
utilized in the previous action or not. This avoids any command duplication, as the
frequency of new tweets is significantly lower than the frequency of the program loop.
Once the code finds a new tweet with the appropriate keywords to perform operations on
the appliance (or appliances), it publishes the message to the Mosquitto broker. If the
tweet contains a message to check the status, the code requests the status from your
Arduino and posts a new tweet with the status after receiving it.

The following diagram shows the detailed program flow of the computation unit:

Delay before
naxt parsa
4

as keyword
o toggle
pawer?

Mo

Ne

has keywords to
check status?

v

Publish onfoff
message for
power

W v

Receive status
message

L]

Tweet status
message

Publish status
ngquiry
message

Emd

You can change the program flow to accommodate any other feature you want to add at
the Python level. The logic behind identifying and toggling the appliance can be
improvised to accommodate more complex tweet text.

www.it-ebooks.info

http://www.it-ebooks.info/

Setting up the Twitter application

We are assuming that you have a Twitter account by now. If you don’t, you can create a
new account just for this project to avoid changes to your own profile. With the
introduction of the latest APIs, Twitter requires you to authenticate using OAuth before
accessing any information from your account. To do that, you will have to create a Twitter
app using your account. Execute the following steps in order to create a new Twitter app
for this project:

1. Log in to your Twitter account and open the https://apps.twitter.com address in your
web browser.

2. Click on the Create New App icon on the page, and you will be directed to a page
asking for your application details, as displayed in the following screenshot:

Application details

Name *

Description *

Website *

Callback URL

3. Fill in all the required details (marked with red asterisks) and continue to the next
page. Ensure that your application name is unique, as Twitter asks for a unique
application name.

4. Once your application is created, you can click on the API Keys tab and find the
consumer key (API key) and consumer secret (API secret) for your app. Save this
information in a safe place, as you will need them to authenticate with the Twitter
APIL.

www.it-ebooks.info

https://apps.twitter.com
http://www.it-ebooks.info/

Details Settings APl Keys Permissions

Application settings

API key
API secret

Access level Read-only (modify app permissions)
Owner Tweet_a_Strip

Owner ID

5. Asthe UX of the Tweet-a-PowerStrip project requires the system to automatically
send the system status, we need read-and-write access to our application. Go to the
Permissions tab, select the Read and Write option, and save it for the changes to
take effect.

Details Settings APIKeys Permissions

Access

What type of access does your application need?

r Application Permission Model.
() Read only

(=) Read and Write
() Read, Write and Access direct messages

6. Once you are done with setting up the permissions for the application, go back to the
API keys tab and click on the Create Access Token icon to generate a new access
token for this application. After a while, you should be able to see the access token
on the same page, as displayed in this screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Your access token

ACcess token

ACCESsS 1oKen secrat r e - - — ——a -
Access level Read and write

Owner Tweet_a_Strip

Owner 1D =

7. Save the Access token and Access token secret information. Your application is now
ready for use and can help you to authenticate with the Twitter API.

Now let’s move on to the Python code.

www.it-ebooks.info

http://www.it-ebooks.info/

The Python code

Before you jump into the code, you are required to install the Twitter library for Python.
Use the Setuptools or pip to install the library using the following command. We are
assuming that you already have the latest paho_mqtt library installed on your computer:

$ sudo pip install python-twitter

The Python code for this section is located in the code folder with the
PythonTweetAPowerStrip.py filename. Open the code in your IDE and start exploring it.
The code contains two parallel threads to handle the tweets and the Mosquitto library
separately.

As you can see in the following code snippet, we are using the Api class from the python-
twitter library to establish a connection with the Twitter API. We are using the consumer
key, consumer secret, access token key, and access token secret values for this
authentication. Once the authentication is established, the Api class can be used to get the
latest status from the timeline using the GetHomeTimeline() function call, and to post the
new status using the PostUpdate () function call. The GetHomeTimeline() function gives
an array of statuses from the user; we need the latest status, which can be fetched using
statuses[0] (the first element of the array):

apl = twitter.Api(consumer_key="'<consumer-key>"',
consumer_secret="'<consumer-secret>"',
access_token_key="'<access-token-key>"',
access_token_secret="access-token-secret>")

Once we have retrieved the latest tweet, we need to make sure that we haven’t used that
tweet already. So we save the latest tweet ID in a global variable, as well as in a file in
case we need to run the code again:

with open('lastTweetID.txt', 'w+') as fh:
lastTweetId = fh.readline()
print "Initializing with ID: " + lastTweetId

We retrieve the ID of the previous tweet from the lastTweetID. txt file to match with the
latest ID. If it doesn’t match, we update the lastTweetID. txt file with the latest ID for
the next loop:

if lastTweetId != str(currentStatus.id):
lastTweetId = str(currentStatus.id)
print "Updated file with ID: " + lastTweetId
with open('lastTweetID.txt', 'w+') as fh:
fh.write(lastTweetId)
currentStatusText = currentStatus.text
print currentStatusText

Once we have identified the latest unique tweet, we use the Python string operation to
decode the keywords for the appliance and power commands. As you can see in the
following code snippet, the keyword we are looking for in the tweeted text to access the
fan is #fan. Once we have identified that the message is directed to the fan, we check for

www.it-ebooks.info

http://www.it-ebooks.info/

action keywords such as #on and #off, and then take the associated action of publishing
the message to the Mosquitto broker. We repeat this action for all the appliances connected
to the system. Your Arduino takes an action using the published message, and completes
the UX flow for the controlled appliances:

if "#fan" in currentStatusText.lower():
if "#on" in currentStatusText.lower():
cli.publish("PowerStrip/fan", "on")
if "#off" in currentStatusText.lower():
cli.publish("PowerStrip/fan", "off")

Similarly, when the code receives an update from the PowerStrip/statusreport topic, it
obtains the status from the message payload and posts it as a new tweet to the user
timeline of that Twitter account. This completes the UX flow for the status check using
Twitter:

def onMessage(mosq, obj, msg):
if msg.topic == "PowerStrip/statusreport":
print msg.payload
api.PostUpdate(msg.payload)

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Testing and troubleshooting

Testing can simply be performed by posting the #fan #on status to the Twitter account
used in this project. You should be able to see the fan turning on by using the command
shown here:

0 Tweet-a-PowerStrip @Tweet_a_Strip - 4h
Fan #on September £ ¥

Similarly, send the #fan #off status to turn off the fan. You may find some lagging, as the
loop used to retrieve the tweets is set with a delay of a minute.

Tweet-a-PowerStrip ¢ t 4h

Fan #off September 17

To access the status of the system, post the #status #get status to the account, and you
will be able to see the system status automatically posted by the computation unit.

Tweet-a-PowerStrip @Twe 3 Strip + now

status #get

The tweet shown in the following screenshot is generated using the Tweet-a-PowerStrip
unit. It displays the status of all the connected appliances.

Tweet-a-PowerStrip

Fan:on,Lamp:off, Teaeter off, Coffeemaker:off

While working with the system, you will want to either avoid the following scenarios or
troubleshoot them:

e 'Twitter rate limit exceed' error: Twitter imposes a limit on the number of
requests you can make to their public APL. If you are requesting the API too often

www.it-ebooks.info

http://www.it-ebooks.info/

(this often occurs when you reduce the sleep time between consecutive queries), your
application will exit with an exception. To avoid this, set a longer sleep time in the
Python program loop before requesting the API again. There is a trade-off between
the frequency of requests and the response time of your appliances. You can learn
about this limitation at http://dev.twitter.com/rest/public/rate-limiting and adjust your
request interval accordingly. Once you have received this error, you will have to wait
for some time (approximately 10 to 15 minutes) before making requests to the
Twitter API again.

'Read-only application cannot post' error: This error will only occur if you
forgot to change the permissions on your application to Read and Write from Read
only. Make sure that you have performed this change. Also, Twitter takes some time
for the changes to take effect.

www.it-ebooks.info

http://dev.twitter.com/rest/public/rate-limiting
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Extending the project with additional
features

The current system can be expanded to include multiple features:

You can start saving the time duration in which a particular appliance was on or off,
and then provide a detailed analysis to the user. You can also use this information to
calculate the energy being expended by these appliances.

You can utilize the current measurement sensors to calculate the power load at each
port. Combining it with the time the device was on, you can calculate very
comprehensive power usage to further improve power management.

You can use the system clock with the motion sensor to intelligently turn off the
appliance during nights and periods of no activity.

The Tweet-a-PowerStrip project can be interfaced with the remote home monitoring
system that we developed in the previous project, in order to obtain useful
information from other sensors being used in the same house.

One of the modifications you can easily implement is to utilize Twitter’s private
messages instead of its tweets to control the appliances. This will extend the access
permissions of your system to other trusted Twitter accounts. For security reasons,
you should tighten the access level and only let approved people post such messages
to your account.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Summary

You have now successfully completed two different IoT projects using just two base
technologies, Arduino and Python. With the current project, it is obvious that it is very
easy to interface any other technology, tool, or API with Arduino and Python. The project
development methodology we used in these two projects will also help you with your DIY
projects and other future products. Happy prototyping! And happy coding!

www.it-ebooks.info

http://www.it-ebooks.info/

Index
A

e Amazon AWS platform

o about / Getting familiar with the Amazon AWS platform
o URL / Getting familiar with the Amazon AWS platform
o account, setting up / Setting up an account on AWS

¢ analog digital buzzer

o URL / Buzzer — generating sound alarm pattern
e architecture, IoT web applications
o about / Architecture of IoT web applications
o physical layer / Architecture of IoT web applications
o computation layer / Architecture of IoT web applications
o interfacing layer / Architecture of IoT web applications

e Arduino
o about / Introduction to Arduino
o history / History
o objectives / Why Arduing?
o variants / Arduino variants
o Uno board / The Arduino Uno board
o URL, for installation on Linux / Linux
o interfacing, with Python / Prototyping

o computer networking / Arduino and the computer networking
Arduino, interfacing with Xively

about / Interfacing Arduino with Xively
Arduino data, uploading / Uploading Arduino data to Xively
data, downloading to Arduino / Downloading data to Arduino from Xively
advanced code, for data upload and download / Advanced code to upload and
download data using Arduino
Arduino board
o StandardFirmata sketch, uploading / Uploading a Firmata sketch to the Arduino
board
o setting up, pyFirmata methods used / Setting up the Arduino board
Arduino board connection
o establishing / Connecting the Arduino board
o establishing, on Linux / Linux
o establishing, on Mac OS X / Mac OS X
o establishing, on Windows / Windows
o troubleshooting / Troubleshooting
Arduino code, Tweet-a-PowerStrip / The Arduino code
Arduino data
o storing, in CSV file / Storing Arduino data in a CSV file
o plotting, from CSV file / Plotting data from a CSV file

(e]

O O O

www.it-ebooks.info

http://www.it-ebooks.info/

e Arduino Ethernet library

o about / Arduino Ethernet library
URL / Arduino Ethernet library
Ethernet class / The Ethernet class
IPAddress class / The IPAddress class
Server class / The Server class

o Client class / The Client class
e Arduino Ethernet Shield

o about / Arduino Ethernet Shield

o URL / Arduino Ethernet Shield
e Arduino IDE

o about / Arduino variants, Getting started with the Arduino IDE
installing / Installing the Arduino IDE
installing, on Linux / Linux
URL, for installation on Ubuntu / Linux
URL, for installation on Fedora / Linux
installing, on Mac OS X / Mac OS X
installing, on Windows / Windows
URL, for setup file / Windows
sketch / What is an Arduino sketch?

libraries / Working with libraries

examples, using / Using Arduino examples

URL, for built-in examples / Using Arduino examples
sketch, compiling / Compiling and uploading sketches
sketch, uploading / Compiling and uploading sketches

o serial monitor, using / Using the Serial Monitor window
¢ Arduino interrupts

o about / Using Arduino interrupts
o using / Using Arduino interrupts
o reference link / Using Arduino interrupts
e Arduino pins
o configuring / Configuring Arduino pins
configuring, with direct method / The direct method
pin modes, assigning / Assigning pin modes
working with / Working with pins
data, reporting / Reporting data
monitoring / Manual operations
write() method, using / The write() method
o read() method, using / The read() method
e Arduino programming
o about / Introduction to Arduino programming
o comments / Comments
o variables / Variables
o constants / Constants

O O O o

O 0O 0O O 0O 0O o o o o o o o

O O O O O O

www.it-ebooks.info

http://www.it-ebooks.info/

O O O

(e]

data types / Data types
conversion functions / Conversions

statements / Functions and statements
functions / Functions and statements

Arduino sketch, monitoring station

e}

o
o
o

about / The Arduino sketch for the monitoring station
sensor information, publishing / Publishing sensor information
actuator actions, subscribing to / Subscribing to actuator actions

interrupt, programming / Programming an interrupt to handle the press of a
button

Arduino WiFi Shield

e}

e}

about / Arduino WiFi Shield
URL / Arduino WiFi Shield

Arduino Yun

e}

e}

about / Arduino Yun
URL / Arduino Yun

array data type

e}

about / Data types

www.it-ebooks.info

http://www.it-ebooks.info/

BH1750 light sensor
o interfacing, Arduino used / Arduino coding for the BH1750 light sensor
o interfacing, PyMata library used / Interfacing BH1750 using PyMata
boolean data type
o about / Data types
breadboard
o using / Working with the breadboard
URL / Working with the breadboard
history / Working with the breadboard
o reference link / Working with the breadboard
broker
o about / MQTT — A lightweight messaging protocol
built-in functions
o about / Built-in functions
o conversion methods / Conversions
o math operations / Math operations

o string operations / String operations
o URL / String operations
built-in types
o about / Python operators and built-in types, Built-in types
o data structures / Data structures
Button() widget
o about / Learning Tkinter for GUI design, The Button() widget — interfacing GUI
with Arduino and LEDs
o using / The Button() widget — interfacing GUI with Arduino and LEDs
buzzer
o using / Buzzer — generating sound alarm pattern
o connections / Connections
o Python code / The Python code
byte data type

o about / Data types

(e]

(e]

www.it-ebooks.info

http://www.it-ebooks.info/

callback

e}

about / The Label() widget — monitoring I/O pins

Carriots

e}

about / Carriots

char data type

e}

about / Data types

Checkbox() widget

e}

about / Learning Tkinter for GUI design

Checkbutton() widget

e}

e}

about / The Checkbutton() widget — selecting .LEDs
used, for selecting LEDs / The Checkbutton() widget — selecting LEDs

Client class

e}

about / The Client class

close() method

e}

used, for closing file / The close() method

comments

e}

e}

e}

about / Comments
block comment / Comments
single-line or inline comment / Comments

computer networking

e}

O O O o

about / Arduino and the computer networking

IP address, obtaining / Obtaining the IP address of your computer
networking extensions, for Arduino / Networking extensions for Arduino

Arduino Ethernet library / Arduino Ethernet library
web server, building with Arduino / Exercise 1 — a web server, your first
Arduino network program

constants

e}

about / Constants

control center, remote home monitoring system

e}

(e] O O O o

O O O o

about / Stage 2 — a control center using Python and the Raspberry Pi
architecture / The control center architecture

Python code / The Python code for the control center

GUI, creating with Tkinter / Creating the GUI using Tkinter

Mosquitto broker, communicating with / Communicating with the Mosquitto
broker

system status, calculating / Calculating the system’s status and situation
awareness

Xively, communicating with / Communicating with Xively

buzzer status, checking / Checking and updating the buzzer’s status

buzzer status, updating / Checking and updating the buzzer’s status

testing, with monitoring station / Testing the control center with the monitoring
station

www.it-ebooks.info

http://www.it-ebooks.info/

o setting up, on Raspberry Pi / Setting up the control center on the Raspberry Pi
conversion functions
o char() / Conversions
byte() / Conversions
int() / Conversions
float() / Conversions
about / Conversions
CSV file
about / Using CSV files to store data
used, for storing data / Using CSV files to store data
Arduino data, storing / Storing Arduino data in a CSV file
data, plotting / Plotting data from a CSV file
custom cloud platform, IoT
o configuring / Your own cloud platform for the IoT

o Amazon AWS platform / Getting familiar with the Amazon AWS platform
cyber-physical systems / Architecture of IoT web applications

O O O o

O O O

(e]

www.it-ebooks.info

http://www.it-ebooks.info/

D

e data structures

about / Data structures
list / Lists

tuples / Tuples

sets / Sets

dictionaries / Dictionaries
URL / Dictionaries

e data types

about / Data types
void / Data types
boolean / Data types
byte / Data types
int / Data types
float / Data types
char / Data types
o array / Data types
e DC motors
o using / DC motor — controlling motor speed using PWM
o connections / Connections
o Python code / The Python code
e deployment stage, Tweet-a-PowerStrip
o about / Development and deployment stages
e design methology, IoT projects
o about / The design methodology for IoT projects
¢ development stage, Tweet-a-PowerStrip
o about / Development and deployment stages
¢ development stages, remote home monitoring system
o defining / Defining the project development stages
¢ do-it-yourself (DIY) projects
o about / Introduction to Arduino
e Dual in-line Package (DIP)
o about / Working with the breadboard
e Dynamic Host Control Protocol (DHCP)
o about / The Ethernet class

(e]

O O O O O

(e]

O O O O O O

www.it-ebooks.info

http://www.it-ebooks.info/

EC2 service
o about / Getting familiar with the Amazon AWS platform
electronic components
o interfacing, with Arduino / Prototyping
End of Line (EOL)
o about / Playing with a pySerial example
Entry() widget
o about / Learning Tkinter for GUI design, The Entry() widget — providing manual
user inputs
o used, for providing manual user inputs / The Entry() widget — providing manual

user inputs
Ethernet class

o about / The Ethernet class
ez_setup.py file
o URL, for downloading / Windows, Mac OS X

www.it-ebooks.info

http://www.it-ebooks.info/

Fedora/Red Hat Linux
o Python, installing / Fedora and Red Hat
files
o working with / Working with files in Python
manipulating, with open() method / The open() method
write() method, using / The write() method
closing, close() method used / The close() method
read() method, using / The read() method
o with statement, using / The with statement — Python context manager
Firmata
o about / Introducing the Firmata protocol
o URL / What is Firmata?, Testing the Firmata protocol
o StandardFirmata sketch, uploading to Arduino board / Uploading a Firmata
sketch to the Arduino board

o testing / Testing the Firmata protocol
o and pySerial library, bridging / Bridging pySerial and Firmata
Firmata libraries

o disadvantages / Useful pySerial commands
float data type

o about / Data types
formatting tool, SD card
o URL, for downloading / Preparing an SD card
for statement
o about / The for statement
Fritzing
o about / Testing the Firmata protocol
o using / Introducing Fritzing — a hardware prototyping software
o URL / Introducing Fritzing — a hardware prototyping software
functions
o about / Functions and statements
o setup() function / The setup() function
loop() function / The loop() function
pinMode() function / The pinMode() function
functions, pins
digitalWrite() function / Working with pins
digitalRead() function / Working with pins
analogRead() function / Working with pins
analogWrite() function / Working with pins

O O O o

(e]

(e]

(e]

O O O

www.it-ebooks.info

http://www.it-ebooks.info/

G

e general-purpose input/output (GPIO) pins
o about / Hardware design
graphical user interfaces (GUISs)
o about / Why we use Python
Grid
o about / The Pack geometry manager
Grid geometry manager

o about / The Grid geometry manager
GUI, thermostat

o designing / Designing the GUI and plot in Python

o pySerial, used for streaming sensor data / Using pySerial to stream sensor data
in your Python program

o designing, Tkinter used / Designing the GUI using Tkinter

o percentage humidity, plotting with matplotlib / Plotting percentage humidity
using matplotlib

o button interrupts, using / Using button interrupts to control the parameters

o button interrupts, used for changing temperature unit / Changing the temperature

unit by pressing a button
o button interrupts, used for swapping between GUI and plot / Swapping between

the GUI and the plot by pressing a button

www.it-ebooks.info

http://www.it-ebooks.info/

hardware components, Raspberry Pi
o Raspberry Pi / What do you need to begin using the Raspberry Pi?

power cable / What do you need to begin using the Raspberry Pi?
display cable / What do you need to begin using the Raspberry Pi?
SD card / What do you need to begin using the Raspberry Pi?
mouse / What do you need to begin using the Raspberry Pi?
keyboard / What do you need to begin using the Raspberry Pi?

o USB hub (optional) / What do you need to begin using the Raspberry Pi?
hardware components, remote home monitoring system

o about / The list of required components
hardware components, Tweet-a-PowerStrip

o about / Required hardware components

o relays / Relays

o PowerSwitch Tail / PowerSwitch Tail
hardware design, IoT

o about / Hardware design, The IoT cloud platforms
hardware design, Tweet-a-PowerStrip

o about / Hardware design
hardware system design, motion-triggered LEDs

o Fritzing, using / Introducing Fritzing — a hardware prototyping software
o breadboard, using / Working with the breadboard

o hardware prototype, designing / Designing the hardware prototype
help() function
o about / Plotting random numbers using matplotlib
HIH-4030 humidity sensor
o using / The list of required components
home area network (HAN)
o about / Networking fundamentals
Homebrew
o URL,/Mac OS X
o installing / Mac OS X

O O O O O

www.it-ebooks.info

http://www.it-ebooks.info/

[2C protocol

o reference link / Prototyping with the 12C protocol
if statement

o about / The if statement
input/output (I/0) pins

o about / Arduino variants
installation, Arduino IDE

o on Linux / Linux

o on Mac OS X /Mac OS X

o on Windows / Windows
installation, paho-mqtt library / Installing paho-mgqtt
installation, pip

o about / Installing pip
installation, PubSubClient library / Installing the PubSubClient library
installation, pySerial library

o about / Installing pySerial
installation, Python

o about / Installing Python and Setuptools
on Linux / Linux
on Ubuntu / Ubuntu
on Fedora/Red Hat Linux / Fedora and Red Hat
on Windows / Windows

o on Mac OS X/ Mac OS X
installation, Python packages

o about / Installing Python packages
installation, Setuptools

o about / Installing Setuptools

o on Linux / Linux

o on Windows / Windows

o on Mac OS X/ Mac OS X
installation, web.py

o about / Installing web.py
int data type

o about / Data types
integrated circuit (IC)

o about / Prototyping with the I2C protocol
integrated development environment (IDE)

o about / Installing the Arduino IDE
integrated development environment (IDLE)

o about / The fundamentals of Python programming
Internet of Things (IoT) applications

o about / Why we use Python

O O O o

www.it-ebooks.info

http://www.it-ebooks.info/

¢ Internet Protocol (IP)
o about / Networking fundamentals
e [oT
o getting started process / Getting started with the IoT
o hardware design / Hardware design, The 10T cloud platforms
o cloud applications, developing with Python and Xively / Developing cloud
applications using Python and Xively
o custom cloud platform / Your own cloud platform for the 10T
¢ [oT cloud platform, on EC2 instance

o creating / Creating an IoT platform on the EC2 instance
o necessary packages, installing on AWS / Installing the necessary packages on
AWS

o virtual instance security, configuring / Configuring the security of the virtual
instance

testing / Testing your cloud platform

Mosquitto service, testing / Testing the Mosquitto service

basic security, configuring / Configuring and testing basic security

basic security, testing / Configuring and testing basic security

project, uploading on instance / Uploading and testing a project on the instance

project, testing on instance / Uploading and testing a project on the instance
IoT cloud platforms

Xively / The 10T cloud platforms, Xively — a cloud platform for the 0T

2lemetry / The IoT cloud platforms
Carriots / The 10T cloud platforms, Carriots

ThingSpeak / The IoT cloud platforms, ThingSpeak
IoT projects

o design methodology / The design methodology for IoT projects
IoT web applications

o architecture / Architecture of IoT web applications
IP address

o about / Networking fundamentals

o obtaining / Obtaining the IP address of your computer
obtaining, for Windows / Windows
obtaining, for Mac OS X / Mac OS X
obtaining, for Linux / Linux
[PAddress class

o about / The IPAddress class

O O O O O O

(e]

(e]

(e]

(e]

(e]

(e]

(e]

www.it-ebooks.info

http://www.it-ebooks.info/

Label() widget

o about / Learning Tkinter for GUI design, The Label() widget, The Label()

widget — monitoring I/O pins
o used, for monitoring I/O pins / The Label() widget — monitoring I/O pins

least significant bit (LSB)
o about / Arduino coding for the TMP102 temperature sensor
LED
o brightness, controlling with PWM / LED — controlling LED brightness using
PWM
o connections / Connections
o Python code / The Python code
libraries, Arduino IDE

o about / Working with libraries
o URL / Working with libraries
Line feed + Carriage Return (LF + CR)
o about / Playing with a pySerial example
Linux
o Python, installing / Linux
o Setuptools, installing / Linux
Arduino IDE, installing / Linux
Arduino board connection, establishing / Linux
IP address, obtaining / Linux
Listbox() widget
o about / The Checkbutton() widget — selecting LEDs
o URL / The Checkbutton() widget — selecting LEDs
local area network (LAN)
o about / Networking fundamentals
localhost IP address
o about / Networking fundamentals
loop() function
o about / The loop() function
o using / The loop() function

(e]

(e]

(e]

www.it-ebooks.info

http://www.it-ebooks.info/

M

e Mac OS X
o Python, installing / Mac OS X
Setuptools, installing / Mac OS X
Arduino IDE, installing / Mac OS X
Arduino board connection, establishing / Mac OS X

matplotlib, configuring / Configuring matplotlib on Mac OS X

SD card, preparing / Preparing an SD card
o [P address, obtaining / Mac OS X

e matplotlib

o about / Getting started with matplotlib
URL / Getting started with matplotlib, Configuring matplotlib on Windows
configuring, on Windows / Configuring matplotlib on Windows
configuring, on Mac OS X / Configuring matplotlib on Mac OS X
upgrading / Upgrading matplotlib
installation errors, troubleshooting / Troubleshooting installation errors
reference link / Troubleshooting installation errors
setting up, on Ubuntu / Setting up matplotlib on Ubuntu

o used, for plotting random numbers / Plotting random numbers using matplotlib
e media access control (MAC) address

o about / Networking fundamentals
e monitoring station, remote home monitoring system
o defining / Stage 1 — a monitoring station using Arduino, Designing the

monitoring station
o Arduino sketch / The Arduino sketch for the monitoring station

e Mosquitto
o about / Mosquitto — an open source MQTT broker
URL / Mosquitto — an open source MQTT broker
setting up / Setting up Mosquitto
o initialization / Getting familiar with Mosquitto
e most significant bit (MSB)
o about / Arduino coding for the TMP102 temperature sensor
e motion-triggered LEDs
o developing / Motion-triggered LLEDs — the project description

project goals / The project goal

examples / The project goal
online resources / The project goal

software flow design / The software flow design
hardware system design / The hardware system design

o hardware connections, testing / Testing hardware connections
e motion-triggered LEDs, components

o PIR sensors / The list of components

o LEDs / The list of components

O O O O O

O O O O O o o

(¢]

(¢]

O O O O O

www.it-ebooks.info

http://www.it-ebooks.info/

O O O O O

e}

wires / The list of components

resistors / The list of components
breadboard / The list of components
Arduino board / The list of components
USB cable / The list of components
computer / The list of components

e motion-triggered LEDs, using Arduino sketch

e}

O O O O O O

e}

developing / Method 1 — using a standalone Arduino sketch

project setup / The project setup

coding / The Arduino sketch

setup() function, using / The setup() function

loop() function, using / The loop() function

custom Arduino functions, using / Working with custom Arduino functions

testing / Testing
troubleshooting / Troubleshooting

e motion-triggered LEDs, using Python and Firmata

e}

O O O O O O

e}

developing / Method 2 — using Python and Firmata

project setup / The project setup
Python executable files, using / Working with Python executable files

coding / The Python code

pyFirmata methods, using / Working with pyFirmata methods
Python functions, using / Working with Python functions

testing / Testing
troubleshooting / Troubleshooting

MQTT

e}

e}

e}

about / MQTT — A lightweight messaging protocol
URL / Introduction to MQTT

Mosquitto / Mosquitto — an open source MQTT broker

MQTT, on Arduino

e}

e}

PubSubClient library, using / MQTT on Arduino using the PubSubClient library
Arduino MQTT client, developing / Developing the Arduino MQTT client

MQTT, on Python

e}

paho-maqtt library, using / MQTT on Python using paho-mgqtt, Using the paho-
mqtt Python library

MQTT Gateway

(¢]

O O O O

developing, for Arduino / Exercise 4 — MQTT Gateway for Arduino

Arduino developing, as MQTT client / Developing Arduino as the MQTT client
developing, Mosquitto used / Developing the MQTT Gateway using Mosquitto
extending, web.py used / Extending the MQTT Gateway using web.py

testing / Testing your Mosquitto Gateway

www.it-ebooks.info

http://www.it-ebooks.info/

N

e Nest Thermostat
o URL / Thermostat — the project description
e networking
o fundamentals / Networking fundamentals
local area network (LAN) / Networking fundamentals
home area network (HAN) / Networking fundamentals
wide area network (WAN) / Networking fundamentals
protocols / Networking fundamentals
media access control (MAC) address / Networking fundamentals
Internet Protocol (IP) / Networking fundamentals
IP address / Networking fundamentals
o localhost IP address / Networking fundamentals
networking extensions, for Arduino
about / Networking extensions for Arduino
Arduino Ethernet Shield / Arduino Ethernet Shield
o Arduino WiFi Shield / Arduino WiFi Shield
o Arduino Yun / Arduino Yun
newline character

o about / Playing with a pySerial example

o URL / Playing with a pySerial example
New Out Of Box Software (NOOBS)

o about / Preparing an SD card
NumPy package

o URL / Configuring matplotlib on Windows

O O O O O o o

[]
(¢]

(¢]

www.it-ebooks.info

http://www.it-ebooks.info/

O

¢ open() method
o used, for manipulating files / The open() method

o modes / The open() method

e operators
o about / Python operators and built-in types, Operators

www.it-ebooks.info

http://www.it-ebooks.info/

Pack geometry manager

o about / The Pack geometry manager
paho-mqtt library

o about / MQTT on Python using paho-mqtt

o installing / Installing paho-mgtt

o using / Using the paho-mqtt Python library
passive infrared (PIR) sensor

o about / The project goal

o using / The list of components

o URL / The list of components
PEP-8

o URL / Operators
physical systems / Getting started with the IoT
pinMode() function
o about / The pinMode() function
pip
o installing / Installing pip
plot() function

o about / Plotting random numbers using matplotlib
portable TFT LCD display
o using / Using a portable TFT LLCD display with the Raspberry Pi

o connecting, GPIO used / Connecting the TET L.LCD using GPIO
o configuring, with Raspberry Pi OS / Configuring the TFT LLCD with the

Raspberry Pi OS
o GUI, optimizing / Optimizing the GUI for the TFT L.CD screen
potentiometer

o connections / Connections

o Python code / The Python code
PowerSwitch Tail

o URL / PowerSwitch Tail

Processing

o about / Introduction to Arduino programming
protocols

o about / Networking fundamentals
prototyping

o about / Prototyping
prototyping, thermostat

about / Stage 1 — prototyping the thermostat
Arduino sketch / The Arduino sketch for the thermostat
temperature sensor, interfacing / Interfacing the temperature sensor

humidity sensor, interfacing / Interfacing the humidity sensor
light sensor, interfacing / Interfacing the light sensor

(¢]

O O O O

www.it-ebooks.info

http://www.it-ebooks.info/

o troubleshooting / Troubleshooting
e prototyping, with I2C protocol

o about / Prototyping with the [2C protocol

o Arduino examples / Arduino examples for 12C interfacing

o TMP102 temperature sensor, using Arduino / Arduino coding for the TMP102
temperature sensor

o BH1750 light sensor, using Arduino / Arduino coding for the BH1750 light
sensor

o PyMata library, using / PyMata for quick I2C prototyping
o TMP102 temperature sensor, using PyMata library / Interfacing TMP102 using

PyMata
o BH1750 light sensor, using PyMata library / Interfacing BH1750 using PyMata
o pySerial commands, using / Useful pySerial commands
prototyping templates, using Firmata

o about / Prototyping templates using Firmata
potentiometer / Potentiometer — continuous observation from an analog input
buzzer, using / Buzzer — generating sound alarm pattern
DC motor, using / DC motor — controlling motor speed using PWM
LED / LED — controlling I.LED brightness using PWM

o servomotors, using / Servomotor — moving the motor to a certain angle
PubSubClient library

o using / MQTT on Arduino using the PubSubClient library

o installing / Installing the PubSubClient library

o URL / Installing the PubSubClient library
pulse-width modulation (PWM)

o about / The Arduino Uno board
push button switch
o using / The list of required components
pyFirmata methods
o working with / Working with pyFirmata methods
used, for setting up Arduino board / Setting up the Arduino board
used, for configuring Arduino pins / Configuring Arduino pins
used, for working with Arduino pins / Working with pins
servo_config(pin,min_pulse=544,max_pulse=2400,angle=0) / Additional
functions
pass_time(seconds) / Additional functions
get_firmata_version() / Additional functions
exit() / Additional functions
pulseln/pulseOut / Upcoming functions
o shiftln/shiftOut / Upcoming functions
e PyPI
o URL / Why we use Python, Installing Python packages
o about / Why we use Python
e pyplot framework

[] []
O O O O

O O O O

O O O O

www.it-ebooks.info

http://www.it-ebooks.info/

e}

e}

e}

about / Plotting random numbers using matplotlib
figure() function / Plotting random numbers using matplotlib
show() method / Plotting random numbers using matplotlib

e pySerial commands

o
o
o
o

e}

using / Useful pySerial commands
used, for connecting with serial port / Connecting with the serial port

used, for reading a line from port / Reading a line from the port

used, for flushing port to avoid buffer overflow / Flushing the port to avoid
buffer overflow

used, for closing port / Closing the port

e pySerial library

about / Getting started with pySerial

installing / Installing pySerial

URL / Installing pySerial

example / Playing with a pySerial example

and Firmata, bridging / Bridging pySerial and Firmata

e Python

e}

O 0O 0O O 0O O O O o o o

e}

about / Introduction to Python

benefits / Why we use Python

usage considerations / When do we use other languages
URL / When do we use other languages

installing / Installing Python and Setuptools
installing, on Linux / Linux

installing, on Ubuntu / Ubuntu

installing, on Fedora/Red Hat Linux / Fedora and Red Hat
installing, on Windows / Windows

URL, for downloading / Windows, Mac OS X

installing, on Mac OS X / Mac OS X

pip, installing / Installing pip
URL, for documentation / Controlling the flow of your program

Python code, Tweet-a-PowerStrip

e}

about / The Python code

Python context manager

e}

reference link / The with statement — Python context manager

Python data, downloading to Xively

e}

e}

e}

e}

e}

about / Python — downloading data from Xively

basic method, for retrieving data / The basic method for retrieving data from
Xively

data retrieving, from web.py web interface / Retrieving data from the web.py
web interface

custom notifications, from Xively / Triggers — custom notifications from Xively
triggers / Triggers — custom notifications from Xively

Python data, uploading to Xively

e}

about / Python — uploading data to Xively

www.it-ebooks.info

http://www.it-ebooks.info/

o basic method, for sending data / The basic method for sending data

o web interface used / Uploading data using a web interface based on web.py
Python executable files

o using / Working with Python executable files
Python functions

o using / Working with Python functions

o def keyword / Working with Python functions
Python GUI

o Tkinter / Learning Tkinter for GUI design
o first program / Your first Python GUI program
o Python-Arduino project, remaking / Remaking your first Python-Arduino

project with a GUI
Python packages

o installing / Installing Python packages
o installing, $ pip install *PackageName>=version* command used / Installing

Python packages
Python programming
o fundamentals / The fundamentals of Python programming
operators / Python operators and built-in types, Operators
built-in types / Python operators and built-in types, Built-in types
comments / Python operators and built-in types

program flow, controlling / Controlling the flow of your program
if statement / The if statement

for statement / The for statement
o while statement / The while statement
¢ Python software flow, Tweet-a-PowerStrip
o about / Python software flow
e Python threading library
o URL / Using the paho-mgqtt Python library
e Python tutorials
o URL / The fundamentals of Python programming, The while statement

O O O O O O

www.it-ebooks.info

http://www.it-ebooks.info/

R

e Radiobutton() widget

e}

e}

about / The Checkbutton() widget — selecting I.EDs
URL / The Checkbutton() widget — selecting L.EDs

e Raspberry Pi

e}

O O O O

(¢]

e}

e}

about / What is a Raspberry Pi?
Raspbian / What is a Raspberry Pi?
versions / What is a Raspberry Pi?

configuring / Installing the operating system and configuring the Raspberry Pi
operating system, installing / Installing the operating system and configuring the
Raspberry Pi

hardware components / What do you need to begin using the Raspberry Pi?
URL / What do you need to begin using the Raspberry Pi?, Preparing an SD
card

SD card, preparing / Preparing an SD card

setup process / The Raspberry Pi setup process

¢ read() method

e}

using / The read() method

e real-time Arduino data

e}

plotting / Plotting real-time Arduino data

e remote home monitoring system

e}

(¢] O 0O 0O o o o o o o

O O O O O o o

project overview / Project overview

project goals / The project goals

project requirements / The project requirements
system architecture, designing / Designing system architecture

UX flow, defining / Defining UX flow

hardware components / The list of required components

development stages, defining / Defining the project development stages
monitoring station, Arduino used / Stage 1 — a monitoring station using Arduino
testing / Testing, Testing and troubleshooting

control center, using / Stage 2 — a control center using Python and the Raspberry
Pi

web application / Stage 3 — a web application using Xively, Python, and
Amazon cloud service

troubleshooting / Testing and troubleshooting

extending / Extending your remote home monitoring system

multiple monitoring stations, utilizing / Utilizing multiple monitoring stations
sensory capabilities, extending / Extending sensory capabilities

UX, improving / Improving UX

cloud-based features, expanding / Expanding cloud-based features

improved intelligence, for situation awareness / Improving intelligence for
situation awareness

hardware enclosures, creating / Creating an enclosure for hardware components

www.it-ebooks.info

http://www.it-ebooks.info/

e Representation State Transfer (REST)

e}

about / Python web framework — web.py

e RESTful web applications

e}

O O O O

(¢]

(¢]

O O O O

developing, with Arduino and Python / RESTful web applications with Arduino

and Python
designing / Designing REST-based Arduino applications
GET request, implementing / Working with the GET request from Arduino

GET request, generating / The Arduino code to generate the GET request
GET request, handling with web.py / The HTTP server using web.py to handle

the GET request

POST request, implementing / Working with the POST request from Arduino
POST request, generating / The Arduino code to generate the POST request
POST request, handling with web.py / The HT'TP server using web.py to handle

the POST request
architecture / Exercise 3 — a RESTful Arduino web application

Arduino sketch / The Arduino sketch for the exercise

web.py web application / The web.py application to support REST requests
resource-constrained messaging protocol, using / Why do we need a resource-

constrained messaging protocol?

www.it-ebooks.info

http://www.it-ebooks.info/

Scale() widget

o about / Learning Tkinter for GUI design, The Scale() widget — adjusting the

brightness of an LED
o used, for adjusting brightness of LED / The Scale() widget — adjusting the

brightness of an LED

SD card
o reference link / What do you need to begin using the Raspberry Pi?, Preparing
an SD card

o preparing / Preparing an SD card
o preparing, from Windows / Preparing an SD card
o

preparing, from Mac OS X / Preparing an SD card
o preparing, from Ubuntu Linux / Preparing an SD card

Secure Shell (SSH) protocol / Logging into your virtual instance
Serial Clock Line (SCL)

o about / Prototyping with the I2C protocol
Serial Data Line (SDA)

o about / Prototyping with the I2C protocol

serial monitor

o using / Using the Serial Monitor window
serial peripheral interface (SPI)

o about / Prototyping
Server class
o about / The Server class
Servomotors
o using / Servomotor — moving the motor to a certain angle
o connections / Connections
o Python code / The Python code
setup() function
o using / The setup() function
Setuptools

o installing / Installing Setuptools

o about / Installing Setuptools
o installing, on Linux / Linux

o installing, on Windows / Windows

o installing, on Mac OS X / Mac OS X
sketch

o about / What is an Arduino sketch?

o compiling / Compiling and uploading sketches

o uploading / Compiling and uploading sketches
sketchbook

o about / What is an Arduino sketch?
slicing

www.it-ebooks.info

http://www.it-ebooks.info/

o about / Lists
StandardFirmata firmware
o using / Prototyping
statements
o about / Functions and statements, Statements
subnetwork/subnet
o about / Exercise 1 — a web server, your first Arduino network program
o reference link / Exercise 1 — a web server, your first Arduino network program
system architecture, remote home monitoring system
designing / Designing system architecture
o monitoring station / The monitoring station
o control center / The control center
o cloud services / The cloud services
system architecture, Tweet-a-PowerStrip

o about / System architecture

(¢]

www.it-ebooks.info

http://www.it-ebooks.info/

T

e Templetor
o about / Templates
o URL / Templates
e thermostat

building / Thermostat — the project description

project description / Thermostat — the project description
project background / Project background

project stages / Project goals and stages

project goals / Project goals and stages

required components, identifying / The list of required components
hardware design / Hardware design

software flow, for user experience design / Software flow for user experience
design

prototyping / Stage 1 — prototyping the thermostat

GUI, designing / Designing the GUI and plot in Python

plot, designing / Designing the GUI and plot in Python

deploying, Raspberry Pi used / Stage 2 — using a Raspberry Pi for the deployable
thermostat

e thermostat, prototyping
o Arduino interrupts, using / Using Arduino interrupts
e thermostat, using Raspberry Pi

o deploying / Stage 2 — using a Raspberry Pi for the deployable thermostat

o portable TFT LCD display, using / Using a portable TET L.LCD display with the
Raspberry Pi

o TFT LCD connection, using GPIO / Connecting the TET L.CD using GPIO
o TFT LCD, configuring / Configuring the TET LLCD with the Raspberry Pi OS
o GUI, optimizing for TFT LCD screen / Optimizing the GUI for the TET LCD
screen
o troubleshooting / Troubleshooting
thin-film transistor liquid-crystal display (TFT LCD)
o about / Hardware design
ThingSpeak
o about / ThingSpeak
Tk() widget
o about / Learning Tkinter for GUI design, The root widget Tk() and the top-level
methods
Tkinter
o about / Learning Tkinter for GUI design
o Pack geometry manager / The Pack geometry manager
o Grid geometry manager / The Grid geometry manager
o plots, integrating / Integrating plots in the Tkinter window
Tkinter, widgets

O O O O O O o o

O O O O

www.it-ebooks.info

http://www.it-ebooks.info/

Tk() / Learning Tkinter for GUI design
Label() / Learning Tkinter for GUI design
Button() / Learning Tkinter for GUI design
Entry() / Learning Tkinter for GUI design
Scale() / Learning Tkinter for GUI design

o Checkbox() / Learning Tkinter for GUI design
e Tkinter class

o about / The Label() widget — monitoring I/O pins
o BooleanVar() method / The Label() widget — monitoring I/O pins

o update_idletasks method / The Label() widget — monitoring I/O pins
o update method / The Label() widget — monitoring I/O pins
e TMP102 temperature sensor
o interfacing, Arduino used / Arduino coding for the TMP102 temperature sensor
o interfacing, PyMata library used / Interfacing TMP102 using PyMata
e transistor terminals
o reference link / Connections
e troubleshooting
o Tweet-a-PowerStrip / Testing and troubleshooting
e troubleshooting, Arduino board connection
o about / Troubleshooting
e Tweet-a-PowerStrip
project overview / Project overview
project requirements / Project requirements
system architecture / System architecture
hardware components / Required hardware components
user experience flow / User experience flow
development stage / Development and deployment stages
deployment stage / Development and deployment stages
smart power strip with Arduino / Stage 1 — a smart power strip with Arduino and
relays
hardware design / Hardware design
Arduino code / The Arduino code
Python code / Stage 2 — the Python code to process tweets, The Python code
Python software flow / Python software flow
Twitter application, setting up / Setting up the Twitter application
testing / Testing and troubleshooting
troubleshooting / Testing and troubleshooting
multiple features, adding / Extending the project with additional features
e Twitter application, Tweet-a-PowerStrip
o setting up / Setting up the Twitter application

O O O O O

O O O O O O o o

O O O O O O o o

www.it-ebooks.info

http://www.it-ebooks.info/

Ubuntu
o Python, installing / Ubuntu

o matplotlib, setting up / Setting up matplotlib on Ubuntu
Ubuntu Linux

o SD card, preparing / Preparing an SD card
Universal Serial Bus (USB)

o about / Using the Serial Monitor window
Uno board

o about / The Arduino Uno board
user experience (UX) flow, Tweet-a-PowerStrip

o about / User experience flow

www.it-ebooks.info

http://www.it-ebooks.info/

\Y

e variables
o about / Variables
e virtual instance, on AWS EC2 service
o creating / Creating a virtual instance on the AWS EC2 service

o logging into / Logging into your virtual instance
¢ void data type

o about / Data types

www.it-ebooks.info

http://www.it-ebooks.info/

W

e web.py
o used, for developing web applications / Python web framework — web.py

o installing / Installing web.py
basic concepts / Essential web.py concepts for developing complex web

applications
URL, handling / Handling URLs

GET methods / The GET and POST methods
POST methods / The GET and POST methods
templates / Templates
forms / Forms
with Arduino serial interface / Exercise 2 — playing with web.py concepts using
the Arduino serial interface
e web application, remote home monitoring system
o about / Stage 3 — a web application using Xively, Python, and Amazon cloud
service
o architecture / Architecture of the cloud services
o Python web application, hosted on Amazon AWS / Python web application
hosted on Amazon AWS
o testing / Testing the web application, Testing and troubleshooting
e web applications
o developing, with Python / Developing web applications using Python
o developing, web.py used / Python web framework — web.py

o implementing, web.py used / Your first Python web application
e while statement

o about / The while statement
e wide area network (WAN)
o about / Networking fundamentals
e Windows
o Python, installing / Windows
Setuptools, installing / Windows
Arduino IDE, installing / Windows
Arduino board connection, establishing / Windows
matplotlib, configuring / Configuring matplotlib on Windows
SD card, preparing / Preparing an SD card
o [P address, obtaining / Windows
e Wire library
o about / Prototyping with the I2C protocol
o URL / Prototyping with the I2C protocol
e Wiring
o about / Introduction to Arduino programming
e with statement
o using / The with statement — Python context manager

(¢]

O O O O O O

O O O O O

www.it-ebooks.info

http://www.it-ebooks.info/

e World Wide Web (WWW)

o about / RESTful web applications with Arduino and Python
e write() method

o used, for working with files / The write() method

www.it-ebooks.info

http://www.it-ebooks.info/

X

e Xively / Architecture of the cloud services

e Xively, IoT cloud platforms

about / Xively — a cloud platform for the IoT

o account, setting up / Setting up an account on Xively

o working with / Working with Xively

o Adruino, interfacing with / Interfacing Arduino with Xively

(¢]

www.it-ebooks.info

http://www.it-ebooks.info/

	1. Getting Started with Python and Arduino
	Introduction to Python
	Why we use Python
	When do we use other languages
	Installing Python and Setuptools
	Installing Python
	Linux
	Ubuntu
	Fedora and Red Hat
	Windows
	Mac OS X
	Installing Setuptools
	Linux
	Windows
	Mac OS X
	Installing pip
	Installing Python packages
	The fundamentals of Python programming
	Python operators and built-in types
	Operators
	Built-in types
	Data structures
	Lists
	Tuples
	Sets
	Dictionaries
	Controlling the flow of your program
	The if statement
	The for statement
	The while statement
	Built-in functions
	Conversions
	Math operations
	String operations
	Introduction to Arduino
	History
	Why Arduino?
	Arduino variants
	The Arduino Uno board
	Installing the Arduino IDE
	Linux
	Mac OS X
	Windows
	Getting started with the Arduino IDE
	What is an Arduino sketch?
	Working with libraries
	Using Arduino examples
	Compiling and uploading sketches
	Using the Serial Monitor window
	Introduction to Arduino programming
	Comments
	Variables
	Constants
	Data types
	Conversions
	Functions and statements
	The setup() function
	The loop() function
	The pinMode() function
	Working with pins
	Statements
	Summary
	2. Working with the Firmata Protocol and the pySerial Library
	Connecting the Arduino board
	Linux
	Mac OS X
	Windows
	Troubleshooting
	Introducing the Firmata protocol
	What is Firmata?
	Testing the Firmata protocol
	Getting started with pySerial
	Installing pySerial
	Playing with a pySerial example
	Bridging pySerial and Firmata
	Uploading a Firmata sketch to the Arduino board
	Summary

	3. The First Project – Motion-triggered LEDs
	Motion-triggered LEDs – the project description
	The project goal
	The list of components
	The software flow design
	The hardware system design
	Introducing Fritzing – a hardware prototyping software
	Working with the breadboard
	Designing the hardware prototype
	Testing hardware connections
	Method 1 – using a standalone Arduino sketch
	The project setup
	The Arduino sketch
	The setup() function
	The loop() function
	Working with custom Arduino functions
	Testing
	Troubleshooting
	Method 2 – using Python and Firmata
	The project setup
	Working with Python executable files
	The Python code
	Working with pyFirmata methods
	Working with Python functions
	Testing
	Troubleshooting
	Summary

	4. Diving into Python-Arduino Prototyping
	Prototyping
	Working with pyFirmata methods
	Setting up the Arduino board
	Configuring Arduino pins
	The direct method
	Assigning pin modes
	Working with pins
	Reporting data
	Manual operations
	The write() method
	The read() method
	Additional functions
	Upcoming functions
	Prototyping templates using Firmata
	Potentiometer – continuous observation from an analog input
	Connections
	The Python code
	Buzzer – generating sound alarm pattern
	Connections
	The Python code
	DC motor – controlling motor speed using PWM
	Connections
	The Python code
	LED – controlling LED brightness using PWM
	Connections
	The Python code
	Servomotor – moving the motor to a certain angle
	Connections
	The Python code
	Prototyping with the I2C protocol
	Arduino examples for I2C interfacing
	Arduino coding for the TMP102 temperature sensor
	Arduino coding for the BH1750 light sensor
	PyMata for quick I2C prototyping
	Interfacing TMP102 using PyMata
	Interfacing BH1750 using PyMata
	Useful pySerial commands
	Connecting with the serial port
	Reading a line from the port
	Flushing the port to avoid buffer overflow
	Closing the port
	Summary

	5. Working with the Python GUI
	Learning Tkinter for GUI design
	Your first Python GUI program
	The root widget Tk() and the top-level methods
	The Label() widget
	The Pack geometry manager
	The Button() widget – interfacing GUI with Arduino and LEDs
	The Entry() widget – providing manual user inputs
	The Scale() widget – adjusting the brightness of an LED
	The Grid geometry manager
	The Checkbutton() widget – selecting LEDs
	The Label() widget – monitoring I/O pins
	Remaking your first Python-Arduino project with a GUI
	Summary

	6. Storing and Plotting Arduino Data
	Working with files in Python
	The open() method
	The write() method
	The close() method
	The read() method
	The with statement – Python context manager
	Using CSV files to store data
	Storing Arduino data in a CSV file
	Getting started with matplotlib
	Configuring matplotlib on Windows
	Configuring matplotlib on Mac OS X
	Upgrading matplotlib
	Troubleshooting installation errors
	Setting up matplotlib on Ubuntu
	Plotting random numbers using matplotlib
	Plotting data from a CSV file
	Plotting real-time Arduino data
	Integrating plots in the Tkinter window
	Summary

	7. The Midterm Project – a Portable DIY Thermostat
	Thermostat – the project description
	Project background
	Project goals and stages
	The list of required components
	Hardware design
	Software flow for user experience design
	Stage 1 – prototyping the thermostat
	The Arduino sketch for the thermostat
	Interfacing the temperature sensor
	Interfacing the light sensor
	Interfacing the humidity sensor
	Using Arduino interrupts
	Designing the GUI and plot in Python
	Using pySerial to stream sensor data in your Python program
	Designing the GUI using Tkinter
	Plotting percentage humidity using matplotlib
	Using button interrupts to control the parameters
	Changing the temperature unit by pressing a button
	Swapping between the GUI and the plot by pressing a button
	Troubleshooting

	Stage 2 – using a Raspberry Pi for the deployable thermostat
	What is a Raspberry Pi?
	Installing the operating system and configuring the Raspberry Pi
	What do you need to begin using the Raspberry Pi?
	Preparing an SD card
	The Raspberry Pi setup process
	Using a portable TFT LCD display with the Raspberry Pi
	Connecting the TFT LCD using GPIO
	Configuring the TFT LCD with the Raspberry Pi OS
	Optimizing the GUI for the TFT LCD screen
	Troubleshooting

	Summary

	8. Introduction to Arduino Networking
	Arduino and the computer networking
	Networking fundamentals
	Obtaining the IP address of your computer
	Windows
	Mac OS X
	Linux
	Networking extensions for Arduino
	Arduino Ethernet Shield
	Arduino WiFi Shield
	Arduino Yún
	Arduino Ethernet library
	The Ethernet class
	The IPAddress class
	The Server class
	The Client class
	Exercise 1 – a web server, your first Arduino network program
	Developing web applications using Python
	Python web framework – web.py
	Installing web.py
	Your first Python web application
	Essential web.py concepts for developing complex web applications
	Handling URLs
	The GET and POST methods
	Templates
	Forms

	Exercise 2 – playing with web.py concepts using the Arduino serial interface
	RESTful web applications with Arduino and Python
	Designing REST-based Arduino applications
	Working with the GET request from Arduino
	The Arduino code to generate the GET request
	The HTTP server using web.py to handle the GET request
	Working with the POST request from Arduino
	The Arduino code to generate the POST request
	The HTTP server using web.py to handle the POST request

	Exercise 3 – a RESTful Arduino web application
	The Arduino sketch for the exercise
	The web.py application to support REST requests
	Why do we need a resource-constrained messaging protocol?
	MQTT – A lightweight messaging protocol
	Introduction to MQTT
	Mosquitto – an open source MQTT broker
	Setting up Mosquitto
	Getting familiar with Mosquitto
	Getting started with MQTT on Arduino and Python
	MQTT on Arduino using the PubSubClient library
	Installing the PubSubClient library
	Developing the Arduino MQTT client
	MQTT on Python using paho-mqtt
	Installing paho-mqtt
	Using the paho-mqtt Python library

	Exercise 4 – MQTT Gateway for Arduino
	Developing Arduino as the MQTT client
	Developing the MQTT Gateway using Mosquitto
	Extending the MQTT Gateway using web.py
	Testing your Mosquitto Gateway

	Summary

	9. Arduino and the Internet of Things
	Getting started with the IoT
	Architecture of IoT web applications
	Hardware design
	The IoT cloud platforms
	Xively – a cloud platform for the IoT
	Setting up an account on Xively
	Working with Xively
	Alternative IoT platforms
	ThingSpeak
	Carriots
	Developing cloud applications using Python and Xively
	Interfacing Arduino with Xively
	Uploading Arduino data to Xively
	Downloading data to Arduino from Xively
	Advanced code to upload and download data using Arduino
	Python – uploading data to Xively
	The basic method for sending data
	Uploading data using a web interface based on web.py
	Python – downloading data from Xively
	The basic method for retrieving data from Xively
	Retrieving data from the web.py web interface
	Triggers – custom notifications from Xively
	Your own cloud platform for the IoT
	Getting familiar with the Amazon AWS platform
	Setting up an account on AWS
	Creating a virtual instance on the AWS EC2 service
	Logging into your virtual instance
	Creating an IoT platform on the EC2 instance
	Installing the necessary packages on AWS
	Configuring the security of the virtual instance
	Testing your cloud platform
	Testing the Mosquitto service
	Configuring and testing basic security
	Uploading and testing a project on the instance
	Summary

	10. The Final Project – a Remote Home Monitoring System
	The design methodology for IoT projects
	Project overview
	The project goals
	The project requirements
	Designing system architecture
	The monitoring station
	The control center
	The cloud services
	Defining UX flow
	The list of required components
	Defining the project development stages
	Stage 1 – a monitoring station using Arduino
	Designing the monitoring station
	The Arduino sketch for the monitoring station
	Publishing sensor information
	Subscribing to actuator actions
	Programming an interrupt to handle the press of a button
	Testing

	Stage 2 – a control center using Python and the Raspberry Pi
	The control center architecture
	The Python code for the control center
	Creating the GUI using Tkinter
	Communicating with the Mosquitto broker
	Calculating the system's status and situation awareness
	Communicating with Xively
	Checking and updating the buzzer's status
	Testing the control center with the monitoring station
	Setting up the control center on the Raspberry Pi

	Stage 3 – a web application using Xively, Python, and Amazon cloud service
	Architecture of the cloud services
	Python web application hosted on Amazon AWS
	Testing the web application
	Testing and troubleshooting
	Extending your remote home monitoring system
	Utilizing multiple monitoring stations
	Extending sensory capabilities
	Improving UX
	Expanding cloud-based features
	Improving intelligence for situation awareness
	Creating an enclosure for hardware components

	Summary

	11. Tweet-a-PowerStrip
	Project overview
	Project requirements
	System architecture
	Required hardware components
	Relays
	PowerSwitch Tail
	User experience flow
	Development and deployment stages
	Stage 1 – a smart power strip with Arduino and relays
	Hardware design
	The Arduino code

	Stage 2 – the Python code to process tweets
	Python software flow
	Setting up the Twitter application
	The Python code
	Testing and troubleshooting
	Extending the project with additional features

	Summary

	Index

